UNIT 1-STABLE RANGE FOR IDEALS

HUANYIN CHEN and MIAOSEN CHEN

Received 12 February 2004

Abstract

We investigate necessary and sufficient conditions under which a ring satisfies unit 1-stable range for an ideal. As an application, we prove that R satisfies unit 1 -stable range for I if and only if $\mathrm{QM}_{2}(R)$ satisfies unit 1-stable range for $\mathrm{QM}_{2}(I)$.

2000 Mathematics Subject Classification: 16U99, 16E50.
Let R be a ring with identity 1 . We say that R satisfies unit 1 -stable range in case $a x+b=1$ with $a, x, b \in R$ implying that $a+b u \in U(R)$. Many authors studied unit 1 -stable range such as those of $[1,2,3,4,5,6]$. Following the authors, a ring R satisfies unit 1-stable range for an ideal I provided that $a x+b=1$ with $a \in I, x, b \in R$ implying that $x+u b \in U(R)$ for some unit $u \in U(R)$. Let $R=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$ and $I=0 \oplus \mathbb{Z} / 3 \mathbb{Z}$. Then R satisfies unit 1-stable range for I, while in fact R does not satisfy unit 1-stable range. Thus the concept of unit 1-stable range for an ideal is a nontrivial generalization of that of rings satisfying such stable range condition. In this note, we investigate necessary and sufficient conditions under which a ring R satisfies unit 1 -stable range for an ideal. It is shown that R satisfies unit 1-stable range for I if and only if $\mathrm{QM}_{2}(R)$ satisfies unit 1 -stable range for $\mathrm{QM}_{2}(I)$.

Throughout, all rings are associative with identity. $M_{n}(R)$ denotes the ring of $n \times n$ matrices over $R, \mathrm{GL}_{n}(R)$ denotes the n-dimensional general linear group of $R, \mathrm{TM}_{n}(R)$ denotes the ring of all $n \times n$ lower triangular matrices over R, and $\mathrm{TM}_{n}(I)$ denotes the ideal of all $n \times n$ lower triangular matrices over I. Clearly, $\operatorname{TM}_{n}(I)$ is an ideal of $\operatorname{TM}_{n}(R)$. We begin with the following.

Lemma 1. Let I be an ideal of a ring R. Then the following are equivalent:
(1) R satisfies unit 1 -stable range for I;
(2) for any $x \in R, y \in I$, there exists $a \in R$ such that $1+x a, y+a \in U(R)$.

Proof. (1) $\Rightarrow(2)$. Given any $x \in R, y \in I$, we have $y x+(1-y x)=1$; hence, there exists $u \in U(R)$ such that $x+u(1-y x) \in U(R)$, so $1+\left(u^{-1}-y\right) x \in U(R)$. Set $a=$ $u^{-1}-y$. Then $1+a x, y+a \in U(R)$. Clearly, $1+a x \in U(R)$ if and only if $1+x a \in U(R)$. Therefore, $1+x a, y+a \in U(R)$.
(2) \Rightarrow (1). Suppose that $a x+b=1$ with $a \in I, x, b \in R$. Then we have $r \in R$ such that $a+r, 1+(-x) r \in U(R)$. Set $u=a+r$. We get $1-x(a-u)=1+(-x) r \in U(R)$; hence, $1-(a-u) x \in U(R)$. This infers that $b+u x \in U(R)$, and so $x+u^{-1} b \in U(R)$, as asserted.

In [3, Theorem 2], the authors proved that if R satisfies unit 1-stable range for I, then so does $M_{n}(R)$ for $M_{n}(I)$. Now we give a simple proof of this fact.

Theorem 2. If R satisfies unit 1 -stable range for I, then so does $M_{n}(R)$ for $M_{n}(I)$.
Proof. Assume that $\left(\begin{array}{cc}a_{1} & N_{1} \\ M_{1} & B_{1}\end{array}\right) \in M_{n}(I),\left(\begin{array}{cc}a_{2} & N_{2} \\ M_{2} & B_{2}\end{array}\right) \in M_{n}(R)$ with $a_{1} \in I, a_{2} \in R, B_{1} \in$ $M_{n-1}(I), B_{2} \in M_{n-1}(R), N_{1} \in M_{1 \times(n-1)}(I), N_{2} \in M_{1 \times(n-1)}(R), M_{1} \in M_{(n-1) \times 1}(I)$, and $M_{2} \in M_{(n-1) \times 1}(R)$. Using Lemma 1 , we can choose $a \in R$ such that $a_{1}+a=u_{1} \in U(R)$, $1+a_{2} a=v_{1} \in U(R)$. Assume that $M_{n-1}(R)$ satisfies unit 1-stable range for $M_{n-1}(I)$. Clearly, $B_{1}-M_{1} u_{1}^{-1} N_{1} \in M_{n-1}(I)$. So we have $B \in M_{n-1}(R)$ such that $\left(B_{1}-M_{1} u_{1}^{-1} N_{1}\right)+$ $B=U_{2} \in \mathrm{GL}_{n-1}(R)$ and $I_{n-1}+\left(-M_{2} v_{1}^{-1} N_{2}+B_{2}\right) B=V_{2} \in \mathrm{GL}_{n-1}(R)$. Hence,

