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We consider some fundamental properties of QS-algebras and show that (1) the theory of
QS-algebras is logically equivalent to the theory of Abelian groups, that is, each theorem
of QS-algebras is provable in the theory of Abelian groups, and conversely, each theorem
of Abelian groups is provable in the theory of QS-algebras; and (2) a G-part G(X) of a QS-
algebra X is a normal subgroup generated by the class of all elements of order 2 of X when
it is considered as a group.
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1. Introduction. In [3], the notion ofQ-algebras is introduced and some fundamental

properties are established. The algebras are extensions of the BCK/BCI-algebras which

were proposed by Y. Imai and K. Iséki in 1966. It is usually important to generalize

the algebraic structures. Neggers and Kim [4] introduced a class of algebras which is

related to several classes of algebras such as BCK/BCI/BCH-algebras. They call them

B-algebras, and they proved that every group (X;◦,0) determines a B-algebra (X;∗,0),
which is called the group-derived B-algebra. Conversely, in [2], we prove that every

B-algebra is group-derived and hence that the class of B-algebras and the class of all

groups are the same. Ahn and Kim [1] proposed the notion ofQS-algebras which is also

a generalization of BCK/BCI-algebras and obtained several results. Here, we consider

some fundamental properties of QS-algebras and show that

(1) the theory ofQS-algebras is logically equivalent to the theory of Abelian groups,

that is, each theorem ofQS-algebras is provable in the theory of Abelian groups

and conversely each theorem of Abelian groups is provable in the theory of

QS-algebras;

(2) a subset G(X) called G-part of a QS-algebra X is a normal subgroup which is

generated by the class of all elements of order 2.

2. Preliminaries. A QS-algebra is a nonempty set X with a constant 0 and a binary

operation “∗” satisfying the following axioms:

(QS1) x∗x = 0,

(QS2) x∗0= x,

(QS3) (x∗y)∗z = (x∗z)∗y ,

(QS4) (x∗y)∗(x∗z)=y∗z,

for all x, y , z in X.
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Example 2.1. (1) Let X = {0,1,2} be a set with an operation ∗ defined as follows:

∗ 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

(2.1)

Then (X;∗,0) is a QS-algebra.

(2) Let X be the set of all integers. Define a binary operation ∗ on X by

x∗y := x−y. (2.2)

Then (X;∗,0) is a QS-algebra.

We note that these examples are both Abelian groups and the operation ∗ corre-

sponds to the minus operation “−”. In the case of (1), X can be considered as the set

Z3 of integers of modulo 3 and the operation ∗ as a minus “−” modulo operation. It

seems that any Abelian group gives an example of a QS-algebra. In fact, we can prove

the fact.

Theorem 2.2. Let (X;·,−1,e) be an Abelian group. If x∗y = x ·y−1 is defined and

0= e, then (X;∗,0) is a QS-algebra.

Proof. We only show that the conditions (QS3) and (QS4) of QS-algebras are satis-

fied. For the case of (QS3), since X is an Abelian group,

(x∗y)∗z = (x ·y−1)·z−1

= x ·(y−1 ·z−1)

= x ·(z−1 ·y−1)

= (x ·z−1)·y−1

= (x∗z)∗y.

(2.3)

For the case of (QS4), we also have

(x∗y)∗(x∗z)= (x ·y−1)·(x ·z−1)−1

= (x ·y−1)·(z ·x−1)

= x ·x−1 ·z ·y−1

= z ·y−1

= z∗y.

(2.4)

The theorem means that every Abelian group (X;·,−1,e) determines a QS-algebra

(X;∗,0); in other words, any Abelian group can be considered as a QS-algebra. Con-

versely, we will show in the next section that any QS-algebra determines an Abelian

group, that is, every QS-algebra can be considered as an Abelian group. Hence, we are

able to conclude that in this sense, the class of QS-algebras coincides with the class of

Abelian groups.
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3. Abelian groups can be derived from QS-algebras. We show that every QS-alge-

bra determines an Abelian group. In order to do so, it is sufficient to construct an

Abelian group from any QS-algebra. We need some lemmas to prove that.

Let (X;∗,0) be a QS-algebra.

Lemma 3.1. For all x,y,z ∈X, if x∗y = z, then x∗z =y .

Proof. Suppose that x ∗y = z. Then, since X is a QS-algebra, we have x ∗ z =
(x∗0)∗(x∗y)=y∗0=y .

