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THE 3D HAPPEL MODEL FOR COMPLETE
ISOTROPIC STOKES FLOW
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The creeping flow through a swarm of spherical particles that move with constant velocity
in an arbitrary direction and rotate with an arbitrary constant angular velocity in a quiescent
Newtonian fluid is analyzed with a 3D sphere-in-cell model. The mathematical treatment is
based on the two-concentric-spheres model. The inner sphere comprises one of the particles
in the swarm and the outer sphere consists of a fluid envelope. The appropriate boundary
conditions of this non-axisymmetric formulation are similar to those of the 2D sphere-in-
cell Happel model, namely, nonslip flow condition on the surface of the solid sphere and nil
normal velocity component and shear stress on the external spherical surface. The boundary
value problem is solved with the aim of the complete Papkovich-Neuber differential repre-
sentation of the solutions for Stokes flow, which is valid in non-axisymmetric geometries
and provides us with the velocity and total pressure fields in terms of harmonic spherical
eigenfunctions. The solution of this 3D model, which is self-sufficient in mechanical energy,
is obtained in closed form and analytical expressions for the velocity, the total pressure, the
angular velocity, and the stress tensor fields are provided.
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1. Introduction. Stokes flow [8] characterizes the steady and non-axisymmetric flow

of an incompressible, viscous fluid at low Reynolds number and is described by a pair

of partial differential equations connecting the biharmonic velocity with the harmonic

total pressure field. Fluid flow relative to assemblages of particles that conform to

Stokes law represents an area of interest in many fields of science and technology.

Thus, particle-fluid systems are encountered in many important applications. Because

of the small size of the particles, spherical coordinates [12] approach efficiently the

geometry of those suspensions for many interior and exterior flow problems. Then the

flow caused by motion is considered to be axisymmetric. Nevertheless, more realistic

and general models assume rotation beyond the translation in the assemblage where the

rotational symmetry disappears. Eventually one has to deal with a full three dimensional

(3D) Stokes flow in spherical coordinates. The introduction of the representation theory

[16] serves to unify the method of attack on all 3D incompressible fluid motions since

they provide us the flow fields for creeping flow in terms of harmonic and biharmonic

potentials. The most famous differential solution for Stokes flow has been proposed

by Papkovich (1932) and Neuber [14] and provides the flow fields in terms of harmonic

functions [14, 16]. This representation is followed by the work at hand.

One of the largest physical areas with practical importance in flow hydrodynamics

concerns the construction of particle-in-cell models for swarms of particles. The tech-

nique of cell models is based on the idea that a large enough concentration of particles
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within a fluid can be represented by many separate unit cells, where every cell con-

tains one particle. Thus, the consideration of a full-dimensional porous media is being

referred to as that of a single particle and its fluid cover. This way, the mathematical

formulation of any physical problem is significantly simplified. Many efficient methods

have been developed in order to solve this kind of problems in spherical and spheroidal

coordinates, considering axial symmetry inherited by the geometry, such as numerical

computation [1, 6, 10] and stream-function techniques [2, 3, 11, 13] or other analytic-

function methods [4, 5, 7, 15]. Nevertheless, 3D flows have not been extensively faced.

It is to this end that 3D particle-in-cell flow models serve as platforms, which capture

the essential features of the transport process under consideration in an analytical

formula.

In the present work, the solution of the non-axisymmetric (3D) Stokes flow prob-

lem in an assemblage of spherical particles, which translate and rotate, considering a

sphere-in-cell model of Happel type [7], is obtained using the Papkovich-Neuber differ-

ential representation. The loss of symmetry is caused by the imposed rotation of the

particles. The incentive for this is that the Happel-type boundary conditions (BCs) are

more compatible with the physics of flow in a swarm since they ensure that each unit

cell is energetically self-sufficient. On the other hand, it has the disadvantage that this

formulation does not provide space filling, a difficulty that must be dealt with, when one