$$
\begin{align*}
\left(\begin{array}{cc}
a_{1} & N_{1} \\
M_{1} & B_{1}
\end{array}\right)+\left(\begin{array}{ll}
a & 0 \\
0 & B
\end{array}\right) & =\left(\begin{array}{cc}
u_{1} & N_{1} \\
M_{1} & B_{1}+B
\end{array}\right), \\
I_{n}+\left(\begin{array}{cc}
a_{2} & N_{2} \\
M_{2} & B_{2}
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & B
\end{array}\right) & =\left(\begin{array}{cc}
v_{1} & N_{2} B \\
M_{2} a & I_{n-1}+B_{2} B
\end{array}\right) . \tag{1}
\end{align*}
$$

We check that

$$
\begin{align*}
&\left(\begin{array}{cc}
u_{1} & N_{1} \\
M_{1} & B_{1}+B
\end{array}\right)^{-1}=\left(\begin{array}{cc}
u_{1}^{-1}+u_{1}^{-1} N_{1} U_{2}^{-1} M_{1} u_{1}^{-1} & -u_{1}^{-1} N_{1} U_{2}^{-1} \\
-U_{2}^{-1} M_{1} u_{1}^{-1} & U_{2}^{-1}
\end{array}\right), \\
&\left(\begin{array}{cc}
v_{1} & N_{2} B \\
M_{2} a & I_{n-1}+B_{2} B
\end{array}\right)^{-1}=\left(\begin{array}{cc}
v_{1}^{-1}+v_{1}^{-1} N_{2} B V_{2}^{-1} M_{2} a v_{1}^{-1} & -v_{1}^{-1} N_{2} B V_{2}^{-1} \\
-V_{2}^{-1} M_{2} a v_{1}^{-1} & V_{2}^{-1}
\end{array}\right) . \tag{2}
\end{align*}
$$

By induction and Lemma 1, $M_{n}(R)$ satisfies unit 1-stable range for $M_{n}(I)$.
Corollary 3. If R satisfies unit 1 -stable range, then so does $M_{n}(R)$ for all $n \in \mathbb{N}$.
Proof. By choosing $I=R$ in Theorem 2, we complete the proof.
Theorem 4. Let I be an ideal of a ring R. Then the following are equivalent:
(1) R satisfies unit 1 -stable range for I;
(2) $\mathrm{TM}_{n}(R)$ satisfies unit 1 -stable range for $\mathrm{TM}_{n}(I)$.

Proof. It suffices to show that the result holds for $n=2$. Suppose that R satisfies unit 1-stable range for I. Assume that $\left(\begin{array}{cc}a_{1} & 0 \\ m_{1} & b_{1}\end{array}\right) \in \mathrm{TM}_{2}(I),\left(\begin{array}{cc}a_{2} & 0 \\ m_{2} & b_{2}\end{array}\right) \in \mathrm{TM}_{2}(R)$ with $a_{1}, b_{1}, m_{1} \in I, a_{2}, b_{2}, m_{2} \in R$. Using Lemma 1 , we can choose $a \in R$ such that $a_{1}+a=$ $u_{1} \in U(R), 1+a_{2} a=v_{1} \in U(R)$ and we have $b \in R$ such that $b_{1}+b=u_{2} \in U(R)$ and $1+b_{2} b=v_{2} \in U(R)$. Hence,

$$
\begin{align*}
\left(\begin{array}{cc}
a_{1} & 0 \\
m_{1} & b_{1}
\end{array}\right)+\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) & =\left(\begin{array}{cc}
u_{1} & 0 \\
m_{1} & b_{1}+b
\end{array}\right), \\
I_{2}+\left(\begin{array}{cc}
a_{2} & 0 \\
m_{2} & b_{2}
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) & =\left(\begin{array}{cc}
v_{1} & 0 \\
m_{2} a & I_{2}+b_{2} b
\end{array}\right) . \tag{3}
\end{align*}
$$

