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We consider some fundamental properties of QS-algebras and show that (1) the theory of
QS-algebras is logically equivalent to the theory of Abelian groups, that is, each theorem
of QS-algebras is provable in the theory of Abelian groups, and conversely, each theorem
of Abelian groups is provable in the theory of QS-algebras; and (2) a G-part G(X) of a QS-
algebra X is a normal subgroup generated by the class of all elements of order 2 of X when
it is considered as a group.

2000 Mathematics Subject Classification: 06F35, 03G25, 03C07.

1. Introduction. In|[3], the notion of Q-algebras is introduced and some fundamental
properties are established. The algebras are extensions of the BCK/BCI-algebras which
were proposed by Y. Imai and K. Iséki in 1966. It is usually important to generalize
the algebraic structures. Neggers and Kim [4] introduced a class of algebras which is
related to several classes of algebras such as BCK/BCI/BCH-algebras. They call them
B-algebras, and they proved that every group (X;o,0) determines a B-algebra (X;*,0),
which is called the group-derived B-algebra. Conversely, in [2], we prove that every
B-algebra is group-derived and hence that the class of B-algebras and the class of all
groups are the same. Ahn and Kim [1] proposed the notion of Q S-algebras which is also
a generalization of BCK/BCI-algebras and obtained several results. Here, we consider
some fundamental properties of QS-algebras and show that

(1) the theory of Q S-algebras is logically equivalent to the theory of Abelian groups,
that is, each theorem of QS-algebras is provable in the theory of Abelian groups
and conversely each theorem of Abelian groups is provable in the theory of
QS-algebras;

(2) a subset G(X) called G-part of a QS-algebra X is a normal subgroup which is
generated by the class of all elements of order 2.

2. Preliminaries. A QS-algebra is a nonempty set X with a constant 0 and a binary
operation “x” satisfying the following axioms:
(QS1) x*xx =0,
(QS2) xx0=x,
(QS3) (x*y)*kz=(x*2z)*xY,
(QS4) (x*y)*(x*z)=y%*z,
for all x, y, z in X.
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EXAMPLE 2.1. (1) Let X = {0,1,2} be a set with an operation * defined as follows:

*x |0 1 2
0|0 2 1
1(1 0 2 (2.1)
212 1 O
Then (X;*,0) is a QS-algebra.
(2) Let X be the set of all integers. Define a binary operation % on X by
Xkyi=x—. (2.2)

Then (X;*,0) is a QS-algebra.

We note that these examples are both Abelian groups and the operation * corre-
sponds to the minus operation “—”. In the case of (1), X can be considered as the set
73 of integers of modulo 3 and the operation * as a minus “—” modulo operation. It
seems that any Abelian group gives an example of a Q S-algebra. In fact, we can prove
the fact.

THEOREM 2.2. Let (X;-,—1,e) be an Abelian group. If x x y = x - v~ is defined and
0 =e, then (X;*,0) is a QS-algebra.

PROOF. We only show that the conditions (QS3) and (QS4) of Q S-algebras are satis-
fied. For the case of (QS3), since X is an Abelian group,
(x*ky)kz=(x-y1).z7!
(y'-z7h

Loy (2.3)
-1

X.
x-(z~

=(x-z7") -y
=(x*xz)*xy.

For the case of (QS4), we also have

(x*y)x(x*k2) = (x-y ") (x-27)7"

=(x-y)(z-x7)

=x-xt.z-y7! (2.4)
zz.y’l
:Z*y. D

The theorem means that every Abelian group (X;-,—1,e) determines a QS-algebra
(X;*,0); in other words, any Abelian group can be considered as a QS-algebra. Con-
versely, we will show in the next section that any QS-algebra determines an Abelian
group, that is, every QS-algebra can be considered as an Abelian group. Hence, we are
able to conclude that in this sense, the class of Q S-algebras coincides with the class of
Abelian groups.
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3. Abelian groups can be derived from Q S-algebras. We show that every QS-alge-
bra determines an Abelian group. In order to do so, it is sufficient to construct an
Abelian group from any QS-algebra. We need some lemmas to prove that.

Let (X;*,0) be a QS-algebra.

LEMMA 3.1. Forallx,y,ze X, ifx*xy =2z, thenx xz=.

