UNIT 1-STABLE RANGE FOR IDEALS

HUANYIN CHEN and MIAOSEN CHEN

Received 12 February 2004

We investigate necessary and sufficient conditions under which a ring satisfies unit 1-stable range for an ideal. As an application, we prove that *R* satisfies unit 1-stable range for *I* if and only if $QM_2(R)$ satisfies unit 1-stable range for $QM_2(I)$.

2000 Mathematics Subject Classification: 16U99, 16E50.

Let *R* be a ring with identity 1. We say that *R* satisfies unit 1-stable range in case ax + b = 1 with $a, x, b \in R$ implying that $a + bu \in U(R)$. Many authors studied unit 1-stable range such as those of [1, 2, 3, 4, 5, 6]. Following the authors, a ring *R* satisfies unit 1-stable range for an ideal *I* provided that ax + b = 1 with $a \in I$, $x, b \in R$ implying that $x + ub \in U(R)$ for some unit $u \in U(R)$. Let $R = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ and $I = 0 \oplus \mathbb{Z}/3\mathbb{Z}$. Then *R* satisfies unit 1-stable range for *I*, while in fact *R* does not satisfy unit 1-stable range. Thus the concept of unit 1-stable range for an ideal is a nontrivial generalization of that of rings satisfying such stable range condition. In this note, we investigate necessary and sufficient conditions under which a ring *R* satisfies unit 1-stable range for an ideal. It is shown that *R* satisfies unit 1-stable range for *I* if and only if $QM_2(R)$ satisfies unit 1-stable range for $QM_2(I)$.

Throughout, all rings are associative with identity. $M_n(R)$ denotes the ring of $n \times n$ matrices over R, $GL_n(R)$ denotes the n-dimensional general linear group of R, $TM_n(R)$ denotes the ring of all $n \times n$ lower triangular matrices over R, and $TM_n(I)$ denotes the ideal of all $n \times n$ lower triangular matrices over I. Clearly, $TM_n(I)$ is an ideal of $TM_n(R)$. We begin with the following.

LEMMA 1. Let *I* be an ideal of a ring *R*. Then the following are equivalent:

- (1) *R* satisfies unit 1-stable range for *I*;
- (2) for any $x \in R$, $y \in I$, there exists $a \in R$ such that 1 + xa, $y + a \in U(R)$.

PROOF. (1) \Rightarrow (2). Given any $x \in R$, $y \in I$, we have yx + (1 - yx) = 1; hence, there exists $u \in U(R)$ such that $x + u(1 - yx) \in U(R)$, so $1 + (u^{-1} - y)x \in U(R)$. Set $a = u^{-1} - y$. Then 1 + ax, $y + a \in U(R)$. Clearly, $1 + ax \in U(R)$ if and only if $1 + xa \in U(R)$. Therefore, 1 + xa, $y + a \in U(R)$.

 $(2)\Rightarrow(1)$. Suppose that ax + b = 1 with $a \in I$, $x, b \in R$. Then we have $r \in R$ such that $a + r, 1 + (-x)r \in U(R)$. Set u = a + r. We get $1 - x(a - u) = 1 + (-x)r \in U(R)$; hence, $1 - (a - u)x \in U(R)$. This infers that $b + ux \in U(R)$, and so $x + u^{-1}b \in U(R)$, as asserted.

In [3, Theorem 2], the authors proved that if *R* satisfies unit 1-stable range for *I*, then so does $M_n(R)$ for $M_n(I)$. Now we give a simple proof of this fact.

THEOREM 2. If *R* satisfies unit 1-stable range for *I*, then so does $M_n(R)$ for $M_n(I)$.