Analogously to Theorem 2, we have

$$
\left(\begin{array}{cc}
u_{1} & 0 \tag{4}\\
m_{1} & b_{1}+b
\end{array}\right),\left(\begin{array}{cc}
v_{1} & 0 \\
m_{2} a & I_{2}+b_{2} b
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathrm{TM}_{2}(R)\right) .
$$

By Lemma 1 again, $\mathrm{TM}_{2}(I)$ is unit 1 -stable.
We now establish the converse. Given any $x \in R, y \in I$, we have $\operatorname{diag}(x, 1) \in \operatorname{TM}_{2}(R)$ and $\operatorname{diag}(y, 0) \in \operatorname{TM}_{2}(I)$. So there exists $\left(\begin{array}{cc}a & 0 \\ b & c\end{array}\right) \in \operatorname{TM}_{2}(R)$ such that $\operatorname{diag}(1,1)+\operatorname{diag}(x, 1)\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)$, $\operatorname{diag}(y, 0)+\left(\begin{array}{cc}a & 0 \\ b & c\end{array}\right) \in \mathrm{GL}_{2}\left(\mathrm{TM}_{2}(R)\right)$. Therefore, $1+x a, y+a \in U(R)$, as required.

Let I be an ideal of a unital complex C^{*}-algebra R. By Theorem 4 and [3, Corollary 6], we prove that if every element of I is a sum of a unitary and a unit, then every square lower-triangular matrix over I is a sum of two invertible matrices. Let I be an ideal of a ring R. Define $\mathrm{QM}_{2}(R)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a+c=b+d, a, b, c, d \in R\right\}$ and $\mathrm{QM}_{2}(I)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\,\right.$ $a+c=b+d, a, b, c, d \in I\}$. It is easy to verify that $\mathrm{QM}_{2}(I)$ is an ideal of $\mathrm{QM}_{2}(R)$.

Corollary 5. Let I be an ideal of a ring R. Then the following are equivalent:
(1) R satisfies unit 1 -stable range for I;
(2) $\mathrm{QM}_{2}(R)$ satisfies unit 1-stable for $\mathrm{QM}_{2}(I)$.

PROOF. (1) \Rightarrow (2). We construct a map $\psi: \mathrm{QM}_{2}(R) \rightarrow \mathrm{TM}_{2}(R)$ given by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \rightarrow\left(\begin{array}{cc}a+c & 0 \\ c & d-c\end{array}\right)$ for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{QM}_{2}(R)$. For any $\left(\begin{array}{ll}x & 0 \\ z & y\end{array}\right) \in \mathrm{TM}_{2}(R)$, we have $\psi\left(\left(\begin{array}{cc}x-z & x-y-z \\ z & y+z\end{array}\right)\right)=\left(\begin{array}{cc}x & 0 \\ z & y\end{array}\right)$. Thus we prove that ψ is a ring isomorphism. Also $\left.\psi\right|_{\mathrm{QM}_{2}(I)}: \mathrm{QM}_{2}(I) \cong \mathrm{TM}_{2}(I)$. Thus we complete the proof by Theorem 4.

As an immediate consequence of Corollary 5 , we prove that R satisfies unit 1-stable range if and only if so does $\mathrm{QM}_{2}(R)$. This result gives a new kind of rings satisfying unit 1-stable range.

Theorem 6. Let I be an ideal of a ring R. Then the following are equivalent:
(1) R satisfies unit 1 -stable range for I;
(2) there exists a complete set of idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$ such that all $e_{i} R e_{i}$ satisfy unit 1-stable range for $e_{i} I e_{i}$.

Proof. (1) $\Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$. One easily checks that

$$
\begin{gather*}
I \cong\left(\begin{array}{ccc}
e_{1} I e_{1} & \cdots & e_{1} I e_{n} \\
\vdots & \ddots & \vdots \\
e_{n} I e_{1} & \cdots & e_{n} I e_{n}
\end{array}\right), \\
R \cong\left(\begin{array}{ccc}
e_{1} R e_{1} & \cdots & e_{1} R e_{n} \\
\vdots & \ddots & \vdots \\
e_{n} R e_{1} & \cdots & e_{n} R e_{n}
\end{array}\right) . \tag{5}
\end{gather*}
$$