It follows from the above that the condition (QS4)′ is established in any QS-algebra:

(QS4)′ (x∗z)∗(y∗z)= x∗y .

Corollary 3.2. If x∗y = 0, then x =y .

Let B(X) = {x ∈ X | 0∗x = 0}. A QS-algebra X is called p-semisimple if B(X) = {0}
(cf. [1]). We can show that every QS-algebra is p-semisimple.

Corollary 3.3. Every QS-algebra is p-semisimple.

Proof. Suppose that X is a QS-algebra. For all elements x ∈X, since

x ∈ B(X)⇐⇒ 0∗x = 0

⇐⇒ x = 0 (by Corollary 3.2),
(3.1)

we can conclude that X is p-semisimple.

Remark 3.4. It is proved in [1] that every associative QS-algebra is p-semisimple.

The corollary above means that the assumption of associativity is superfluous.

Lemma 3.5. 0∗(x∗y)=y∗x.

Proof. 0∗(x∗y)= (x∗x)∗(x∗y)=y∗x.

Corollary 3.6. 0∗(0∗x)= x.

Lemma 3.7. x∗(0∗y)=y∗(0∗x).
Proof. Since

0∗(x∗(y∗(0∗x)))= (y∗(0∗x))∗x (by Lemma 3.5)

= (y∗x)∗(0∗x) (
by (QS3)

)

=y∗0
(
by (QS4)′

)

=y,

(3.2)

we have 0∗(0∗(x∗(y∗(0∗x))))= 0∗y . It follows from Corollary 3.6 that x∗(y∗
(0∗x))= 0∗y and hence x∗(0∗y)=y∗(0∗x) by Lemma 3.1.

These lemmas provide a proof that we can construct an Abelian group (X;·,e) from

a QS-algebra (X;∗,0).
Theorem 3.8. Let (X;∗,0) be a QS-algebra. If x ·y = x∗(0∗y) is defined, x−1 =

0∗x, and e= 0, then the structure (X;·,−1,e) is an Abelian group.
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Proof. We only show that the structure (X;·,−1,e) satisfies the conditions of as-

sociativity and of commutativity with respect to the operation “·”.

For associativity, we have

(x ·y)·z = (x∗(0∗y))∗(0∗z)
= (y∗(0∗x))∗(0∗z) (by Lemma 3.7)

= (y∗(0∗z))∗(0∗x)
= x∗(0∗(y∗(0∗z))) (by Lemma 3.7)

= x ·(y ·z).

(3.3)

For commutativity, we also have x ·y = x∗(0∗y)=y∗(0∗x)=y ·x.

Combining Theorems 2.2 and 3.8, we can conclude that the class of QS-algebras

coincides with the class of Abelian groups.

In the following, we will describe our results in greater detail. We can show that

each theorem of QS-algebras is translated to a formula of �� which is provable in the

theory of Abelian groups and conversely each theorem of Abelian groups is proved

in the theory of QS-algebras. To present our theorem precisely, we will develop the

formal theories of QS-algebras and Abelian groups. Let �� and �� be the theories

of QS-algebras and Abelian groups, respectively. Theories consist of languages and

axioms. At first, we define languages of these theories which are needed to present

statements formally in their theories. By �(��) (or �(��)), we mean a language of the

theory �� of QS-algebras (or the theory �� of groups). We define them as follows.

The language of the theory of �� of QS-algebras consists of

(lq1) countable variables x,y,z, . . . ,
(lq2) binary operation symbol ∗,

(lq3) constant symbol 0;

and the language of the theory of �� of QS-algebras consists of

(lg1) countable variables x,y,z, . . . ,
(lg2) binary operation symbol ◦,
(lg3) unary operation symbol −1,

(lg4) constant symbol e.
Next we define terms which represent objects in the theory. By �(��) (or �(��)) we

mean the set of terms of �� (or ��). Terms are defined as follows.

For terms of ��,

(tb1) each variable is a term,

(tb2) the constant 0 is a term,

(tb3) if u and v are terms, then u∗v is a term.

For terms of ��,

(tg1) each variable is a term,

(tg2) the constant e is a term,

(tg3) if u and v are terms, then so are u◦v and u−1.