tries to pass from the single unit cell to an assemblage of particles. In accordance with

the concept introduced by Happel [7], two concentric spheres are considered. Under

the assumption of very small Reynolds number and pseudosteady state, we investigate

the creeping flow within the fluid cell contained between the two concentric spherical

surfaces. The internal sphere is solid, moves with a constant uniform velocity, and ro-

tates arbitrarily with a constant angular velocity in an otherwise quiescent spherical

layer, which is confined by the external sphere that contains the spherical particle and

the amount of fluid required to match the fluid’s volume fraction of the swarm. This

formulation is escorted by the appropriate BC on the two spherical surfaces; that is,

nonslip flow on the inner sphere, and no normal flow and nil tangential stresses on the

outer spherical envelope.

The Papkovich-Neuber representation is employed in order to solve the above bound-

ary value problem. In order to achieve that, we calculate the Papkovich-Neuber eigenso-

lutions, generated by the appropriate spherical eigenfunctions [9]. That way, we deter-

mine the flow fields as a full series expansion via the Papkovich-Neuber representation,

which represents the velocity and the total pressure fields in terms of harmonic func-

tions. After the imposition of the required BCs, the solution is obtained in a closed 3D

form. Once the velocity and the total pressure fields are calculated, the angular velocity

and the stress tensor fields are also obtained.

Section 2 provides the mathematical statement of the Stokes flow problem where

the Papkovich-Neuber differential representation is presented and the 3D Happel-type

BCs are given for the corresponding sphere-in-cell model. Section 3 discusses the eigen-

functions for the Papkovich-Neuber harmonic potentials in spherical coordinates. The

Stokes flow fields are also provided as full series expansions. The aforementioned

Happel-type problem is solved explicitly in Section 4, where the results are presented
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in 3D closed form. Section 5 is dedicated to a discussion of the results drawn in this

work. The necessary material, which makes this work self-dependent such as identi-

ties, useful recurrence relations associated with the Legendre functions and related

functions, is collected in the appendix.

2. The 3D Happel sphere model. In terms of the transformation ζ = cosθ,−1≤ ζ ≤
1, the following expressions for the relation between the Cartesian coordinates and the

spherical coordinate system [12] are obtained:

x1 = rζ, x2 = r
√

1−ζ2 cosϕ, x3 = r
√

1−ζ2 sinϕ, (2.1)

where 0 ≤ r < +∞, 0 ≤ θ ≤ π , and 0 ≤ ϕ < 2π . We define the sphere Br for r > 0 as

the set

Br =
{
r∈R3 | x2

1+x2
2+x2

3 ≤ r 2}. (2.2)

Then, the outward unit normal vector on the surface of the sphere r = r0 > 0 is fur-

nished by the formula

n̂
(
r0
)= ζx̂1+

√
1−ζ2 cosϕx̂2+

√
1−ζ2 sinϕx̂3 = r

(
r0
)

r0
≡ r̂. (2.3)

In order to construct tractable mathematical models for the flow systems involving par-

ticles, it is necessary to resort to a number of simplifications. A dimensionless criterion,

which determines the relative importance of inertial and viscous effects, is the Reynolds

number Re. Stokes equations for the pseudosteady, non-axisymmetric, creeping flow

(Re� 1) of incompressible (density ρ = const.), viscous (dynamic viscosity µ = const.)

fluids connect the vector velocity field v(r) with the scalar total pressure field P(r) [8].

Considering Stokes flow around particles embedded within smooth, bounded domains

Ω(R3), these equations appear as

µ∆v(r)=∇P(r), r∈Ω(R3), (2.4)

∇·v(r)= 0, r∈Ω(R3). (2.5)

The total pressure is harmonic, while the velocity is biharmonic and divergence-free.

