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In his paper, “On a partition function of Richard Stanley,” George Andrews proves a certain
partition identity analytically and asks for a combinatorial proof. This paper provides the
requested combinatorial proof.
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1. Introduction. In [6], Stanley posed a problem on partitions. In [2], Andrews studies

the function S(r ,s;n) which equals the number of partitions π of n such that π has r
odd parts and the conjugate π ′ of π has s odd parts, and proves a result from which

he solves Stanley’s problem as a corollary.

Andrews also states some additional interesting corollaries, including the following

theorem.

Theorem 1.1.

∑
n,r ,s�0

S(r ,s;n)zrysqn =
∞∏
j=1

(
1+yzq2j−1

)
(
1−q4j

)(
1−z2q4j−2

)(
1−y2q4j−2

) . (1.1)

He proves this theorem analytically as the limiting case of a certain polynomial iden-

tity [2, Theorem 1]. At the end of the paper, Andrews states that (1.1) “cries out for a

combinatorial proof.” The purpose of this paper is to present such a proof.

2. Definitions and notation. The following definitions and notations follow Macdon-

ald [4].

A partition π of an integer n is a nonincreasing sequence of nonnegative integers

containing only finitely many nonzero terms such that the sum of the terms is n. Thus,

π = (π1,π2,π3, . . .
)
, (2.1)

with

π1 �π2 �π3 � ··· � 0,
∞∑
i=1

πi =n,
(2.2)
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and πi ∈ Z. Since the tail of such a sequence must, by definition, be an infinite string

of zeros, it will be convenient to suppress this in the notation. Thus the partition

(2,2,1,1,1,0,0,0,0,0, . . .) is normally written as (2,2,1,1,1). In any event, no distinc-

tion will be drawn among sequences written with or without any number of trailing

zeros.

The nonzero terms πi in (2.1) are called the parts of the partition π . The number of

parts ofπ is called the length ofπ and is denoted l(π). Additionally, I will follow Stanley

[6] and Andrews [2] and let �(π) denote the number of odd parts in the partition π .

The set of all partitions is denoted �.

An alternate notation for a partition π is

π = 〈1m12m2 ···rmr ···〉, (2.3)

which means that exactly mi of the parts of π are equal to i. The number mi =mi(π)
is called the multiplicity of i in π . Thus,

(6,5,5,3,3,3,3,2)= 〈234 52 6
〉
. (2.4)

If π = (π1,π2,π3, . . .) and λ= (λ1,λ2,λ3, . . .) are two partitions, their sum is defined

termwise:

(π+λ)i :=πi+λi (2.5)

for i∈ Z+.

The union of two partitions λ and π is obtained by merging the entries of λ with

those of π and arranging the resulting entries in nonincreasing order, for example,

(3,3,2,1)∪(5,3,2,2)= (5,3,3,3,2,2,2,1). (2.6)

The conjugate of a partition π = (π1,π2,π3, . . .), denoted π ′ = (π ′1,π ′2,π ′3, . . .), is the

partition such that

π ′i =
∑
j�i
mj(π). (2.7)

Note that π ′′ =π , π1 = l(π ′), and

mi(π ′)=πi−πi+1. (2.8)

Usually, the conjugate of a partition is thought of in terms of the transposition of its

Ferrers graph or Young diagram; see, for example, [1, page 6] or [4, page 2].

Finally, define the parity function

P(i)=

0 if i is even,

1 if i is odd.
(2.9)
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3. Combinatorial proof of Theorem 1.1

3.1. The plan. I will start with the set of all partitions � counted in such a way so that

it is easily seen to be generated by the infinite product on the right-hand side of (1.1).

I will then map � bijectively onto itself while keeping track of enough of the internal

counting to see that (1.1) holds.

In order to keep the presentation as straightforward as possible, the mapping will

be presented in three simple steps (the maps α, β, and γ), and the bijection will be the

composition of these three maps.

3.2. The generating function. By standard elementary reasoning (see [1, Chapters 1

and 2]),

∞∏
j=1

1
1−q4j (3.1)

is the generating function for partitions into parts ≡ 0(mod4),

∞∏
j=1

1
1−z2q4j−2

(3.2)

is the generating function for partitions into parts ≡ 2(mod4), where each part is

counted with a weight of z2, and

∞∏
j=1

1+yxq2j−1

1−y2q4j−2
(3.3)

is the generating function for partitions into odd parts, where each part is counted with

weight y and each distinct integer of odd multiplicity is counted with weight x.

Thus,

∑
n�0

R(t,ρ,s;n)xtz2ρysqn =
∞∏
j=1

(
1+yxq2j−1

)
(
1−q4j

)(
1−z2q4j−2

)(
1−y2q4j−2

) , (3.4)

where R(n) is the number of partitions of n with s odd parts, ρ parts congruent to

2(mod4), and t different odd integers of odd multiplicity.

