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CONGRUENCES IN ORDERED PAIRS OF PARTITIONS

PAUL HAMMOND and RICHARD LEWIS

Received 28 November 2003 and in revised form 12 December 2003

Dyson defined the rank of a partition (as the first part minus the number of parts) whilst
investigating certain congruences in the sequence p−1(n). The rank has been widely studied
as have been other statistics, such as the crank. In this paper a “birank” is defined which
relates to ordered pairs of partitions, and is used in an elementary proof of a congruence
in p−2(n).
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1. Introducing the birank. A partition is defined as being a nonincreasing sequence

of positive integers, λ = (λ1,λ2, . . . ,λr ). The set of all partitions, which includes the

empty partition ∅, is denoted by �. The sum of the parts of a given partition is called

the weight of the partition, wt(λ) = λ1+λ2+···+λr . It is standard notation to write

(z;q)∞ := ∏t≥0(1−zqt) and p−k(n) for the coefficient of qn in (q;q)−k∞ , for fixed k.

It is easy to show that the number of partitions of weight n is p−1(n) (for the empty

partition, wt(λ)= 0). It is also easy to show that the number of ordered pairs of parti-

tions of weight n is p−2(n), the weight of an ordered pair being defined as the sum of

the weights of the two partitions in the pair. The sequence p−1(n) is known to satisfy

certain congruences, one of which

p−1(5n+4)≡ 0mod5, (1.1)

was noticed, and first proved, by Ramanujan (see [7]). In fact (1.1) is [6, Theorem 359],

where an elementary proof is given. A similar, and equally elementary proof can be

found for the following congruences:

p−2(5n+2)≡ p−2(5n+3)≡ p−2(5n+4)≡ 0mod5. (1.2)

What would be desirable is a combinatorial reason why these congruences hold, a way

in which, for x = 2,3,4, the ordered pairs of weight 5n+x could be split into five

equinumerous sets.

With this in mind, we define the birank b(π) of an ordered pair of partitions π =
(λ(1),λ(2)) as the number of parts in the first partition minus the number of parts in

the second partition. Thus b(π) := #(λ(1))−#(λ(2)). The number of ordered pairs of

partitions of weight n having birankm will be written as R(m,n), and R(r ,m,n) is the

number of such ordered pairs having birank congruent to r modulo m.

Now, b(λ(1),λ(2))=−b(λ(2),λ(1)), hence R(m,n)= R(−m,n) and so R(r ,m,n)=
R(m−r ,m,n). Thus, the birank bears at least a passing resemblance to Dyson’s rank,
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which he introduced as an explanation for the congruence (1.1), in the same way (it will

be shown) the birank explains (1.2). Dyson stated his conjectures in [2] and they were

proved in [1].

Now, summing over all ordered pairs of partitions gives

∑

π∈�2

zb(π)qwt(π) = 1
(zq;q)∞

(
z−1q;q

)
∞
. (1.3)

Hence the generating function for R(m,n) is

∑

m∈Z

∑

n≥0

R(m,n)zmqn = 1
(zq;q)∞

(
z−1q;q

)
∞
. (1.4)

Thus, multiplying the generating function for the birank by (q;q)∞ gives the generating

function for the crank of Andrews and Garvan, see [3, identity (3.8)].

The rank, and later the crank, have been widely studied in connection with congru-

ences, such as (1.1) in the sequence p−1(n). There is a relative shortage of published

work on Dyson-type ranks related to congruences in sequences p−k(n) for k > 1 (see

Acknowledgment).

The following abbreviation will be used later:

R[·] :=
∑

n≥0

R(·,5,n)qn. (1.5)

The only tool we use to investigate the behaviour of the birank is the triple prod-

uct identity, a proof of which can be found in [6]. The identity states that if [z;q] :=
(z;q)∞(z−1q;q)∞, then

[z;q](q;q)∞ =
∑

n∈Z
(−1)nznqn(n−1)/2 =

∑

n≥0

(−1)n
(
z−n−zn+1)qn(n+1)/2. (1.6)

Dividing each side by 1−z gives

(zq;q)∞
(
z−1q;q

)
(q;q)∞ =

∑

n≥0

(−1)n
(
zn+zn−1+···+z−n)qn(n+1)/2. (1.7)

2. The behaviour of the birank. The congruence (1.2) is explained by the last three

lines of the following theorem.

Theorem 2.1.

R(0,5,5n) > R(1,5,5n)= R(2,5,5n),
R(1,5,5n+1) >∗ R(0,5,5n+1)= R(2,5,5n+1),

R(0,5,5n+2)= R(1,5,5n+2)= R(2,5,5n+2),

R(0,5,5n+3)= R(1,5,5n+3)= R(2,5,5n+3),

R(0,5,5n+4)= R(1,5,5n+4)= R(2,5,5n+4).

(2.1)

The only exception, (∗), is R(0,5,6)= R(1,5,6).
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Proof. Putting z =ω, where ω= e2πi/5 in (1.4) gives

∑

m∈Z

∑

n≥0

R(m,n)ωmqn = 1
(ωq;q)∞

(
ω−1q;q

)
∞
=
(
ω2q;q

)
∞
(
ω−2q;q

)
∞(q;q)∞(

q5;q5
)
∞

. (2.2)

The term on the right is, by (1.7), equal to

1(
q5;q5

)
∞

∑

n≥0

(−1)n
(
ω2n+ω2n−2+···+ω−2n)qn(n+1)/2 (2.3)

because ω2+ω+1+ω−1+ω−2 = 0, this can be simplified and then dissected to give

1(
q5;q5

)
∞


 ∑

n∈Z
(−1)nq(25n2+5n)/2+(ω+ω−1)q

∑

n∈Z
(−1)nq(25n2+15n)/2


, (2.4)

which, by (1.6), is equal to

(
q25;q25

)
∞(

q5;q5
)
∞

([
q10;q25]+(ω+ω−1)q[q5;q25])= 1[

q5;q25
] +(ω+ω−1) q[

q10;q25
] .

(2.5)

Recalling (1.5), it is clear that

∑

m∈Z

∑

n≥0

R(m,n)wmqn = R[0]+ωR[1]+ω2R[2]+ω3R[3]+ω4R[4]. (2.6)

Now, since ω2 =−1−ω−ω3−ω4, R[1]= R[4], and R[2]= R[3],

R[0]−R[2]+(ω+ω4)(R[1]−R[2])= 1[
q5;q25

] +(ω+ω−1) q[
q10;q25

] . (2.7)

From identity (2.7), which is [4, Lemma 3.9], and the irrationality of ω+ω−1, it follows

that

∑

n≥0

[
R(0,5,n)−R(2,5,n)]qn = 1[

q5;q25
] , (2.8)

∑

n≥0

[
R(1,5,n)−R(2,5,n)]qn = q[

q10;q25
] . (2.9)

Now if the coefficient of qn in the expression on the right-hand side of (2.8) is, say, c(n)
and the coefficient in the expression on the right-hand side of (2.9) is d(n), then it is

clear that c(n) ≥ 0 and the inequality is strict precisely when n ≡ 0mod5. Likewise,

d(n) ≥ 0 and the inequality is strict precisely when n ≡ 1mod5 (with one exception,

d(6)= 0). This proves (2.1).

Acknowledgment. We are grateful to the anonymous referee for drawing our at-

tention to the existence of a rank related to p−24(n) which is introduced in [5].
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