Equation (2.4) states that, for creeping flow, the pressure compensates the viscous

forces, while (2.5) preserves the incompressibility of the fluid. The harmonic vortic-

ity field ω(r) is obtained via

ω(r)= 1
2
∇×v(r), r∈Ω(R3). (2.6)

Equation (2.4) is the time-independent, simplified Navier-Stokes equation. Therefore,

by virtue of the Papkovich-Neuber (3D) differential representation of the solution for

Stokes flow [14, 16], there exist harmonic functions Φ(r) and Φ0(r), the vector and
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scalar Papkovich-Neuber potentials, respectively, such that

v(r)=Φ(r)− 1
2
∇(r·Φ(r)+Φ0(r)

)
, r∈Ω(R3),

P(r)= P0−µ∇·Φ(r), r∈Ω(R3), (2.7)

whereas P0 is a constant pressure of reference usually assigned at a convenient point,

while Φ(r) and Φ0(r) satisfy

∆Φ(r)= 0, ∆Φ0(r)= 0, r∈Ω(R3). (2.8)

The total pressure is produced by the summation of the thermodynamic pressure p(r)
and the gravitational pressure force ρgh (g is the acceleration of the gravity):

P(r)= p(r)+ρgh, r∈Ω(R3), (2.9)

where h specifies an arbitrarily chosen height of reference.

The stress tensor Π̃(r) is taken to be

Π̃(r)=−p(r)̃I+µ
[
∇⊗v(r)+(∇⊗v(r)

)�], r∈Ω(R3), (2.10)

where Ĩ stands for the unit dyadic and the symbol “�” denotes transposition.

The gradient ∇ and the Laplacian ∆ assume the expressions

∇= r̂
∂
∂r
−
√

1−ζ2

r
ζ̂
∂
∂ζ
+ 1

r
√

1−ζ2
ϕ̂
∂
∂ϕ

,

∆= 1
r 2

∂
∂r

(
r 2 ∂
∂r

)
+ 1
r 2

∂
∂ζ

[(
1−ζ2) ∂

∂ζ

]
+ 1
r 2
(
1−ζ2

) ∂2

∂ϕ2
,

(2.11)

while r̂, ζ̂ , ϕ̂ are the coordinate vectors of the spherical system for r > 0, |ζ| ≤ 1, and

ϕ ∈ [0,2π).
2.1. The Happel-type BCs for a 3D sphere-in-cell model. The general 3D solution

of Papkovich-Neuber (equations (2.7)-(2.8)) is employed here. According to the idea of

particle-in-cell model described in the introduction, we are interested solving the creep-

ing flow within a fluid cell limited between two concentric spherical surfaces. Thus, we

examine the flow of one particle in the assemblage, neglecting the interaction with

other particles or with the bounded walls of a container. This way, we avoid techni-

cal complications and additional terminology that will lead us to cumbersome in use

results.

Two concentric spheres of radii a and b, a < b, are considered. The inner one, indi-

cated by Sa, at r = a, is solid and is moving with a constant translational velocity U
in the main directions of a sphere. Furthermore, it is rotating, also arbitrarily, with a

constant angular velocityΩ. The difference between the velocity U and the mean inter-

stitial velocity through a swarm of spherical particles must be taken into account when

we refer to the assemblage, since the specific model is not space filling. Consequently,
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by definition, the uniform velocity and the constant rotation are dictated by

U =U
(
ζ r̂−

√
1−ζ2ζ̂

)
=U x̂1, Ω=

3∑
i=1

Ωix̂i, (2.12)

respectively. The outer sphere at r = b, indicated by Sb, represents the fictitious bound-

ary of the unit cell (sphere-in-cell) that is used to model flow through the swarm of

spherical particles. The volume of the fluid cell is chosen so that the solid volume frac-

tion in the cell equals the solid volume fraction of the swarm. The imposed rotation

(along with the translation) in (2.12) generates the 3D flow in the fluid layer between

the two spheres.