By induction, it suffices to prove that the result holds for $n=2$. Assume that $\left(\begin{array}{cc}a_{1} & n_{1} \\ m_{1} & b_{1}\end{array}\right) \in$
 such that $a_{1}+a=u_{1} \in U\left(e_{1} R e_{1}\right), e_{1}+a_{2} a=v_{1} \in U\left(e_{1} R e_{1}\right)$. Also we have $b \in e_{2} R e_{2}$ such that $\left(b_{1}-m_{1} u_{1}^{-1} n_{1}\right)+b=u_{2} \in U\left(e_{2} R e_{2}\right)$ and $e_{2}+\left(-m_{2} v_{1}^{-1} n_{2}+b_{2}\right) b=v_{2} \in$ $U\left(e_{2} R e_{2}\right)$. Hence,

$$
\begin{gather*}
\left(\begin{array}{ll}
a_{1} & n_{1} \\
m_{1} & b_{1}
\end{array}\right)+\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
u_{1} & n_{1} \\
m_{1} & b_{1}+b
\end{array}\right), \\
\operatorname{diag}\left(e_{1}, e_{2}\right)+\left(\begin{array}{ll}
a_{2} & n_{2} \\
m_{2} & b_{2}
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
v_{1} & n_{2} b \\
m_{2} a & e_{2}+b_{2} b
\end{array}\right) . \tag{6}
\end{gather*}
$$

Similarly to Theorem 2, we show that

$$
\left(\begin{array}{cc}
u_{1} & n_{1} \tag{7}\\
m_{1} & b_{1}+b
\end{array}\right),\left(\begin{array}{cc}
v_{1} & n_{2} b \\
m_{2} a & e_{2}+b_{2} b
\end{array}\right) \in U\left(\begin{array}{cc}
e_{1} R e_{1} & e_{1} R e_{2} \\
e_{2} R e_{1} & e_{2} R e_{2}
\end{array}\right)
$$

It follows by Lemma 1 that $\left(\begin{array}{ll}e_{1} I e_{1} & e_{1} I e_{2} \\ e_{2} I e_{1} & e_{2} I e_{2}\end{array}\right)$ satisfies unit 1 -stable range for $\left(\begin{array}{l}e_{1} I e_{1} \\ e_{2} I e_{2} \\ e_{2} I e_{1}\end{array} e_{2} I e_{2}\right)$ as required.

Corollary 7. Let R be a ring. Then the following are equivalent:
(1) R satisfies unit 1 -stable range;
(2) there exists a complete set of idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$ such that all $e_{i} R e_{i}$ satisfy unit 1-stable range.

Proof. It is an immediate consequence of Theorem 8.
Recall that I is a regular ideal of R. In case for any $x \in I$, there exists $y \in R$ such that $x=x y x$. We prove that unit 1 -stable range condition for an ideal is right and left symmetric for regular ideals.

THEOREM 8. Let I be a regular ideal of a ring R. Then the following are equivalent:
(1) R satisfies unit 1 -stable for I;
(2) for any $x, y \in I$, there exists some $a \in U(R)$ such that $1+x a, y+a \in U(R)$;
(3) $a x+b=1$ with $a \in I, b \in R$ implying that there exists $u \in U(R)$ such that $a+b u \in U(R)$.

Proof. (1) $\Rightarrow(2)$ is trivial by Lemma 1 .
$(2) \Rightarrow(3)$. Suppose that $a x+b=1$ with $a \in I, b \in R$. By the regularity of I, we have a $c \in R$ such that $a=a c a$. Hence, $a(c a x)+b=1$. Since $c a x \in I$, it follows by Lemma 1 that there exists a $d \in R$ such that $1+a d, c a x+d \in U(R)$. Set $u=c a x+d$. Then we have $1+a d=1+a(u-c a x)=a u+b \in U(R)$. Therefore, $a+b u^{-1} \in U(R)$.
$(3) \Rightarrow(2)$. For any $x, y \in I$, we have $x y+(1-x y)=1$. By hypothesis, we can find $u \in U(R)$ such that $x+(1-x y) u \in U(R)$. Hence, $x u^{-1}+1-x y \in U(R)$. Set $a=u^{-1}-y$. Then $1+x a, y+a \in U(R)$, as required.

Corollary 9. Let I be a regular ideal of a ring R. Then the following are equivalent:
(1) R satisfies unit 1 -stable range for I;
(2) $R^{\text {op }}$ satisfies unit 1 -stable range for I^{op}.