We also define formulas which represent statements in each theory. Formulas of ��

(or ��) are defined as the forms of s = t, where s,t ∈�(��) (or s,t ∈�(��)). By �(��)
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(or �(��)) we mean the set of formulas of �� (or ��). We denote formulas simply by

A,B,C, . . . .
As to the axioms of QS-algebras, we list the following:

(QS1) x∗x = 0,

(QS2) x∗0= x,

(QS3) (x∗y)∗z = (x∗z)∗y ,

(QS4) (x∗y)∗(x∗z)=y∗z.

For the axioms of Abelian groups, we use the following:

(G1) x◦(y ◦z)= (x◦y)◦z,

(G2) x◦e= e◦x = x,

(G3) x◦x−1 = x−1 ◦x = e,
(G4) x◦y =y ◦x.

Two formal theories �� and �� have the same rules of inference concerning “equal-

ity,” for they have no predicate symbols.

Rules of inference. For all terms s,t,w,s1,s2, . . .∈�(��) (or �(��)),

s = s, s = t
t = s ,

s = t, t =w
s = t ,

s1 = t1, . . . ,sn = tn
φ
(
s1, . . . ,sn

)=φ(t1, . . . , tn
) , (3.4)

where φ(x1, . . . ,xn) is a term of �(��) (or �(��)) whose variables are contained in

{x1, . . . ,xn}.
We are now ready to present a formal theory of Abelian groups and QS-algebras. Let

Γ be a subset of formulas of �(��) (or �(��)). By

Γ ��� A
(
Γ ��� A

)
, (3.5)

we mean that there is a finite sequence of formulas A1,A2, . . . ,An of �(��)(�(��))
such that for each i,

(1) Ai is an axiom of ��(��),
(2) Ai ∈ Γ ,
(3) there exists ji, . . . ,jk (j1, . . . ,jk < i) such that

Aj1 , . . . ,Ajk
A

. (3.6)

We say that A is provable from Γ in ��(��) when Γ ��� A(Γ ��� A). In particular,

in case of Γ = ∅, we say that A is a theorem of ��(��) and simply denote it by ���

A(��� A).
As an example, we present the following which is called a cancelation rule in the

theory of groups:

x◦y = z◦x ��� y = z. (3.7)
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Indeed, we have the following finite sequence of formulas:

x◦y = z◦x, z◦x = x◦z, x◦y = x◦z, x−1 ◦(x◦y)= x−1 ◦(x◦z),
x−1 ◦(x◦y)= (x−1 ◦x)◦y, x−1 ◦(x◦z)= (x−1◦x)◦z,
(
x−1 ◦x)◦y = (x−1 ◦x)◦z, x−1 ◦x = e, e◦y = e◦z,

e◦y =y, e◦z = z, y = z.

(3.8)

Next, we define two maps ξ from the theory �� of QS-algebras to the theory �� of

Abelian groups and η from �� to �� as follows. For �(��),

ξ(x)≡ x for each variable x,

ξ(0)≡ e,
ξ(s∗t)≡ ξ(s)◦ξ(t−1),

(3.9)

and for �(��),

ξ(s = t)≡ ξ(s)= ξ(t),
ξ(s = t �⇒ s′ = t′)≡ ξ(s = t) �⇒ ξ(s′ = t′), (3.10)

where s,s′, t,t′ ∈�(��).
Conversely, we define a map η : ��→ �� as follows. For �(��),

η(x)≡ x for each variable x,

η(e)≡ 0,

η
(
s−1)≡ 0∗(η(s)),

η(s ◦t)≡ η(s)∗(0∗η(t)),

(3.11)

and for �(��),

η(s = t)≡ η(s)= η(t),
η(s = t �⇒ s′ = t′)≡ η(s = t) �⇒ η(s′ = t′), (3.12)

where s,s′, t,t′ ∈�(��).
We are now ready to state our theorem. It is as follows.

Main theorem 3.9. (1) For every Γ ∪{A} ∈ �(��), if Γ ��� A, then ξ(Γ) ��� ξ(A);
conversely,

(2) for every Γ ∪{A} ∈�(��), if Γ ��� A, then η(Γ)��� η(A); moreover,

(3) Γ ��� ηξ(A) if and only if Γ ��� A for every Γ ∪{A} ∈�(��);
(4) Γ ��� ξη(A) if and only if Γ ��� A for every Γ ∪{A} ∈�(��).

This means that each theorem of QS-algebras can be translated immediately to that

of groups and conversely, every theorem of groups is applied to that of QS-algebras.