The BCs, which are applied, are analogous to those of the Happel sphere-in-cell model

for axisymmetric flows [7]. Indeed, assuming pseudosteady state, the 3D Happel-type

BCs can be expressed as follows:

(i) BC (1):

v(r)=U+Ω×r for r∈ Sa(r = a), (2.13)

(ii) BC (2):

r̂·v(r)= 0 for r∈ Sb(r = b), (2.14)

(iii) BC (3):

r̂·Π̃(r)· (̃I− r̂⊗ r̂
)= 0 for r∈ Sb(r = b). (2.15)

Equation (2.13) expresses the nonslip flow condition on the solid particle of the swarm,

whereas (2.14) implies that there is no flow across the boundary of the fluid envelope

Sb. Furthermore, the shear stress is assumed to nil on the external sphere, as shown

by (2.15), a condition that secures the nonexchange of mechanical energy with the

environment. This completes the statement of a well-posed Happel-type boundary value

problem within 3D domains, r∈Ω(R3).
Our purpose is to solve the aforementioned non-axisymmetric Happel flow problem

in spherical domains with the aim of the Papkovich-Neuber differential representation

and obtain the basic flow fields.

3. Papkovich-Neuber flow fields: the sphere (3D). We introduce the set of the 2n+1

linearly independent surface spherical harmonic eigenfunctions Ymsn (r̂) of degree n
(n = 0,1,2, . . . ) and of order m (m = 0,1,2, . . . ,n) in terms of the associated Legendre

functions Pmn (ζ) of the first kind [9] via the formulae

Ymsn
(
r̂
)= Pmn (ζ)


cosmϕ, s = e,

sinmϕ, s = o, m= 0,1,2, . . . ,n, |ζ| ≤ 1, ϕ ∈ [0,2π), (3.1)

for n= 0,1,2, . . . , which satisfy the orthonormalization relations
∮
S2
Ymsn

(
r̂
)
Ym

′s′
n′

(
r̂
)
dS
(
r̂
)= 4π

2n+1
(n+m)!
(n−m)!δnn′δmm′δss′

1
εm
. (3.2)
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Here, δij denotes the Kronecker delta, εm stands for the Neumann factor (εm = 1,m= 0

and εm = 2, m ≥ 1), s comprises the even (e) or the odd (o) character of the spherical

surface harmonics, and S2 is the unit sphere in R3. For the same values of n and m,

the associated Legendre functions of the first kind [9] are defined by the following

derivatives:

Pmn (ζ)=
(
1−ζ2

)m/2
2nn!

dn+m

dζn+m
(
ζ2−1

)n, |ζ|< 1. (3.3)

The index n denotes the degree and m denotes the order.

Due to physical requirements concerning Stokes flows, the fields must be regular

for ζ = ±1. Therefore, the terms involving the associated Legendre functions of the

second kind are excluded and the corresponding eigenfunctions should be eliminated.

Consequently, every harmonic function belongs to the kernel of the Laplace operator ∆
and in spherical coordinates, this linear space can be expressed as a complete set of the

internal (i) and the external (e) solid spherical harmonics in the absence of singularities

for ζ =±1, that is,

u(i)msn (r)= rnYmsn
(
r̂
)
, u(e)msn (r)= r−(n+1)Ymsn

(
r̂
)
, n≥ 0, m= 0,1, . . . ,n, s = e,o,

(3.4)

for every r∈Ω(R3).
Eventually, the complete representation of the Papkovich-Neuber potentials that ap-

pear in (2.8) assume the form

Φ(r)=
∞∑
n=0

n∑
m=0

∑
s=e,o

[
e(i)msn u(i)msn (r)+e(e)msn u(e)msn (r)

]
, r∈Ω(R3), (3.5)

Φ0(r)=
∞∑
n=0

n∑
m=0

∑
s=e,o

[
d(i)msn u(i)msn (r)+d(e)msn u(e)msn (r)

]
, r∈Ω(R3). (3.6)

Note that

e(i/e)msn = a(i/e)msn x̂1+b(i/e)msn x̂2+c(i/e)msn x̂3 (3.7)

and d(i/e)msn denote the vector and scalar constant coefficients of the harmonic poten-

tials Φ(r) and Φ0(r), respectively, whereas n≥ 0, m= 0,1, . . . ,n, and s = e,o.

