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RIGID LEFT NOETHERIAN RINGS
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We prove that any rigid left Noetherian ring is either a domain or isomorphic to some ring
Zpn of integers modulo a prime power p”.
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Let R be an associative ring. A map o : R — R is called a ring endomorphism if
o(x+y)=0(x)+0(y) and o(xy) = o(x)o(y) for all elements a,b € R. A ring R
is said to be rigid if it has only the trivial ring endomorphisms, that is, identity idg
and zero Og. Rigid left Artinian rings were described by Maxson [9] and McLean [11].
Friger [4, 6] has constructed an example of a noncommutative rigid ring R with the
additive group R* of finite Priifer rank. A characterization for rigid rings of finite rank
was obtained by the author in [1]. Some aspects of a ring rigidity has been studied by
Suppa [12, 13], Friger [5], and the author [2].

In this paper, we study rigid left Noetherian rings and prove the following theorem.

THEOREM 1. Let R be a left Noetherian ring. Then R is a rigid ring if and only if
R=17, (pisaprime, t €N)oritis a rigid domain.

All rings are assumed to be associative and, as a rule, with an identity element. For a
ring R, N(R) will always denote the set of all nil elements of R, char(R) the character-
istic, and Ann(I) = {a € R | al = Ia = {0}} the annihilator of I in R. If R is a left order
in Q (or equivalently, Q is the left quotient ring of R), then we will write Q = Q(R). Any
unexplained terminology is standard as in [10].

We recall that a ring R is reduced if 72 = 0 implies v = 0 for any * € R. Clearly, if R
is arigid reduced ring with an identity element, then either char(R) = 0 or char(R) = p
for some prime p.

LEMMA 2. Let R be a reduced left Goldie ring. If R is rigid, then it is a domain.

PROOF. Let R be a reduced rigid left Goldie ring. Assume that R is not a domain.
From bx = 0 (resp., xb = 0), where b,x € R, it holds that (xb)? = 0 (resp., (bx)? = 0)
and thus a right (resp., left) annihilator of every element b in R coincides with Ann(b).
Moreover, in view of [10, Lemma 2.3.2(i)], Ann(a) is a maximal left annihilator for some
a €R.

Assume that the quotient ring R/Ann(a) contains elements X = x + Ann(a) = 0,
Y =y +Ann(a) such that
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for some x,7y € R. Since v € Ann(ax) and Ann(a) = Ann(ax), we obtain that 3 = 0.
This means that R/ Ann(a) is a domain.

By [10, Lemma 2.3.3], I, = Ra® Ann(a) is an essential left ideal of R and so by [10,
Corollary 3.1.8], Q(I;) = Q(R). Then the map o : I, — I, given by o(ra) =ra (r € R)
and o (Ann(a)) = {0} is a nontrivial ring endomorphism of I,. If o : Q(R) — Q(R) is an
extension of o to Q(R), then

ocrya=0c(ra)=ra (2)

for any v € R, in which case,

a(G(r)-r)=0=(c(r)-7)a. 3)

Since o (r) —v = q 't for some regular element g € R and some t € R, we see that

q(o(r)—r) € Ann(a). (4)

But g ¢ Ann(a) and so o (r) — ¥ € Ann(a). This means that 0(R) < R and R has a
nontrivial ring endomorphism, a contradiction. The lemma is proved. 0

In the commutative case, we obtain that a commutative reduced rigid Noetherian ring
R of finite exponent is isomorphic to some Z,,.

Indeed, as it is noted above, char(R) = p for some prime p. A map w : R — R given by
the rule w(x) = x? (x € R) is aring endomorphism of R and so x?¥ = x for all elements
x of R. Assume that R is not a domain and then it follows that every prime ideal is
maximal in R. Hence R is an Artinian ring by Krull-Akizuki theorem [14, Chapter IV,
Section 2, Theorem 2] and by the theorem of [11], R = Z,,, contrary to our assumption.
This means that R is a domain and [9, Theorem 2.5] allows us to state that R = Z,,.

REMARK 3. Maxson [9] has proved that a rigid commutative domain of prime char-
acteristic p is isomorphic to Z,. Rigid rings of finite rank were studied in [1]. A charac-
terization of rigid commutative domains (in particular, rigid fields) R of characteristic
0 with the additive group R* of infinite (Priifer) rank is not known. As it is noted in [8],
from the result of Gaifman [7], it holds that there exist rigid Peano fields of arbitrary
infinite cardinality. Moreover, it was proved by Dugas and Goébel [3] that each field can
be embedded into a rigid field of arbitrary large cardinality.

REMARK 4. There exist noncommutative rigid Noetherian domains of characteristic
0 (see [4, 6]).

Recall that amap d : R — R is called a derivation of R if

dix+y)=dx)+d(y), dxy)=d(x)y+xd(y) (5)



RIGID LEFT NOETHERIAN RINGS 2475

for all elements x,y € R. A ring having no nonzero derivations is called differentially
trivial (see [1]). Obviously, any differentially trivial ring is commutative.

LEMMA 5. Let R be a left Noetherian ring such that N(R) + {0}. If R is a rigid ring,
then it is isomorphic to some Z,:.

PROOF. Suppose that R is a rigid ring such that N = N(R) # {0}. Then N < Z(R)
(see [9, page 96]). Let d be any nonzero derivation of R. If zd(R) = {0} for all elements
z € N of the nilpotency indices i < n—1 and ad(R) # {0} for some element a € N of
the nilpotency index n, then the rule

o(r)=r+ad(r), reER, (6)
determines a nontrivial ring endomorphism o of R, a contradiction. Hence
N(R)d(R) = {0} (7)

for every derivation d of R.

LetKo={a €N | (NNnAnn(N?))a = {0}}. Then NnAnn(Ky) = NNnAnn(N?). Assume
that 6 : R/Ko — R/Kj is a nonzero derivation of R/K, and therefore for every » € R,
there is an element 7; € R such that

6(T+KQ) =T1+K0. (8)

Moreover, a; ¢ Ko for some a € R. Writing I for the two-sided ideal of R generated
by a;, we see that (N nAnn(N?)) (Ko + 1) # {0}. Thus there exists an element mg €
N nAnn(N?) such that mpa; # 0 and so the rule g(r) = mor;, with » € R and 7, as
in (8), determines a nonzero derivation g of R. In view of (7) g(v)g(t) = 0, for any
elements 7,t € R and a map « : R — R given by the rule «(r) =r +g(r), (r €R) is
a nontrivial ring endomorphism of R, a contradiction with hypothesis. This gives that
R /Ky is differentially trivial and consequently commutative. Since Ko € Nand N € Z(R),
R is a Noetherian ring and, as a consequence of [10, Theorem 4.1.9] and [9, Theorem
2.2], R is an Artinian ring. Finally, by the theorem from [11], R = Z,,: for some prime p
and integer t. This completes the proof. |

PROOF OF THEOREM 1. It follows immediately from Lemmas 2 and 5. |

COROLLARY 6. Any rigid simple left Goldie ving R is a field (or equivalently, any
noncommutative simple left Goldie ring has a nontrivial automorphism).

PROOF. Since N(R) < Z(R), R is a semiprime ring and so according to [10, Proposi-
tion 5.1.5] and Lemma 2, it is a domain. If g is any element of Q (R) \R and A = g 'Rq,
then A is a left order in Q (R). Moreover, gAg~' = R and so A and R are equivalent left
orders in Q (R). By [10, Proposition 5.1.2], R is a maximal left order in Q (R) and thus
A € R, which implies R € Z(Q(R)), as required. O
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