SOME EXACT INEQUALITIES OF HARDY-LITTLEWOOD-POLYA TYPE FOR PERIODIC FUNCTIONS

LAITH EMIL AZAR

Received 28 September 2003

We investigate the following problem: for a given $A \ge 0$, find the infimum of the set of $B \ge 0$ such that the inequality $\|x^{(k)}\|_2^2 \le A \|x^{(r)}\|_2^2 + B \|x\|_2^2$, for $k, r \in \mathbb{N} \cup \{0\}$, $0 \le k < r$, holds for all sufficiently smooth functions.

2000 Mathematics Subject Classification: 41A17, 42A05.

1. Introduction. Let $G = \mathbb{R}$ or $G = \mathbb{T} = [0, 2\pi)$. By $L_2(G)$, we will denote the spaces of all measurable functions $x : G \to \mathbb{R}$ such that

$$\|x\|_{2} = \|x\|_{L_{2}(G)} := \left\{ \int_{G} |x(t)|^{2} dt \right\}^{1/2} < \infty.$$
(1.1)

Denote by $L_2^r(G)$ $(r \in \mathbb{N})$ the space of all functions x such that $x^{(r-1)}$ are locally absolutely continuous and $x^{(r)} \in L_2(G)$, and set $L_{2,2}^r(G) = L_2(G) \cap L_2^r(G)$ (in the case $G = \mathbb{T}$, we mean that spaces $L_2(G)$ and $L_2^r(G)$ consist of 2π -periodic functions). Note that $L_2^r(G) \subset L_2(G)$ if $G = \mathbb{T}$.

It is well known that the exact inequality of Hardy [3]

$$||x^{(k)}||_{2}^{2} \le ||x||_{2}^{2(1-k/r)} ||x^{(r)}||_{2}^{2(k/r)}, \quad k \in \mathbb{N}, \ 0 < k < r,$$
(1.2)

holds for every function $x \in L^{r}_{2,2}(\mathbb{R})$.

For any A > 0 and any $x \in L^{r}_{2,2}(\mathbb{R})$, from inequality (1.2), we get

$$||\mathbf{x}^{(k)}||_{2}^{2} \leq \left\{ \left(\frac{k}{Ar}\right)^{k/(r-k)} ||\mathbf{x}||_{2}^{2} \right\}^{(r-k)/r} \left\{ \frac{Ar}{k} ||\mathbf{x}^{(r)}||_{2}^{2} \right\}^{k/r}.$$
 (1.3)

Using Young's inequality

$$ab \le \frac{a^p}{p} + \frac{b^{p'}}{p'}, \quad \frac{1}{p} + \frac{1}{p'} = 1, \quad 1 \le p < \infty, \ a, b > 0,$$
 (1.4)

with p = r/(r-k) and p' = r/k, we get, for any A > 0 and any $x \in L_{2,2}^r(\mathbb{R})$, the following inequality:

$$||\mathbf{x}^{(k)}||_{2}^{2} \le A||\mathbf{x}^{(r)}||_{2}^{2} + \frac{r-k}{r} \left(\frac{k}{Ar}\right)^{k/(r-k)} ||\mathbf{x}||_{2}^{2}.$$
(1.5)

This inequality is the best possible in the next sense: for a given A > 0, the infimum of constants *B* such that the inequality

$$||x^{(k)}||_{2}^{2} \le A||x^{(r)}||_{2}^{2} + B||x||_{2}^{2}$$
(1.6)

holds for all functions $x \in L_{2,2}^{\gamma}(\mathbb{R})$ is equal to

$$\frac{r-k}{r} \left(\frac{k}{Ar}\right)^{k/(r-k)}.$$
(1.7)

As is well known, inequality (1.2) (and consequently (1.5)) holds true for any function $x \in L_{2,2}^r(\mathbb{T})$. However, the constant (1.7) is not the best possible in general (for a given constant *A*). Therefore, the main problem which we will study in this paper is the following.

For a given $A \ge 0$, find the infimum of constants *B* such that inequality (1.6) holds for all functions $x \in L_{2,2}^r(\mathbb{T})$.

We will denote this infimum by $\Psi(\mathbb{T}; r, k; A)$. We will investigate also the analogous problem in the presence of some restrictions on the spectrum of functions $x \in L_{2,2}^{r}(\mathbb{T})$.