Substituting the potentials Φ(r) and Φ0(r), r∈Ω(R3), given by (3.5) and (3.6), respec-

tively, to the Papkovich-Neuber representation (2.7), we derive the following relation for

the velocity field as full series expansion of the aforementioned eigenfunctions, that is,

v(r)= 1
2

∞∑
n=0

n∑
m=0

∑
s=e,o

{
e(i)msn u(i)msn (r)−[(e(i)msn ·r)+d(i)msn

]∇u(i)msn (r)

+e(e)msn u(e)msn (r)−[(e(e)msn ·r)+d(e)msn
]∇u(e)msn (r)

} (3.8)
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for every r∈Ω(R3), while for the total pressure field, we obtain

P(r)= P0−µ
∞∑
n=0

n∑
m=0

∑
s=e,o

{
e(i)msn ·∇u(i)msn (r)+e(e)msn ·∇u(e)msn (r)

}
, r∈Ω(R3). (3.9)

Of course, all kinds of singularities have been excluded.

Once the velocity is calculated, the vorticity field, dictated by (2.6), is easily confirmed

to be expressed as

ω(r)= 1
2

∞∑
n=0

n∑
m=0

∑
s=e,o

{∇u(i)msn (r)×e(i)msn +∇u(e)msn (r)×e(e)msn
}
, r∈Ω(R3), (3.10)

while in view of the velocity field (3.7), equation (2.10) implies

Π̃(r)=−p(r)̃I−µ
∞∑
n=0

n∑
m=0

∑
s=e,o

{[(
e(i)msn ·r)+d(i)msn

]∇⊗∇u(i)msn (r)

+[(e(e)msn ·r)+d(e)msn
]∇⊗∇u(e)msn (r)

} (3.11)

for r ∈ Ω(R3). The unit dyadic in both the Cartesian and the spherical coordinates is

furnished by

Ĩ= x̂1⊗ x̂1+ x̂2⊗ x̂2+ x̂3⊗ x̂3

= r̂⊗ r̂+ ζ̂⊗ ζ̂+ϕ̂⊗ϕ̂ (3.12)

and the thermodynamic pressure which appears in the form of the stress tensor (3.11)

is calculated from (2.9).

The basic identities that were used to obtain the formulae (3.8)–(3.11), as well as the

connection formulae between the coordinate vectors of the Cartesian and the spherical

system, are summarized in the appendix.

4. Solution with 3D Happel-type sphere-in-cell model. The point of this section is

to solve the 3D Stokes sphere-in-cell model with the Happel-type BCs (2.13)–(2.15), in

view of relations (3.8) and (3.11). Since the vector character of the vector harmonic

eigenfunctions is reflected upon the constant coefficients, which are written in Carte-

sian coordinates, we are obliged to work in the Cartesian system. This is attainable and

requires the expression of the flow fields in terms of constants and surface spherical

harmonics. In order to do that, it is necessary to express the gradient of the internal and

external solid spherical harmonics (3.4) as a function of surface spherical harmonics.