At first we will establish the former part, that is, if Γ ��� A, then ξ(Γ)��� ξ(A).
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Theorem 3.10. For Γ ∪{A} ∈�(��), if Γ ��� A, then ξ(Γ)��� ξ(A).

Proof. It is sufficient to show that for every axiom A of QS-algebras, ξ(A) is prov-

able in the theory �� of Abelian groups. For the sake of simplicity, we treat only the

case of axiom (QS3): (x∗y)∗z = x∗(z∗(0∗y)). Other cases can be proved similarly.

Since

ξ
(
(x∗y)∗z)= (x◦y−1)◦z−1,

ξ
(
x∗(z∗(0∗y)))= x◦

{
z◦(y−1)−1

}−1
,

(3.13)

we have to show that

(
x◦y−1)◦z−1 = x◦

{
z◦(y−1)−1

}−1
. (3.14)

We have the following:

x◦
{
z◦(y−1)−1

}−1 = x◦(z◦y)−1

= x◦(y−1 ◦z−1)

= (x◦y−1)◦z−1.

(3.15)

Hence, if Γ ��� A, then ξ(Γ)��� ξ(A).

Conversely, we can show that if Γ ��� A, then η(Γ)��� η(A).

Theorem 3.11. For Γ ∪{A} ∈�(��), if Γ ��� A, then η(Γ)��� η(A).

Proof. As above, it is sufficient to show that η(A) is provable in the theory �� of

QS-algebras for every axiom A of the theory of Abelian groups.

For the case of (G1), we have to show that

(
x∗(0∗y))∗(0∗z)= x∗(0∗(y∗(0∗z))) (3.16)

because η((x◦y)◦z)= (x∗(0∗y))∗(0∗z) and η(x◦(y ◦z))= x∗(0∗(y∗(0∗z))).
By the proposition above, we have

(
x∗(0∗y))∗(0∗z)= x∗((0∗z)∗(0∗(0∗y)))

= x∗((0∗z)∗y)

= x∗(0∗(y∗(0∗z))).
(3.17)

Other cases are proved easily, so we omit their proofs.

The theorem can be proved completely.

Moreover, it follows from Lemma 3.5 and Corollary 3.6 that we have ��� ηξ(t) = t
for every term t ∈ �(��). For the case of Abelian groups, it is easy to prove that ���

ξη(s)= s for every term s ∈�(��). Thus we have the following.

Theorem 3.12. For these maps,

(1) Γ ��� ηξ(A) if and only if Γ ��� A for all Γ ∪{A} ∈�(��),
(2) Γ ��� ξη(A) if and only if Γ ��� A for all Γ ∪{A} ∈�(��).
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4. Some properties. In this section, we prove other properties ofQS-algebras, espe-

cially properties about the G-part and mediality. That is,

(1) the G-part G(X) of a QS-algebra X is a normal subgroup generated by the class

of all elements of order 2 of X;

(2) every QS-algebra X is medial, that is, it satisfies the condition

(x∗y)∗(z∗u)= (x∗z)∗(y∗u) (4.1)

for all elements x,y,z,u∈X.

Let X be a QS-algebra. A subset G(X) = {x ∈ X | 0∗x = x} is called a G-part of X.

For the G-part of X, we have the following results.

Proposition 4.1. If x,y ∈G(X), then x∗y =y∗x.

Proof. Suppose x,y ∈G(X). Since 0∗x = x and 0∗y =y , we have

x∗y = (0∗x)∗(0∗y)
= (0∗(0∗y))∗x (

by (QS3)
)

=y∗x.
(4.2)

Proposition 4.2. If x,y ∈G(X), then x∗y ∈G(X).
Proof. Suppose that x,y ∈G(X). It follows that (0∗(x∗y))∗(x∗y)= (y∗x)∗