PROOF. Assume that $\binom{a_1 \ N_1}{M_1 \ B_1} \in M_n(I), \binom{a_2 \ N_2}{M_2 \ B_2} \in M_n(R)$ with $a_1 \in I$, $a_2 \in R$, $B_1 \in M_{n-1}(I)$, $B_2 \in M_{n-1}(R)$, $N_1 \in M_{1\times(n-1)}(I)$, $N_2 \in M_{1\times(n-1)}(R)$, $M_1 \in M_{(n-1)\times 1}(I)$, and $M_2 \in M_{(n-1)\times 1}(R)$. Using Lemma 1, we can choose $a \in R$ such that $a_1 + a = u_1 \in U(R)$, $1 + a_2a = v_1 \in U(R)$. Assume that $M_{n-1}(R)$ satisfies unit 1-stable range for $M_{n-1}(I)$. Clearly, $B_1 - M_1u_1^{-1}N_1 \in M_{n-1}(I)$. So we have $B \in M_{n-1}(R)$ such that $(B_1 - M_1u_1^{-1}N_1) + B = U_2 \in GL_{n-1}(R)$ and $I_{n-1} + (-M_2v_1^{-1}N_2 + B_2)B = V_2 \in GL_{n-1}(R)$. Hence,

$$\begin{pmatrix} a_1 & N_1 \\ M_1 & B_1 \end{pmatrix} + \begin{pmatrix} a & 0 \\ 0 & B \end{pmatrix} = \begin{pmatrix} u_1 & N_1 \\ M_1 & B_1 + B \end{pmatrix},$$

$$I_n + \begin{pmatrix} a_2 & N_2 \\ M_2 & B_2 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & B \end{pmatrix} = \begin{pmatrix} v_1 & N_2 B \\ M_2 a & I_{n-1} + B_2 B \end{pmatrix}.$$

$$(1)$$

We check that

$$\begin{pmatrix} u_1 & N_1 \\ M_1 & B_1 + B \end{pmatrix}^{-1} = \begin{pmatrix} u_1^{-1} + u_1^{-1} N_1 U_2^{-1} M_1 u_1^{-1} & -u_1^{-1} N_1 U_2^{-1} \\ -U_2^{-1} M_1 u_1^{-1} & U_2^{-1} \end{pmatrix},$$

$$\begin{pmatrix} v_1 & N_2 B \\ M_2 a & I_{n-1} + B_2 B \end{pmatrix}^{-1} = \begin{pmatrix} v_1^{-1} + v_1^{-1} N_2 B V_2^{-1} M_2 a v_1^{-1} & -v_1^{-1} N_2 B V_2^{-1} \\ -V_2^{-1} M_2 a v_1^{-1} & V_2^{-1} \end{pmatrix}.$$
(2)

By induction and Lemma 1, $M_n(R)$ satisfies unit 1-stable range for $M_n(I)$.

COROLLARY 3. If *R* satisfies unit 1-stable range, then so does $M_n(R)$ for all $n \in \mathbb{N}$.

PROOF. By choosing I = R in Theorem 2, we complete the proof.

THEOREM 4. Let I be an ideal of a ring R. Then the following are equivalent:

- (1) *R* satisfies unit 1-stable range for *I*;
- (2) $TM_n(R)$ satisfies unit 1-stable range for $TM_n(I)$.

PROOF. It suffices to show that the result holds for n = 2. Suppose that R satisfies unit 1-stable range for I. Assume that $\binom{a_1 \ 0}{m_1 \ b_1} \in \text{TM}_2(I), \binom{a_2 \ 0}{m_2 \ b_2} \in \text{TM}_2(R)$ with $a_1, b_1, m_1 \in I, a_2, b_2, m_2 \in R$. Using Lemma 1, we can choose $a \in R$ such that $a_1 + a = u_1 \in U(R), 1 + a_2a = v_1 \in U(R)$ and we have $b \in R$ such that $b_1 + b = u_2 \in U(R)$ and $1 + b_2b = v_2 \in U(R)$. Hence,

$$\begin{pmatrix} a_1 & 0 \\ m_1 & b_1 \end{pmatrix} + \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} u_1 & 0 \\ m_1 & b_1 + b \end{pmatrix},$$

$$I_2 + \begin{pmatrix} a_2 & 0 \\ m_2 & b_2 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} v_1 & 0 \\ m_2 a & I_2 + b_2 b \end{pmatrix}.$$
(3)

Analogously to Theorem 2, we have

$$\begin{pmatrix} u_1 & 0\\ m_1 & b_1 + b \end{pmatrix}, \begin{pmatrix} v_1 & 0\\ m_2 a & I_2 + b_2 b \end{pmatrix} \in \mathrm{GL}_2(\mathrm{TM}_2(R)).$$
(4)

By Lemma 1 again, $TM_2(I)$ is unit 1-stable.