This is possible since the∇u(i)msn (r) and the∇u(e)msn (r) for every n≥ 0,m= 0,1, . . . ,n,

s = e,o, and r ∈ Ω(R3) belong to the subspace produced by the surface spherical har-

monics provided by (3.1). After long and tedious calculations, taking advantage of cer-

tain recurrence relations for the associated Legendre functions of the first kind and

of special identities (see, also, the appendix), we arrive at very useful expressions for

the internal solid spherical harmonic eigenfunctions provided by (3.4). This program
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furnishes

∇u(i)men (r)= 1
2

[
(n+m)(n+m−1)Y (m−1)e

n−1

(
r̂
)−Y(m+1)e

n−1

(
r̂
)]
rn−1x̂2

− 1
2

[
(n+m)(n+m−1)Y (m−1)o

n−1

(
r̂
)+Y(m+1)o

n−1

(
r̂
)]
rn−1x̂3

+(n+m)Ymen−1

(
r̂
)
rn−1x̂1, n≥ 0, m= 1, . . . ,n, r∈Ω(R3),

∇u(i)mon (r)= 1
2

[
(n+m)(n+m−1)Y (m−1)o

n−1

(
r̂
)−Y(m+1)o

n−1

(
r̂
)]
rn−1x̂2

+ 1
2

[
(n+m)(n+m−1)Y (m−1)e

n−1

(
r̂
)+Y(m+1)e

n−1

(
r̂
)]
rn−1x̂3

+(n+m)Ymon−1

(
r̂
)
rn−1x̂1, n≥ 0, m= 1, . . . ,n, r∈Ω(R3)

(4.1)

and for the case m= 0,

∇u(i)0en (r)= [−Y 1e
n−1

(
r̂
)
x̂2−Y 1o

n−1

(
r̂
)
x̂3+nY 0e

n−1

(
r̂
)
x̂1
]
rn−1, n≥ 0, r∈Ω(R3). (4.2)

Similarly, for the external solid spherical harmonic eigenfunctions, the following rela-

tions hold true:

∇u(e)men (r)= 1
2

[
(n−m+1)(n−m+2)Y (m−1)e

n+1

(
r̂
)−Y(m+1)e

n+1

(
r̂
)]
r−(n+2)x̂2

− 1
2

[
(n−m+1)(n−m+2)Y (m−1)o

n+1

(
r̂
)+Y(m+1)o

n+1

(
r̂
)]
r−(n+2)x̂3

−(n−m+1)Ymen+1

(
r̂
)
r−(n+2)x̂1, n≥ 0, m= 1, . . . ,n, r∈Ω(R3),

∇u(e)mon (r)= 1
2

[
(n−m+1)(n−m+2)Y (m−1)o

n+1

(
r̂
)−Y(m+1)o

n+1

(
r̂
)]
r−(n+2)x̂2

+ 1
2

[
(n−m+1)(n−m+2)Y (m−1)e

n+1

(
r̂
)+Y(m+1)e

n+1

(
r̂
)]
r−(n+2)x̂3

−(n−m+1)Ymon+1

(
r̂
)
r−(n+2)x̂1, n≥ 0, m= 1, . . . ,n, r∈Ω(R3)

(4.3)

and in the same way for the case m= 0 and for r∈Ω(R3),

∇u(e)0en (r)= [−Y 1e
n+1

(
r̂
)
x̂2−Y 1o

n+1

(
r̂
)
x̂3−(n+1)Y 0e

n+1

(
r̂
)
x̂1
]
r−(n+2), n≥ 0. (4.4)

Here, it is important to remark that by definition for |ζ| ≤ 1 and ϕ ∈ [0,2π),

Yms−n
(
r̂
)≡ 0, n≥ 0, m= 0,1, . . . ,n, s = e,o, (4.5)

while

Ymsn
(
r̂
)≡ 0, n≥ 0, m >n, s = e,o. (4.6)
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Our intention is to write the velocity field (3.8) and the stress tensor (3.11) in an appro-

priate form so that the application of the BCs (2.13)–(2.15) can provide us with easy-to-

handle relations and thus obtain the unknown constant coefficients. In order to apply

the BCs (2.13)–(2.15), we use the expressions (3.8) and (3.11), the formulae (4.1)–(4.6),

the outward unit normal vector in Cartesian coordinates (2.3), and the orthogonality

relation (3.2) as well as certain recurrence relations (see the appendix) for the Legendre

and the trigonometric functions. After some extensive algebra, one obtains a compli-

cated system of linear algebraic equations involving the unknown constant coefficients.