PROOF. Suppose that x x y = z. Then, since X is a QS-algebra, we have x x z =
(x*x0) % (x*xy)=y*x0=y. O

It follows from the above that the condition (QS4)’ is established in any Q S-algebra:
(QS4) (x*kz)*k(y*xz)=x%).

COROLLARY 3.2. If x*y =0, thenx = .

Let B(X) = {x € X | 0% x =0}. A QS-algebra X is called p-semisimple if B(X) = {0}
(cf. [1]). We can show that every QS-algebra is p-semisimple.

COROLLARY 3.3. Every QS-algebra is p-semisimple.
PROOF. Suppose that X is a QS-algebra. For all elements x € X, since

X€E€B(X)=0xx=0

3.1
< x =0 (by Corollary 3.2), 3.1

we can conclude that X is p-semisimple. O

REMARK 3.4. It is proved in [1] that every associative QS-algebra is p-semisimple.
The corollary above means that the assumption of associativity is superfluous.

LEMMA 3.5. 0% (x*xy) =y *xX.

PROOE. 0% (x*y) = (X*X)*(x*Yy)=y*X. O

COROLLARY 3.6. 0% (0*xx) = x.

LEMMA 3.7. x*x(0xy)=y*(0xx).

PROOF. Since

0% (xk(¥y*x(0%x)))=(y*(0%xx))*x (byLemma 3.5)

= (y*x)*(0xx) (by(QS3))
=y*0 (by(Qs4))
=0,

(3.2)

we have 0 (0 (x* (y * (0%x)))) = 0% y. It follows from Corollary 3.6 that x * (y *
(0%x)) =0x%y and hence x % (0% y) = y % (0* x) by Lemma 3.1. O

These lemmas provide a proof that we can construct an Abelian group (X;-,e) from
a QS-algebra (X;*,0).

THEOREM 3.8. Let (X;%*,0) be a QS-algebra. If x -y = x * (0% y) is defined, x~! =
0% x, and e = 0, then the structure (X;-,—1,e) is an Abelian group.
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PROOF. We only show that the structure (X;-,—1,e) satisfies the conditions of as-
sociativity and of commutativity with respect to the operation “-”.
For associativity, we have

(x-¥)-z=(x*(0%y))*(0%*2)
=(y*(0%x))*(0*z) (byLemma 3.7)
=(y*(0%2z))* (0%xx) (3.3)
=xx (0% (y*(0%2))) (byLemma 3.7)
=x-(y-2).

For commutativity, we also have x - y =x % (0% y) = y* (0% x) =y - x. O

Combining Theorems 2.2 and 3.8, we can conclude that the class of QS-algebras
coincides with the class of Abelian groups.

In the following, we will describe our results in greater detail. We can show that
each theorem of QS-algebras is translated to a formula of «{%§ which is provable in the
theory of Abelian groups and conversely each theorem of Abelian groups is proved
in the theory of QS-algebras. To present our theorem precisely, we will develop the
formal theories of QS-algebras and Abelian groups. Let 9 and %% be the theories
of QS-algebras and Abelian groups, respectively. Theories consist of languages and
axioms. At first, we define languages of these theories which are needed to present
statements formally in their theories. By £(2%) (or £(4%)), we mean a language of the
theory 2.9 of QS-algebras (or the theory #19 of groups). We define them as follows.

The language of the theory of 2% of QS-algebras consists of

(Iql) countable variables x, vy, z, ...,
(Ig2) binary operation symbol ,
(Ig3) constant symbol 0O;
and the language of the theory of 4% of QS-algebras consists of

(Igl) countable variables x,y,z,...,

(Ig2) binary operation symbol o,

(Ig3) unary operation symbol —1,

(lg4) constant symbol e.

Next we define terms which represent objects in the theory. By 7 (2%) (or 7 (4%)) we
mean the set of terms of 2 (or «4%). Terms are defined as follows.

For terms of 9%,

(tb1) each variable is a term,
(th2) the constant O is a term,
(th3) if u and v are terms, then u x v is a term.
For terms of %,
(tgl) each variable is a term,
(tg2) the constant e is a term,
(tg3) if u and v are terms, then so are wov and u~".