We now establish the converse. Given any $x \in R$, $y \in I$, we have $\operatorname{diag}(x,1) \in \operatorname{TM}_2(R)$ and $\operatorname{diag}(y,0) \in \operatorname{TM}_2(I)$. So there exists $\binom{a \ 0}{b \ c} \in \operatorname{TM}_2(R)$ such that $\operatorname{diag}(1,1) + \operatorname{diag}(x,1) \binom{a \ 0}{b \ c}$, $\operatorname{diag}(y,0) + \binom{a \ 0}{b \ c} \in \operatorname{GL}_2(\operatorname{TM}_2(R))$. Therefore, $1 + xa, y + a \in U(R)$, as required.

Let *I* be an ideal of a unital complex C^* -algebra *R*. By Theorem 4 and [3, Corollary 6], we prove that if every element of *I* is a sum of a unitary and a unit, then every square lower-triangular matrix over *I* is a sum of two invertible matrices. Let *I* be an ideal of a ring *R*. Define $QM_2(R) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a + c = b + d, a, b, c, d \in R \}$ and $QM_2(I) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a + c = b + d, a, b, c, d \in I \}$. It is easy to verify that $QM_2(I)$ is an ideal of $QM_2(R)$.

COROLLARY 5. Let I be an ideal of a ring R. Then the following are equivalent:

- (1) *R* satisfies unit 1-stable range for *I*;
- (2) $QM_2(R)$ satisfies unit 1-stable for $QM_2(I)$.

PROOF. (1)=(2). We construct a map ψ : QM₂(*R*) \rightarrow TM₂(*R*) given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \begin{pmatrix} a+c & 0 \\ c & d-c \end{pmatrix}$ for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in$ QM₂(*R*). For any $\begin{pmatrix} x & 0 \\ z & y \end{pmatrix} \in$ TM₂(*R*), we have $\psi(\begin{pmatrix} x-z & x-y-z \\ y+z \end{pmatrix}) = \begin{pmatrix} x & 0 \\ z & y \end{pmatrix}$. Thus we prove that ψ is a ring isomorphism. Also $\psi|_{QM_2(I)}$: QM₂(*I*) \cong TM₂(*I*). Thus we complete the proof by Theorem 4.

As an immediate consequence of Corollary 5, we prove that *R* satisfies unit 1-stable range if and only if so does $QM_2(R)$. This result gives a new kind of rings satisfying unit 1-stable range.

THEOREM 6. Let I be an ideal of a ring R. Then the following are equivalent:

- (1) *R* satisfies unit 1-stable range for *I*;
- (2) there exists a complete set of idempotents {e₁,...,e_n} such that all e_iRe_i satisfy unit 1-stable range for e_iIe_i.

PROOF. (1) \Rightarrow (2) is clear. (2) \Rightarrow (1). One easily checks that

$$I \cong \begin{pmatrix} e_1 I e_1 & \cdots & e_1 I e_n \\ \vdots & \ddots & \vdots \\ e_n I e_1 & \cdots & e_n I e_n \end{pmatrix},$$

$$R \cong \begin{pmatrix} e_1 R e_1 & \cdots & e_1 R e_n \\ \vdots & \ddots & \vdots \\ e_n R e_1 & \cdots & e_n R e_n \end{pmatrix}.$$
(5)

By induction, it suffices to prove that the result holds for n = 2. Assume that $\binom{a_1 \ n_1}{m_1 \ b_1} \in \binom{e_1Ie_1 \ e_1Ie_2}{e_2Ie_1 \ e_2Ie_2}$, $\binom{a_2 \ n_2}{m_2 \ b_2} \in \binom{e_1Re_1 \ e_1Re_2}{e_2Re_1 \ e_2Re_2}$. According to Lemma 1, we can choose $a \in e_1Re_1$ such that $a_1 + a = u_1 \in U(e_1Re_1)$, $e_1 + a_2a = v_1 \in U(e_1Re_1)$. Also we have $b \in e_2Re_2$ such that $(b_1 - m_1u_1^{-1}n_1) + b = u_2 \in U(e_2Re_2)$ and $e_2 + (-m_2v_1^{-1}n_2 + b_2)b = v_2 \in U(e_2Re_2)$. Hence,