Homogeneity of the system, which is constituted by the constant coefficients that

correspond to a velocity field of degree greater than two and nonvanishment of the

relevant determinant, reveals that

e(i)msn = e(e)msn = 0, n≥ 3, m= 0,1, . . . ,n, s = e,o,
d(i)msn = d(e)msn = 0, n≥ 4, m= 0,1, . . . ,n, s = e,o. (4.7)

Consequently, our results are reduced up to the second degree for the velocity field

and instead of the series (3.8), we recover a closed form. Some easy algebra leads us

also to the vanishing of many of the remaining constant coefficients.

Finally, further examination of the constant coefficients that survive, in view of defi-

nitions (2.12) and (3.7) which were noted earlier, implies that

c(i)1e1 −b(i)1o1 = 2Ω1,

a(i)1o1 −c(i)0e1 = 2Ω2,

a(i)1e1 −b(i)0e1 =−2Ω3,

−a3a(i)0e2 +
(

2− 3a
b

)
a(e)0e0 = 3aU,

d(e)0e0 =−3a(e)0e1 =−3b(e)1e1 =−3c(e)1o1 ,

− b
5

5
a(i)0e2 +d(e)0e1 = 0,

a(i)0e0 −d(i)0e1 + 2
b
a(e)0e0 = 0,

a(i)0e2 +5d(i)0e3 = 0,

a5a(i)0e2 +3a5d(i)0e3 +3d(e)0e1 +a2a(e)0e0 = 0.

(4.8)

By virtue of the relations (4.8), setting the rest of constant coefficients to nil, the flow

fields (3.8)–(3.11) take their final form after the substitution of the calculated constant

coefficients. Thus, inserting the solution of (4.8) into the relations for the flow fields, us-

ing formulae (4.1)–(4.6), and employing definitions (2.12) and (3.1), we reach the spher-

ical form of the flow fields. Indeed, by means of the definition of the quantities

γ = a
b
, γ < 1,

K = 2−3γ+3γ5−2γ6,
(4.9)
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where a, b are the radii of the concentric spheres, formula (3.8) for the velocity field

yields

v(r)=U+Ω×r

+ r̂
U
K
P1(ζ)

[
−(3γ5+2

)+γ5
(
r
a

)2

−
(
a
r

)3

+(2γ5+3
)(a
r

)]

+ ζ̂ U
2K
P1

1 (ζ)
[

2
(
3γ5+2

)−4γ5
(
r
a

)2

−
(
a
r

)3

−(2γ5+3
)(a
r

)]
,

(4.10)

where it is calculated within the domain which is limited between the two spheres:

r∈Ω(R3). The total pressure field, which is provided by (3.9), is taken to be

P(r)= P0+ µUaK P1(ζ)
[

10γ5
(
r
a

)
+(2γ5+3

)(a
r

)2
]
, r∈Ω(R3), (4.11)

while for the vorticity field (3.10), it is confirmed that

ω(r)=Ω+ϕ̂ U
2aK

P1
1 (ζ)

[
−5γ5

(
r
a

)
+(2γ5+3

)(a
r

)2
]
, r∈Ω(R3). (4.12)

If we continue to focus on the spherical coordinate system, the stress tensor (3.11) is

written as

Π̃(r)=−p(r)̃I+ µU
aK

{
2r̂⊗ r̂P1(ζ)

[
3
(
a
r

)4

−(2γ5+3
)(a
r

)2

+2γ5
(
r
a

)]

−(ζ̂⊗ ζ̂+ϕ̂⊗ϕ̂)P1(ζ)
[

3
(
a
r

)4

+2γ5
(
r
a

)]

+3
(
r̂⊗ ζ̂+ ζ̂⊗ r̂

)
P1

1 (ζ)
[(
a
r

)4

−γ5
(
r
a

)]}
(4.13)

for r∈Ω(R3), where the unit dyadic Ĩ is given by (3.12) and the thermodynamic pressure

is connected with the total pressure field (4.11) via formula (2.9):

p(r)= P(r)−ρgh, r∈Ω(R3). (4.14)

Of course, the arbitrary constant pressure P0 and the arbitrary height of reference h
are appropriately chosen depending upon the physical requirements.