Upon setting x equal to z and renaming 2ρ+t as r , we see that the infinite product

of (1.1) generates partitions with exactly s odd parts and such that twice the number

of parts congruent to 2(mod4) plus the number of different odd integers of odd multi-

plicity is exactly r . Thus, by mapping each of these partitions to a partition with exactly

r odd parts and s odd parts in its conjugate, we will have a bijective proof that (1.1)

holds.
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3.3. The mapping. Start with an arbitrary partition κ = 〈1m1(κ)2m2(κ)3m3(κ) ···〉. De-

fine a map

α : � �→�×�, (3.5)

where � is the set of all partitions with no repeated odd parts and �=�\� is the set

of partitions with only odd parts of even multiplicity, by

α(κ)= (λ,µ), (3.6)

where

λ= 〈1P(m1(κ))2m2(κ)3P(m3(κ))4m4(κ) ···〉,
µ = 〈1m1(κ)−P(m1(κ))3m3(κ)−P(m3(κ))5m5(κ)−P(m5(κ)) ···〉. (3.7)

Informally, α separates κ into two partitions λ and µ, where λ gets all of the even parts

of κ and one copy of each odd part of odd multiplicity in κ, and µ gets what is left over,

that is, even quantities of odd parts.

Notice that

�(λ)= t, l(µ)= �(µ)= s−t. (3.8)

Define the map β1 : �→� so that β1(λ) := ζ = (ζ1,ζ2, . . .), where for i∈ Z+,

ζ2i−1 =
⌊
λi+1

2

⌋
, ζ2i =

⌊
λi
2

⌋
, (3.9)

or equivalently,

mi(ζ)= P
(
m2i−1(κ)

)+2m2i(κ)+P
(
m2i+1(κ)

)
. (3.10)

Informally, this means that every even part 2j of λ is mapped by β1 to a pair of j’s
and each and every odd part 2j+1 is mapped to the pair j+1, j. So, � is the set of

partitions ζ = (ζ1,ζ2, . . .) such that for all i∈ Z+,

ζ2i−1−ζ2i 
 1. (3.11)

Define the map β2 : �→� so that ξ := β2(µ)= µ′.
Note that � is the set of partitions ξ such that for all i∈ Z+, ξ2i = ξ2i+1, and ξi is even.

Also, �(ζ)= 2ρ+t, �(ξ)= 0, and �(ξ′)= �(µ)= s−t.
Claim 3.1. �(ζ′)= t.
Proof of Claim 3.1. To see this, notice that by (3.11), the only way that ζ′1 can be

odd is if 1 is a part of λ (which of course means that m1(κ) is odd). This is so because

every part of λ other than a 1 is mapped to a pair of parts, but 1 is mapped to (1,0),
which by definition is only one part since 0 does not count as a part.

Next, the only way that ζ′2 can be odd is if λ contains a 3; and in general, the only

way that ζ′i can be odd is if λ contains 2i−1 as a part (which means that m2i−1(κ) is

odd).
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Finally, define a map γ : �×� → � by π = γ(ζ,ξ) := ζ+π . Thus, we have �(π) =
�(ζ)+�(ξ)= 2ρ+t =: r .

Claim 3.2. �(π ′)= �(ζ′)+�(ξ′)= s as desired, that is, no odd parts in the conjugate

are “lost” through the addition of the partitions ζ and ξ.

Proof of Claim 3.2.

�(π ′)=
∑
i�1

m2i−1(π ′)

=
∑
i�1

(
π2i−1−π2i

)

=
∑
i�1

((
ζ2i−1+ξ2i−1

)−(ζ2i+ξ2i
))

=
∑
i�1

((⌊
λi+1

2

⌋
+µ′2i−1

)
−
(⌊
λi
2

⌋
+µ′2i

))

=
∑
i�1

(⌊
λi+1

2

⌋
−
⌊
λi
2

⌋
+µ′2i−1−µ′2i

)

=
∑
i�1

⌊
λi+1

2

⌋
−
⌊
λi
2

⌋
+m2i−1(µ) by (2.8)

= �(λ)+�(µ)

= t+(s−t)
= s,

(3.12)

where the third to last equality follows from the fact that �(λi+1)/2�−�λi/2� equals

0 if i is even, and equals 1 if i is odd.

Now we consider the invertibility of each of the maps. It is easy to see that α is

invertible; α−1(λ,µ)= λ∪µ. β−1
2 = β2 since conjugation is an involution. β−1

1 (ζ)= λ =
(λ1,λ2, . . .), where

λi = ζ2i−1+ζ2i (3.13)

for i∈ Z+.

The invertibility of γ, however, is more subtle. Given any partition π , we need to

“split it” into the sum of two partitions ζ ∈ � and ξ ∈ �. It is sufficient to recover

ξ1 and ξ2i for i�1 since ξ2i = ξ2i+1 for all i�1, and once we have ξ, we know ζ since

ζ+ξ =π . Of course, we need to do this given only the partition π .