Proof. (1) \Rightarrow (2). For any $x^{\mathrm{op}}, y^{\mathrm{op}} \in I^{\mathrm{op}}$, we have $x, y \in R$. Hence, there exists some $a \in U(R)$ such that $1+x a, y+a \in U(R)$ by Theorem 8 . Clearly, $1+x a \in U(R)$ if and only if $1+a x \in U(R)$. So $1^{\mathrm{op}}+x^{\mathrm{op}} a^{\mathrm{op}}, x^{\mathrm{op}}+a^{\mathrm{op}} \in U\left(R^{\mathrm{op}}\right)$. Therefore, I^{op} is unit 1-stable by Theorem 8 again.
$(2) \Rightarrow(1)$ is proved in the same manner.
Recall that an ideal I of a ring R has stable rank one in case $a R+b R=R$ with $a \in 1+I$, $b \in R$ implying that there exists $y \in R$ such that $a+b y \in U(R)$. It is well known that an ideal I of a regular ring R has stable range one if and only if $e R e$ is unit-regular for all idempotents $e \in I$.

THEOREM 10. Let I be an ideal of a regular ring R. If I has stable range one, then the following are equivalent:
(1) R satisfies unit 1 -stable range for I;
(2) if $e \in I, f \in 1+I$ are idempotents such that $e R+f R=R$, then there exist $u, v \in$ $U(R)$ such that eu $+f v=1$.

Proof. (1) \Rightarrow (2). Suppose that $e R+f R=R$ with idempotents $e \in I, f \in 1+I$. Since I has stable rank one, we can find a $y \in R$ such that $e y+f=u \in U(R)$. Hence, eyu $u^{-1}+$ $f u^{-1}=1$. As R satisfies unit 1 -stable range for I, there exists $v \in U(R)$ such that $e+f u^{-1} v=w \in U(R)$ by Theorem 8 . Hence, $e w^{-1}+f u^{-1} v w^{-1}=1$, as required.
$(2) \Rightarrow(1)$. Given $a x+b=1$ with $a \in I, x, b \in R$, then $b=1-a x \in 1+I$. Since R is regular, we have $c \in R$ such that $b=b c b$. Clearly, $c \in 1+I$. As I has stable range one, it follows from $b c+(1-b c)=1$ that $b+(1-b c) y \in U(R)$ for a $y \in R$. Hence, $b+(1-b c) y=u$, and so $b=b c b=b c u$. Similarly, we have $d \in R$ such that $a=a d a$. Since $(a+(1-a d)) d+(1-a d)(1-d)=1$ with $a+(1-a d) \in 1+I$, we can find $z \in R$ such that $a+(1-a d)+z(1-a d)(1-d)=v \in U(R)$. This shows that $a=a d a=a d v$. Let $e=a d$ and $f=b c$. Then $e \in I$ and $f \in 1+I$. Clearly, $e R+f R=R$. By hypothesis, there are $s, t \in U(R)$ such that es $+f t=1$. Therefore, $a v^{-1} s+b u^{-1} t=1$, and then $a+b u^{-1} t s^{-1} v \in U(R)$. According to Theorem 8, we obtain the result.

Let I be a bounded ideal of a regular ring R. As a result, we deduce that R satisfies unit 1 -stable range for I if and only if $e \in I, f \in 1+I$ are idempotents such that $e R+f R=R$; then there exist $u, v \in U(R)$ such that $e u+f v=1$.

Corollary 11. Let R be unit-regular. Then the following are equivalent:
(1) R satisfies unit 1-stable range;
(2) if $e, f \in R$ are idempotents such that $e R+f R=R$, then there exist $u, v \in U(R)$ such that eu $+f v=1$.
Proof. It is clear by Theorem 10.
Acknowledgment. This work was supported by the Natural Science Foundation of Zhejiang Province.

References

[1] H. Chen, Exchange rings with Artinian primitive factors, Algebr. Represent. Theory 2 (1999), no. 2, 201-207.
[2] , Exchange rings satisfying unit 1-stable range, Kyushu J. Math. 54 (2000), no. 1, 1-6.
[3] H. Chen and M. Chen, On unit 1-stable range, J. Appl. Algebra Discrete Struct. 1 (2003), no. 3, 189-196.
[4] K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra 54 (1988), no. 2-3, 261-287.
[5] D. Handelman, Stable range in AW* algebras, Proc. Amer. Math. Soc. 76 (1979), no. 2, 241249.
[6] P. Menal and J. Moncasi, K_{1} of von Neumann regular rings, J. Pure Appl. Algebra 33 (1984), no. 3, 295-312.

Huanyin Chen: Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

E-mail address: huanyinchen@mai1.zjnu.net.cn
Miaosen Chen: Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

E-mail address: miaosen@mai1.jhptt.zj.cn