Hence, the Stokes flow fields for the non-axisymmetric Happel problem have been

calculated in the closed forms provided by (4.10)–(4.14).
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5. Conclusions. A method for solving 3D Stokes flow problems with Happel-type

BCs was developed. Based on this method, we examined the flow in a spherical cell

as a means of modeling flow through a swarm of spherical particles with the help

of the Papkovich-Neuber differential representation, which offer solutions for such

problems in spherical geometry. The important physical flow fields (velocity, total pres-

sure, vorticity, and stress tensor) were presented in closed form after the imposition

of the BCs.

The present work invoked a useful tool for dealing with non-axisymmetric prob-

lems, which is the representation theory. The freedom that 3D representations offer

makes the solution of creeping flow problems within such domains feasible. Work under

progress involves extension to ellipsoidal harmonic eigenfunctions for the Papkovich-

Neuber representation and their Stokes flow counterparts for problems involving small

ellipsoidal particles moving within Stokes fluids.

Appendix

In the interest of making this work complete and independent, we provide some

useful material, which was used during the calculations.

We begin with the introduction of certain identities. Let u, v and f, g denote two

scalar and two vector fields, respectively. Then, if we define by S̃ a dyadic, the basic

identities used in this project concern the action of the gradient operator on the fol-

lowing expressions:

∇⊗(uf)=u∇⊗f+∇u⊗f,

∇·(uf)=u∇·f+∇u·f,
∇×(uf)=u∇×f+∇u×f,

∇(f ·g)= (∇⊗f)·g+(∇⊗g)·f,
∇(uv)=u∇v+v∇u,

∇⊗(S̃·f)= (∇⊗ S̃)·f+(∇⊗f)· S̃�,
∇⊗(f⊗g)= (∇⊗f)⊗g+[f⊗(∇⊗g)

]213,

(A.1)

whereas S̃� is the inverted dyadic and the symbol (·)213 denotes the left transposition

for a triadic.

The associated Legendre functions of the first kind [9] satisfy the recurrence relations

(2n+1)ζPmn (ζ)= (n+m)Pmn−1(ζ)+(n−m+1)Pmn+1(ζ),

(2n+1)
(
1−ζ2) d

dζ
Pmn (ζ)= (n+1)(n+m)Pmn−1(ζ)−n(n−m+1)Pmn+1(ζ),

(2n+1)
√

1−ζ2Pmn (ζ)= Pm+1
n+1 (ζ)−Pm+1

n−1 (ζ)

= (n+m)(n+m−1)Pm−1
n−1 (ζ)

−(n−m+1)(n−m+2)Pm−1
n+1 (ζ)

(A.2)

for every |ζ| ≤ 1 and n≥ 0, m= 0,1, . . . ,n.
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Furthermore, we have the relations

r̂= ζx̂1+
√

1−ζ2 cosϕx̂2+
√

1−ζ2 sinϕx̂3,

ζ̂ =−
√

1−ζ2x̂1+ζ cosϕx̂2+ζ sinϕx̂3,

ϕ̂=−sinϕx̂2+cosϕx̂3

(A.3)

and their inverse

x̂1 = ζ r̂−
√

1−ζ2ζ̂,

x̂2 =
√

1−ζ2 cosϕr̂+ζ cosϕζ̂−sinϕϕ̂,

x̂3 =
√

1−ζ2 sinϕr̂+ζ sinϕζ̂+cosϕϕ̂

(A.4)

for every |ζ| ≤ 1 and 0≤ϕ< 2π .
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