The easiest case is finding ξ1 since we know that ξ1 = s−t. Both s and t are readily

available to us inπ : besides counting the number of odd parts in κ, s counts the number

of odd parts in π ′. Now t counts the number of odd parts of odd multiplicity in κ which

translates into the number of odd parts in λ, which translates into the number of pairs

(ζ2i−1,ζ2i) in ζ whose sum is odd, which in turn translates to the number of pairs

(π2i−1,π2i) in π whose sum is odd (since all parts of ξ are even). Thus we can recover

ξ1 from π .
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Now that we have both π and ξ1 in hand, we can recover the rest of ξ.

Claim 3.3. For i� 1,

ξ2i = ξ1−
i∑
j=1

(
π2i−1−π2i

)+ i∑
j=1

P
(
π2i−1+π2i

)
. (3.14)

Proof of Claim 3.3.

ξ1−
i∑
j=1

(
π2j−1−π2j

)+ i∑
j=1

P
(
π2j−1+π2j

)

= ξ1−
i∑
j=1

(
ζ2j−1+ξ2j−1−ζ2j−ξ2j

)+ i∑
j=1

P
(
λj
)

= ξ1−
i∑
j=1

(⌊λj+1

2

⌋
+ξ2j−1−

⌊λj
2

⌋
−ξ2j

)
+

i∑
j=1

P
(
λj
)

= ξ1+
i∑
j=1

(
P
(
λj
)−

(⌊λj+1

2

⌋
−
⌊λj

2

⌋))
−

i∑
j=1

(
ξ2j−1−ξ2j

)

= ξ1+
i∑
j=1

0−(ξ1+ξ2
)−···−(ξ2i−1−ξ2i

)

= ξ1−ξ1+
(
ξ2−ξ3

)+···+(ξ2i−2−ξ2i−1
)+ξ2i

= ξ2i.

(3.15)

4. Example. Start with a partition

κ = 〈15 233 42 562 72 9
〉
. (4.1)

Under α, the parts of κ are separated into λ and µ, where λ gets all of the even parts

of κ, and one copy of each odd part of odd multiplicity, and µ gets what is left over,

that is, even quantities of odd parts:

(λ,µ)= (〈12342 562 9
〉
,
〈
14 32 72〉)

= ((9,6,6,5,4,4,3,2,1),(7,7,3,3,1,1,1,1)). (4.2)

Next, β1 takes each even part 2j of λ to a pair of j’s and each odd part 2j+1 to the

pair j+1, j, and β2 maps ζ to its conjugate:

(ζ,ξ)= ((5,4,3,3,3,3,3,2,2,2,2,2,2,1,1,1,1,0),(8,4,4,2,2,2,2)). (4.3)

Finally, γ merges ζ and ξ into a single partition π via partition addition:

π = (13,8,7,5,5,5,5,2,2,2,2,2,2,1,1,1,1)= 〈14 26 54 7813
〉
. (4.4)
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Now we consider the inverse map, pretending for the moment that we only know π .

As in the general case, the hardest part will be to separate π into ζ and ξ. First of all,

π ′ = 〈15 232 73 1317〉, so �(π ′) = s = 12. Next, notice that π = (13,8,7,5,5,5,5,2,2,2,
2,2,2,1,1,1,1,0) has t = 4 pairs of opposite parity. Thus we know that ξ1 = 12−4= 8.

Next, to find ξ2, we take ξ1−(π1−π2)+P(π1+π2)= 8−(13−8)+1= 4. Thus ξ3 = 4

also.

To find ξ4, we take ξ1−(π1−π2+π3−π4)+P(π1+π2)+P(π3+π4) = 8−(13−8+
7−5)+1+0= 2. Thus ξ5 = 2, also.

Similarly, we find ξ6 = ξ7 = 2 and ξi = 0 for i� 8. Thus we have ξ = (8, 4, 4, 2, 2, 2, 2)
and from this we immediately get ζ = 〈14 26 35 45〉 by subtracting πi−ξi for i� 1.

Having gotten this far, the rest is simple. λ = (5+4,3+3,3+3,3+2,2+2,2+2,2+
1,1+1,1+0)= (9,6,6,5,4,4,3,2,1), and µ = ξ′ = (7,7,3,3,1,1,1,1). Finally, κ = λ∪µ =
(9,7,7,6,6,5,4,4,3,3,3,2,1,1,1,1,1).

Notes. (i) I have written a Maple package which performs all of the mappings de-

scribed in this paper, and also provides additional examples (http://www.math.rutgers.

edu/∼asills/papers.html).

(ii) It has come to my attention that Boulet [3] and Yee [7] have independently dis-

covered additional combinatorial proofs of Theorem 1.1.
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