Note that Babenko and Rassias [1] investigated the problem on exact inequalities for functions $x \in L_{2,2}^{r}(\mathbb{T})$. They have found, for a given $A \ge 0$, the infimum of constants *B* such that the inequality

$$\||\boldsymbol{x}^{(k)}\|_{2}^{2} \le A \|\boldsymbol{x}\|_{2}^{2} + B \||\boldsymbol{x}^{(r)}\|_{2}^{2}$$
(1.8)

holds for all functions $x \in L_{2,2}^{\gamma}(\mathbb{T})$.

For more information related to this subject, see, for example, [2, 4, 5, 6].

2. Main results

THEOREM 2.1. Let $k, r \in \mathbb{N}$, k < r. Then for any $A \ge 0$ and any $x \in L_{2,2}^r(\mathbb{T})$,

$$||x^{(k)}||_{2}^{2} \le A||x^{(r)}||_{2}^{2} + (v_{0}^{2k} - Av_{0}^{2r})||x||_{2}^{2} = A||x^{(r)}||_{2}^{2} + \varphi(A, v_{0})||x||_{2}^{2}$$
(2.1)

holds if v_0 is such that $\eta(v_0+1) \le A \le \eta(v_0)$, where

$$\eta(v) = \frac{v^{2k} - (v-1)^{2k}}{v^{2r} - (v-1)^{2r}}.$$
(2.2)

Given A, the constant $\varphi(A, v_0)$ in (2.1) is the best possible; that is,

$$\Psi(\mathbb{T}; \mathbf{r}, k; A) = \left(v_0^{2k} - Av_0^{2r}\right), \tag{2.3}$$

where v_0 is such that $\eta(v_0+1) \le A \le \eta(v_0)$.

PROOF. Let

$$e_{\nu}(t) \coloneqq \frac{1}{2\pi} e^{i\nu t}, \quad \nu \in \mathbb{Z}, \ t \in \mathbb{R},$$

$$c_{\nu}(x) = \int_{0}^{2\pi} x(t) e_{\nu}(t) dt$$
(2.4)

be Fourier coefficients of a function x, and let

$$\sum_{\nu \in \mathbb{Z}} c_{\nu}(x) e_{\nu}(t) \tag{2.5}$$

be the Fourier series of a function x.

For any $x \in L_{2,2}^{r}(\mathbb{T})$, 0 < k < r, and any $A \ge 0$, using Parseval's equality, we get

$$\begin{aligned} ||\mathbf{x}^{(k)}||_{2}^{2} &= \sum_{\substack{\nu \in \mathbb{Z} \\ \nu \neq 0}} |c_{\nu}(x)|^{2} \nu^{2k} \\ &= A \sum_{\substack{\nu \in \mathbb{Z} \\ \nu \neq 0}} |c_{\nu}(x)|^{2} \nu^{2r} + \sum_{\substack{\nu \in \mathbb{Z} \\ \nu \neq 0}} |c_{\nu}(x)|^{2} \nu^{2r} \left[\frac{\nu^{2k}}{\nu^{2r}} - A \right] \\ &= A ||\mathbf{x}^{(r)}||_{2}^{2} + \sum_{\substack{\nu \in \mathbb{Z} \\ \nu \neq 0}} |c_{\nu}(x)|^{2} [\nu^{2k} - A \nu^{2r}] \\ &\leq A ||\mathbf{x}^{(r)}||_{2}^{2} + \max_{\nu \in \mathbb{N}} [\nu^{2k} - A \nu^{2r}] \sum_{\substack{\nu \in \mathbb{Z} \\ \nu \neq 0}} |c_{\nu}(x)|^{2} \\ &= A ||\mathbf{x}^{(r)}||_{2}^{2} + \max_{\nu \in \mathbb{N}} [\nu^{2k} - A \nu^{2r}] ||\mathbf{x}||_{2}^{2}. \end{aligned}$$

$$(2.6)$$

Set

$$\varphi(A, v) := v^{2k} - Av^{2r}; \tag{2.7}$$

then the last inequality can be written in the form

$$||x^{(k)}||_{2}^{2} \le A||x^{(r)}||_{2}^{2} + \max_{\nu \in \mathbb{N}} \varphi(A, \nu) ||x||_{2}^{2}.$$
(2.8)