(x∗y)= (x∗y)∗(x∗y)= 0 by Lemma 3.5. Thus we have 0∗(x∗y)= x∗y , that is,

x∗y ∈G(X).
Since any QS-algebra X may be considered as an Abelian group, Proposition 4.2 im-

plies that G(X) is a (normal) subgroup of X. Moreover, since x2 = x ·x = x∗(0∗x)=
x∗x = 0 for x ∈ G(X), every nonunit element in G(X) is of order 2. Hence, we can

conclude that the G-part G(X) is the normal subgroup generated by the class of all

elements of order 2. It is easy to show that G(X)= {x ∈X | x is of order 2}∪{0}.
For the statement (2) above, in [1, Theorem 3.6], it is proved that a QS-algebra X is

medial if and only if the condition x∗(y∗z) = (x∗y)∗(0∗z) holds for all x, y , z
∈ X. On the other hand, by Lemma 3.7, we have (x∗y)∗(0∗z) = z∗(0∗(x∗y)) =
z∗ (y ∗x). Thus X is medial if and only if the condition x∗ (y ∗ z) = z∗ (y ∗x)
holds for all x,y,z ∈ X. By using this characterization of mediality, we will prove the

following.

Theorem 4.3. Every QS-algebra is medial.

Proof. It is sufficient to show that x∗(y∗z)= z∗(y∗x) holds for all x,y,z ∈X.

Since

x∗(y∗z)= 0∗(0∗(x∗(y∗z))) (by Corollary 3.6)

= 0∗((y∗z)∗x) (by Lemma 3.5)

= 0∗((y∗x)∗z) (
by (QS3)

)

= z∗(y∗x) (by Lemma 3.5),

(4.3)

it follows that X is medial.
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5. Application. Let V = {x,y,z, . . .} be a set of variables and 0 a constant. We define

a term and equation as follows:

(1) 0 is a term;

(2) each variable in V is a term;

(3) if s,t are terms, then s∗t is also a term;

(4) if s,t are terms, then s = t is an equation.

Thus, for example, 0, 0∗x, x∗ (0∗y), x∗y are terms and thus 0 = 0∗x, x∗
(0∗y) = x∗y are equations. By t(x,y, . . .) we mean a term whose variables are in

{x,y,. . .}. We say that an equation s(x,y, . . .)= t(x,y, . . .) is satisfied in a QS-algebra

X when for all elements a,b, . . . ∈ X, we have uX(a,b, . . .) = vX(a,b, . . .). In particular,

an equation t(x,y, . . .)= 0 is said to be satisfied in X if tX(a,b, . . .)= 0 for all elements

a,b, . . . ∈ X. In the following, by t(a,b, . . .) we mean an element tX(a,b, . . .) which is

an interpretation of a term t(x,y, . . .) in X, that is, t(a,b, . . .) is an abbreviation of

tX(a,b, . . .).
We also define a condition (C) which plays an important role to develop our theory:

(C) for all x and for all y , there exists t(x,y) such that

(
0∗(0∗x))∗(0∗(0∗y))= 0∗(0∗t(x,y)), t(x,x)= 0. (5.1)

By using condition (C), we have the following theorem which shows the relation between

Q-algebras and QS-algebras.

Theorem 5.1. Let (X;∗,0) be aQ-algebra. (X;∗,0) satisfies condition (C) if and only

if (X∗;∗,0) is a QS-algebra, where X∗ = {0∗(0∗a) | a∈X}.
Proof. If part. For all u,v ∈ X∗, there exist a,b ∈ X such that u = 0∗ (0∗a),

v = 0∗(0∗b). It follows from condition (C) that u∗v ∈X∗ and that X∗ is a subalgebra

of X. Hence, X∗ is a Q-algebra. We define u ·v = u∗ (0∗v) and u−1 = 0∗u. Since

u,v,0∈X∗, we have u·v ∈X∗. Moreover for this operation, we can show that

(i) u·v = v ·u,

(ii) u·0= 0·u=u,

(iii) u·(0∗u)= (0∗u)·u= 0,

(iv) (u·v)·w =u·(v ·w).
For the sake of simplicity, we only prove the case of (iv). Before doing so, we note the

following result: (u·v)·w = (u·w)·v for all u,v,w ∈X∗. Because

(u·v)·w = (u·v)∗(0∗w)
= (u∗(0∗v))∗(0∗w)
= (u∗(0∗w))∗(0∗v)
= (u·w)·v,

(5.2)

it follows from the result that (u·v)·w = (v ·u)·w = (v ·w)·u=u·(v ·w).
Thus the above means that (X∗;·,−1,0) is an Abelian group. For this group, if we

define u◦v =u·(0∗v), then (X∗;◦,0) is a QS-algebra. Clearly we have u◦v =u·(0∗
v)=u∗(0∗(0∗v))=u∗v for all u,v ∈X∗. That is, (X∗;∗,0) is a QS-algebra.
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Only if part. Conversely, we suppose that (X∗;∗,0) is aQS-algebra. For all u,v ∈X∗,

there exist a,b ∈ X such that u = 0∗ (0∗a), v = 0∗ (0∗b). Since u∗v ∈ X∗, u∗v
has to have a form of 0∗(0∗t(a,b)). This means that X∗ satisfies the condition