$$\begin{pmatrix} a_1 & n_1 \\ m_1 & b_1 \end{pmatrix} + \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} u_1 & n_1 \\ m_1 & b_1 + b \end{pmatrix},$$

$$diag(e_1, e_2) + \begin{pmatrix} a_2 & n_2 \\ m_2 & b_2 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} v_1 & n_2 b \\ m_2 a & e_2 + b_2 b \end{pmatrix}.$$
(6)

Similarly to Theorem 2, we show that

$$\begin{pmatrix} u_1 & n_1 \\ m_1 & b_1 + b \end{pmatrix}, \begin{pmatrix} v_1 & n_2 b \\ m_2 a & e_2 + b_2 b \end{pmatrix} \in U \begin{pmatrix} e_1 R e_1 & e_1 R e_2 \\ e_2 R e_1 & e_2 R e_2 \end{pmatrix}.$$
 (7)

It follows by Lemma 1 that $\binom{e_1Ie_1}{e_2Ie_1} \binom{e_1Ie_2}{e_2Ie_2}$ satisfies unit 1-stable range for $\binom{e_1Ie_1}{e_2Ie_1} \binom{e_1Ie_2}{e_2Ie_2}$, as required.

COROLLARY 7. Let *R* be a ring. Then the following are equivalent:

- (1) *R* satisfies unit 1-stable range;
- (2) there exists a complete set of idempotents {e₁,...,e_n} such that all e_iRe_i satisfy unit 1-stable range.

PROOF. It is an immediate consequence of Theorem 8.

Recall that *I* is a regular ideal of *R*. In case for any $x \in I$, there exists $y \in R$ such that x = xyx. We prove that unit 1-stable range condition for an ideal is right and left symmetric for regular ideals.

THEOREM 8. Let I be a regular ideal of a ring R. Then the following are equivalent:

- (1) *R* satisfies unit 1-stable for *I*;
- (2) for any $x, y \in I$, there exists some $a \in U(R)$ such that $1 + xa, y + a \in U(R)$;
- (3) ax + b = 1 with $a \in I$, $b \in R$ implying that there exists $u \in U(R)$ such that $a + bu \in U(R)$.

PROOF. (1) \Rightarrow (2) is trivial by Lemma 1.

 $(2)\Rightarrow(3)$. Suppose that ax + b = 1 with $a \in I$, $b \in R$. By the regularity of I, we have a $c \in R$ such that a = aca. Hence, a(cax) + b = 1. Since $cax \in I$, it follows by Lemma 1 that there exists a $d \in R$ such that 1 + ad, $cax + d \in U(R)$. Set u = cax + d. Then we have $1 + ad = 1 + a(u - cax) = au + b \in U(R)$. Therefore, $a + bu^{-1} \in U(R)$.

(3)⇒(2). For any $x, y \in I$, we have xy + (1 - xy) = 1. By hypothesis, we can find $u \in U(R)$ such that $x + (1 - xy)u \in U(R)$. Hence, $xu^{-1} + 1 - xy \in U(R)$. Set $a = u^{-1} - y$. Then $1 + xa, y + a \in U(R)$, as required. \Box

COROLLARY 9. Let I be a regular ideal of a ring R. Then the following are equivalent:

(1) *R* satisfies unit 1-stable range for *I*;

(2) R^{op} satisfies unit 1-stable range for I^{op} .

PROOF. (1) \Rightarrow (2). For any x^{op} , $y^{\text{op}} \in I^{\text{op}}$, we have $x, y \in R$. Hence, there exists some $a \in U(R)$ such that 1 + xa, $y + a \in U(R)$ by Theorem 8. Clearly, $1 + xa \in U(R)$ if and only if $1 + ax \in U(R)$. So $1^{\text{op}} + x^{\text{op}}a^{\text{op}}$, $x^{\text{op}} + a^{\text{op}} \in U(R^{\text{op}})$. Therefore, I^{op} is unit 1-stable by Theorem 8 again.