Our goal now is to find for a given $A \ge 0$ the value of

$$\max_{\nu \in \mathbb{N}} \varphi(A, \nu). \tag{2.9}$$

We consider the difference

$$\begin{split} \delta_{\nu} &= \varphi(A, \nu) - \varphi(A, \nu - 1) \\ &= \nu^{2k} - A\nu^{2r} - (\nu - 1)^{2k} + A(\nu - 1)^{2r} \\ &= A[(\nu - 1)^{2r} - \nu^{2r}] - [(\nu - 1)^{2k} - \nu^{2k}] \\ &= [(\nu)^{2r} - (\nu - 1)^{2r}] \bigg[\frac{\nu^{2k} - (\nu - 1)^{2k}}{\nu^{2r} - (\nu - 1)^{2r}} - A \bigg]. \end{split}$$

$$(2.10)$$

Set, for $v \in \mathbb{N}$,

$$\eta(v) := \frac{v^{2k} - (v-1)^{2k}}{v^{2r} - (v-1)^{2r}};$$
(2.11)

then the last equality can be written in the form

$$\delta_{\nu} = [(\nu)^{2r} - (\nu - 1)^{2r}][\eta(\nu) - A].$$
(2.12)

It is not difficult to see that

$$\operatorname{sgn} \delta_{\nu} = \operatorname{sgn} [\eta(\nu) - A]. \tag{2.13}$$

We now study the function $\eta(v)$.

Note that $\eta(1) = 1$, $\eta(v) \to 0$ as $v \to \infty$ (since k < r), and, for $v \ge 1$,

$$\eta(\nu) > \eta(\nu+1). \tag{2.14}$$

Indeed, using Cauchy's theorem,

$$\eta(v) = \frac{k}{r} \frac{\theta_v^{2k}}{\theta_v^{2r}}, \quad v - 1 < \theta_v < v.$$
(2.15)

Thus, inequality
$$(2.14)$$
 is equivalent to the inequality

$$\frac{k}{r}\frac{\theta_v^{2k}}{\theta_v^{2r}} > \frac{k}{r}\frac{\theta_{v+1}^{2k}}{\theta_{v+1}^{2r}}$$
(2.16)

or

$$\left(\frac{\theta_{\nu}}{\theta_{\nu+1}}\right)^{2r-2k} < 1.$$
(2.17)

The last inequality is true since $\theta_{\nu} < \theta_{\nu+1}$ and 2r - 2k > 0.

If, for a given $A \ge 0$, the value v_0 is such that $\eta(v_0 + 1) \le A \le \eta(v_0)$, then for $v \le v_0$, taking into account equality (2.13), we obtain that $\delta_v \ge 0$, and consequently,

$$\varphi(A,1) \le \varphi(A,2) \le \dots \le \varphi(A,v_0). \tag{2.18}$$

In the case $v > v_0$, we get $\delta_v \le 0$ and then

$$\varphi(A, \nu_0) \ge \varphi(A, \nu_0 + 1) \ge \cdots .$$
(2.19)

Therefore,

$$\max_{\boldsymbol{\nu}\in\mathbb{N}}\varphi(\boldsymbol{A},\boldsymbol{\nu}) = \max_{\boldsymbol{\nu}\in\mathbb{N}}\left[\boldsymbol{\nu}^{2k} - \boldsymbol{A}\boldsymbol{\nu}^{2r}\right] = \varphi(\boldsymbol{A},\boldsymbol{\nu}_0)$$
(2.20)

if $\eta(v_0 + 1) \le A \le \eta(v_0)$. Thus inequality (2.1) is proved.

We now show the evidence of equality (2.3). Let $x(t) = \cos v_0 t$. Then the inequality becomes an equality since

$$||x^{(k)}||_2^2 = \pi v_0^{2k}, \qquad ||x||_2^2 = \pi, \qquad ||x^{(r)}||_2^2 = \pi v_0^{2r}.$$
 (2.21)

The function $\Psi(\mathbb{T}; r, k; A)$ defined by (2.3) is continuous, linear on any interval $[\eta(v + 1), \eta(v)]$, and for any $v \ge 1$,

$$\Psi(\mathbb{T}; \boldsymbol{r}, \boldsymbol{k}; \boldsymbol{\eta}(\boldsymbol{\nu}+1)) = \frac{\boldsymbol{\nu}^{2k} (\boldsymbol{\nu}+1)^{2r} - \boldsymbol{\nu}^{2r} (\boldsymbol{\nu}+1)^{2k}}{(\boldsymbol{\nu}+1)^{2r} - \boldsymbol{\nu}^{2r}}.$$
(2.22)