∀x∀y∃t(x,y) (
0∗(0∗x))∗(0∗(0∗y))= 0∗(0∗t(x,y)). (5.3)

It is obvious that t(a,a)= 0 for alla∈X, that is, t(x,x)= 0. ThusX∗ satisfies condition

(C).

We consider some cases of t(x,y) as corollaries to the theorem. First of all, let t(x,y)
be a form of x∗y , that is, t(x,y)= x∗y . In this case, condition (C) has a form of

(
0∗(0∗x))∗(0∗(0∗y))= 0∗(0∗(x∗y)). (5.4)

For a map f : X → X∗ defined by f(x) = 0∗(0∗x), since (x,y) ∈ Kerf if and only if

0∗(0∗x)= 0∗(0∗y), we have that X/Kerf , the quotient Q-algebra modulo Kerf , is

isomorphic to X∗, that is, X/Kerf �X∗. Hence, we have the following.

Corollary 5.2. If f :X →X∗ is a map defined by f(x)= 0∗(0∗x), thenX/Kerf �
X∗.

We define a term tn(x,y) for all nonnegative integers n as follows:

t0(x,y)= 0∗(x∗y),
tn(x,y)= tn−1(x,y)∗(0∗(0∗(x∗y))). (5.5)

In this case, the corresponding condition (Cn) is

(Cn)

(
0∗(0∗x))∗(0∗(0∗y))= 0∗(0∗tn(x,y)). (5.6)

We now have the following result as to condition (Cn).

Corollary 5.3. Let X be a QS-algebra. If X satisfies condition (Cn), then X∗ is an

Abelian group in which every element has order at most (n+2).

Proof. For condition (Cn), if we take y = 0, then we have 0∗ (0∗x) = 0∗ (0∗
tn(x,0)), that is,

0∗(0∗x)= 0∗[0∗{((0∗x)∗(0∗(0∗x)))∗(0∗(0∗x))∗···∗(0∗(0∗x))}]. (5.7)

Since any element u∈ X∗ has a form of 0∗(0∗a) for some element a∈ X, it follows

from (Cn) that

u= 0∗[0∗{((0∗a)∗(0∗(0∗a)))∗(0∗(0∗a))∗···∗(0∗(0∗a))}]

= 0∗[0∗{((···((0∗a)∗u)∗u)∗···)∗u}]

= ((···((0∗a)∗u)∗u)∗···)∗u
= ((···((0∗u)∗u)∗u)∗···)∗u.

(5.8)
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On the other hand, since (0∗u)∗u= (0∗u)∗(0∗(0∗u))=u−1 ·u−1 in the Abelian

group X∗, we have

u= (u−1 ·u−1)·u−1 ···u−1 = (u−1)n+1 =u−(n+1) (5.9)

and hence un+2 = 0. This means that each element of X∗ has order at most n+2.

As the last case, we suppose t(x,y)= (x∗y)∗(y∗x). Since condition (C) is

(
0∗(0∗x))∗(0∗(0∗y))= 0∗(0∗((x∗y)∗(y∗x))) (5.10)

in this case, if we take y = 0, then we have the condition

0∗(0∗x)= 0∗(0∗(x∗(0∗x))). (5.11)

This implies that

0∗(0∗a)= 0∗(0∗(a∗(0∗a))) (5.12)

for all a ∈ X. In particular, any element u ∈ X∗ satisfies the condition. Hence, since

u= 0∗(0∗u) for all elements u∈X∗, we have in the Abelian group X∗

u=u∗(0∗u)=u·u. (5.13)

This means that every element of X∗ is an idempotent. But u ·uu means u = 0 and

X∗ = {0} is trivial.

Corollary 5.4. Let X be a Q-algebra. If X satisfies the condition

(
0∗(0∗x))∗(0∗(0∗y))= 0∗(0∗((x∗y)∗(y∗x))), (5.14)

then X∗ is an Abelian group in which every element is an idempotent.
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