 $(2)\Rightarrow(1)$ is proved in the same manner.

Recall that an ideal *I* of a ring *R* has stable rank one in case aR + bR = R with $a \in 1+I$, $b \in R$ implying that there exists $y \in R$ such that $a + by \in U(R)$. It is well known that an ideal *I* of a regular ring *R* has stable range one if and only if *eRe* is unit-regular for all idempotents $e \in I$.

THEOREM 10. Let I be an ideal of a regular ring R. If I has stable range one, then the following are equivalent:

- (1) *R* satisfies unit 1-stable range for *I*;
- (2) if $e \in I$, $f \in 1 + I$ are idempotents such that eR + fR = R, then there exist $u, v \in U(R)$ such that eu + fv = 1.

PROOF. (1) \Rightarrow (2). Suppose that eR + fR = R with idempotents $e \in I$, $f \in 1 + I$. Since I has stable rank one, we can find a $y \in R$ such that $ey + f = u \in U(R)$. Hence, $eyu^{-1} + fu^{-1} = 1$. As R satisfies unit 1-stable range for I, there exists $v \in U(R)$ such that $e + fu^{-1}v = w \in U(R)$ by Theorem 8. Hence, $ew^{-1} + fu^{-1}vw^{-1} = 1$, as required.

 $(2)\Rightarrow(1)$. Given ax + b = 1 with $a \in I$, $x, b \in R$, then $b = 1 - ax \in 1 + I$. Since R is regular, we have $c \in R$ such that b = bcb. Clearly, $c \in 1 + I$. As I has stable range one, it follows from bc + (1 - bc) = 1 that $b + (1 - bc)y \in U(R)$ for a $y \in R$. Hence, b + (1 - bc)y = u, and so b = bcb = bcu. Similarly, we have $d \in R$ such that a = ada. Since (a + (1 - ad))d + (1 - ad)(1 - d) = 1 with $a + (1 - ad) \in 1 + I$, we can find $z \in R$ such that $a + (1 - ad) + z(1 - ad)(1 - d) = v \in U(R)$. This shows that a = ada = adv. Let e = ad and f = bc. Then $e \in I$ and $f \in 1 + I$. Clearly, eR + fR = R. By hypothesis, there are $s, t \in U(R)$ such that es + ft = 1. Therefore, $av^{-1}s + bu^{-1}t = 1$, and then $a + bu^{-1}ts^{-1}v \in U(R)$. According to Theorem 8, we obtain the result.

Let *I* be a bounded ideal of a regular ring *R*. As a result, we deduce that *R* satisfies unit 1-stable range for *I* if and only if $e \in I$, $f \in 1 + I$ are idempotents such that eR + fR = R; then there exist $u, v \in U(R)$ such that eu + fv = 1.

COROLLARY 11. *Let R be unit-regular. Then the following are equivalent:*

- (1) *R* satisfies unit 1-stable range;
- (2) if $e, f \in R$ are idempotents such that eR + fR = R, then there exist $u, v \in U(R)$ such that eu + fv = 1.

PROOF. It is clear by Theorem 10.

ACKNOWLEDGMENT. This work was supported by the Natural Science Foundation of Zhejiang Province.

References

- H. Chen, Exchange rings with Artinian primitive factors, Algebr. Represent. Theory 2 (1999), no. 2, 201–207.
- [2] _____, Exchange rings satisfying unit 1-stable range, Kyushu J. Math. 54 (2000), no. 1, 1-6.
- [3] H. Chen and M. Chen, On unit 1-stable range, J. Appl. Algebra Discrete Struct. 1 (2003), no. 3, 189–196.
- [4] K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra 54 (1988), no. 2-3, 261–287.
- [5] D. Handelman, *Stable range in AW* algebras*, Proc. Amer. Math. Soc. **76** (1979), no. 2, 241–249.
- [6] P. Menal and J. Moncasi, K₁ of von Neumann regular rings, J. Pure Appl. Algebra 33 (1984), no. 3, 295-312.

Huanyin Chen: Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

E-mail address: huanyinchen@mail.zjnu.net.cn

Miaosen Chen: Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

E-mail address: miaosen@mail.jhptt.zj.cn