2520

Claim that

$$v_0^{2k} - Av_0^{2r} < \frac{r-k}{r} \left(\frac{k}{Ar}\right)^{k/(r-k)}.$$
(2.23)

To do this, we will consider the function

$$f(A) = \frac{r-k}{r} \left(\frac{k}{Ar}\right)^{k/(r-k)} - v^{2k} + Av^{2r}.$$
 (2.24)

Differentiating the function f, we get

$$f'(A) = v^{2r} - \left(\frac{k}{r}\right)^{r/(r-k)} \left(\frac{1}{A}\right)^{r/(r-k)}$$
(2.25)

and the condition f'(A) = 0 implies

$$A_0 = \frac{k}{r} v^{2k-2r}.$$
 (2.26)

Now we have $f(A_0) = 0$ and our statement is proved.

Let Π_{2n+1} be the set of trigonometric polynomials of order less than or equal to n. Then in view of the Bernstein-type inequality, we have, for any $\tau \in \Pi_{2n+1}$ and any $k \in \mathbb{N}$,

$$\|\boldsymbol{\tau}^{(k)}\|_{2}^{2} \le n^{2k} \|\boldsymbol{\tau}\|_{2}^{2}.$$
(2.27)

Therefore, for $x = \tau$, inequality (1.6) holds with A = 0 and $B = n^{2k}$. Let now A > 0. By repeating (with obvious modifications) the proof of Theorem 2.1, we obtain that for any $k, r \in \mathbb{N}$, k < r, and any $\tau \in \Pi_{2n+1}$, the following holds:

$$\left\| \tau^{(k)} \right\|_{2}^{2} \le A \left\| \tau^{(r)} \right\|_{2}^{2} + B \left\| \tau \right\|_{2}^{2} = A \left\| \tau^{(r)} \right\|_{2}^{2} + \max_{\substack{\nu \in \mathbb{N} \\ \nu \le n}} \varphi(A, \nu) \left\| \tau \right\|_{2}^{2}.$$
(2.28)

We now compute the value

$$\max_{\substack{\nu \in \mathbb{N} \\ \nu \le n}} \varphi(A, \nu). \tag{2.29}$$

Let $\eta(v_0+1) \le A \le \eta(v_0)$, where $v_0 \le n$. Then

$$\max_{\substack{\nu \in \mathbb{N} \\ \nu \leq n}} \varphi(A, \nu) = \varphi(A, \nu_0) = \max_{\nu \in \mathbb{N}} \varphi(A, \nu).$$
(2.30)

If $\eta(v_0+1) \le A \le \eta(v_0)$, where $v_0 \ge n+1$, we get, taking into account the relations

$$\varphi(A,1) \le \varphi(A,2) \le \dots \le \varphi(A,n) \le \dots \le \varphi(A,v_0), \tag{2.31}$$

that

$$\max_{\substack{\nu \in \mathbb{N} \\ \nu \leq n}} \varphi(A, \nu) = \varphi(A, n) = n^{2k} - An^{2r}$$
(2.32)

if $A \leq \eta(n)$. Therefore, we have proved the following theorem.

THEOREM 2.2. For any $k, n, r \in \mathbb{N}$, k < r, any $\tau \in \Pi_{2n+1}$, and any $A \ge 0$,

$$\left\| \tau^{(k)} \right\|_{2}^{2} \le A \left\| \tau^{(r)} \right\|_{2}^{2} + B \left\| \tau \right\|_{2}^{2}, \tag{2.33}$$

where

$$B = \varphi(A, v_0) \tag{2.34}$$

if $\eta(v_0+1) \le A \le \eta(v_0)$ *,* $v_0 \le n$ *, and*

$$B = \varphi(A, n) \tag{2.35}$$

if $A \le \eta(n)$. Inequality (2.33) is the best possible for any $A \ge 0$.

Consider the set of functions $x \in L_{2,2}^r(\mathbb{T})$ such that $c_v(x) = 0$ for $|v| \le n-1$ (we will denote this set of functions by $L_{2,2}^r(\mathbb{T};n)$). The following inequality is well known for functions $x \in L_{2,2}^r(\mathbb{T};n)$:

$$||\mathbf{x}||_{2}^{2} \le \frac{1}{n^{2r}} ||\mathbf{x}^{(r)}||_{2}^{2}.$$
(2.36)

Thus, for any k < r,

$$||x^{(k)}||_2^2 \le \frac{1}{n^{2r-2k}} ||x^{(r)}||_2^2.$$
(2.37)

Then inequality (1.6) for functions $x \in L_{2,2}^{r}(\mathbb{T}; n)$ holds with B = 0 and $A \ge 1/n^{2r-2k}$.

By repeating (with obvious modifications) the proof of Theorem 2.1, we obtain that for any $k, r \in \mathbb{N}$, k < r, any $x \in L_{2,2}^r(\mathbb{T}; n)$, and any $0 \le A \le 1/n^{2r-2k}$,

$$||x^{(k)}||_{2}^{2} \le A||x^{(r)}||_{2}^{2} + \max_{\substack{\nu \in \mathbb{N} \\ \nu \ge n}} \varphi(A,\nu) ||x||_{2}^{2}.$$
(2.38)

We need to find the value of

$$\max_{\substack{\nu \in \mathbb{N} \\ \nu \ge n}} \varphi(A, \nu). \tag{2.39}$$

Note that

$$\eta(n) = \frac{n^{2k} - (n-1)^{2k}}{n^{2r} - (n-1)^{2r}} \le \frac{n^{2k}}{n^{2r}}.$$
(2.40)

To show this, assume that

$$\eta(n) > \frac{n^{2k}}{n^{2r}},\tag{2.41}$$

then we get

$$\left(\frac{n}{n-1}\right)^{2r} < \left(\frac{n}{n-1}\right)^{2k} \tag{2.42}$$

which is impossible since n/(n-1) > 1 and k < r.

2522

First let $\eta(v_0 + 1) \le A \le \eta(v_0)$ where $v_0 \le n$. Then

$$\varphi(A, n) \ge \varphi(A, n+1) \ge \cdots \tag{2.43}$$

and therefore

$$\max_{\substack{\nu \in \mathbb{N} \\ \nu \ge n}} \varphi(A, \nu) = \varphi(A, n) \tag{2.44}$$

if $\eta(v_0 + 1) \le A \le n^{2k - 2r}$.

Let now $\eta(v_0+1) \le A \le \eta(v_0)$ where $v_0 \ge n+1$. In this case, we get

$$\max_{\substack{v \in \mathbb{N} \\ v \ge n}} \varphi(A, v) = \max_{v \in \mathbb{N}} \varphi(A, v) = \varphi(A, v_0).$$
(2.45)

Thus we have proved the following theorem.

THEOREM 2.3. For any $k, n, r \in \mathbb{N}$, k < r, any $x \in L_{2,2}^r(\mathbb{T};n)$, and any $0 \le A \le n^{2k-2r}$, inequality (1.6) holds where $B = \varphi(A, n)$ if $\eta(v_0 + 1) \le A \le n^{2k-2r}$, $v_0 \le n$, and $B = \varphi(A, v_0)$ if $\eta(v_0 + 1) \le A \le \eta(v_0)$, $v_0 \ge n + 1$. Inequality (1.6) is the best possible for any $0 \le A \le n^{2k-2r}$.

REFERENCES

- V. F. Babenko and T. M. Rassias, On exact inequalities of Hardy-Littlewood-Polya type, J. Math. Anal. Appl. 245 (2000), no. 2, 570-593.
- B. D. Bojanov and A. K. Varma, On a polynomial inequality of Kolmogoroff's type, Proc. Amer. Math. Soc. 124 (1996), no. 2, 491-496.
- [3] G. H. Hardy, J. E. Littlewood, and G. Polya, *Inequalities*, Cambridge University Press, Cambridge, 1934.
- [4] N. P. Korneĭchuk, *Exact Constants in Approximation Theory*, Encyclopedia of Mathematics and Its Applications, vol. 38, Cambridge University Press, Cambridge, 1991.
- [5] S. Z. Rafal'son, An inequality between norms of a function and its derivative in integral metrics, Mat. Zametki 33 (1983), no. 1, 77-82.
- [6] A. K. Varma, A new characterization of Hermite polynomials, Acta Math. Hungar. 49 (1987), no. 1-2, 169–172.

Laith Emil Azar: Department of Mathematics, Al Al-Bayt University, Mafraq 25113, Jordan *E-mail address*: azar_laith@yahoo.com