We also define formulas which represent statements in each theory. Formulas of 2%

(or A9) are defined as the forms of s = t, where s,t € T(2%) (or s,t € T(A%)). By F(2F)
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(or F(«4%)) we mean the set of formulas of 2 (or «1%). We denote formulas simply by
A,B,C,....
As to the axioms of QS-algebras, we list the following:
(QS1) xxx =0,
(QS2) x*x0=x,
(QS3) (x*xy)*kz=(x*xz)x*xYy,
(QS4) (x*xy)*k(x*z)=y*z.
For the axioms of Abelian groups, we use the following:
(G1) xo(yoz)=(xo0y)oz,
(G2) xXoce=eox =x,
(G3) xox1=x"lox=e¢,
(G4) xoy =yox.
Two formal theories 2.9 and #‘§ have the same rules of inference concerning “equal-
ity,” for they have no predicate symbols.

RULES OF INFERENCE. For all terms s,t,w,s1,52,... € T(2F) (or T (A9)),

s=t s=t,t=w S1=1t1,...,5. =1tn

s=t D (S1,..0s80) = P(t1,..., 1)’

(3.4)

where ¢(x1,...,x,) is a term of T(9F) (or T (4%)) whose variables are contained in
{xl,...,xn}.

We are now ready to present a formal theory of Abelian groups and Q S-algebras. Let
I' be a subset of formulas of #(2%) (or F(A%)). By

[oy A(T Fag A), (3.5)

we mean that there is a finite sequence of formulas A1, Ay,...,A; of F(2F)(F(AY))
such that for each i,

(1) A;is an axiom of 2F(AY),

(2) Ai erl,

(3) there exists ji,...,Jjk (ji,..-,Jx < 1) such that

Aj,Aj
—a (3.6)
We say that A is provable from I' in 29 (4%) when T + 44 A(T 44 A). In particular,
in case of I' = &, we say that A is a theorem of 2% (#49) and simply denote it by oy
A(yq A).
As an example, we present the following which is called a cancelation rule in the
theory of groups:

XoYy=ZoXkFygy =2Z. 3.7)
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Indeed, we have the following finite sequence of formulas:

Xoy=2zoX, ZoX=Xo2Z, Xoy=Xoz, xlo(xoy)=x
xto(xoy)=(x"tox)oy, xlo(xoz)=(x"tox)oz,
(xTox)oy=(x"lox)oz, xlox=e, eoy=ceoz,

eoy =1y, eoz =2z, y=2z.

(3.8)

Next, we define two maps & from the theory 2% of QS-algebras to the theory <% of

Abelian groups and n from #% to 2% as follows. For J(2¥),

&(x)=x for each variable x,
£(0) =e,
E(s*xt)=E(s)oE(t™),

and for #(99),

E(s=t)=&(s) =&(1),
Es=t=s5"=t)=&(s=t)=E&(s' =t"),

where s,s’,t,t' € T(9F).
Conversely, we define a map n: 4% — 9% as follows. For 7 (#4%9),
n(x)=x for each variable x,
n(e) =0,
n(s™') = 0% (n(s)),
n(set) =n(s)* (0% n(t)),

and for F(A4%9),

n(s=1t)=n(s) =n(t),
nis=t=s"=t)Y=ns=t)=n(s"=t"),

where 5,8, t,t' € T(AY).
We are now ready to state our theorem. It is as follows.

(3.9)

(3.10)

(3.11)

(3.12)

MAIN THEOREM 3.9. (1) For every T U {A} € F(9Y), ifT oy A, then E(I') Fyq E(A);

conversely,

(2) for everyT U {A} € F(AY), if T -yq A, then n(I') 99 N(A); moreover,

(3) T oy nE(A) if and only if T o9 A for every T U{A} € F(9.F);
4) T +yq En(A) if and only if T 44 A for every T U {A} € F(A9).

This means that each theorem of Q S-algebras can be translated immediately to that
of groups and conversely, every theorem of groups is applied to that of QS-algebras.
At first we will establish the former part, that is, if T +q99 A, then E(T) 44 E(A).
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THEOREM 3.10. ForTU{A} € F(9F), ifT Foy A, then E(T') 44 E(A).

PROOF. It is sufficient to show that for every axiom A of QS-algebras, £(A) is prov-
able in the theory «% of Abelian groups. For the sake of simplicity, we treat only the
case of axiom (QS3): (x * )k z = x % (z* (0 y)). Other cases can be proved similarly.

Since

E((x*y)*z) = (xoy t)ozl,

o171 (3.13)
E(x# (z%(0%y))) =xofzo(y ™)'},
we have to show that
_ -1
(Xo_’)/_l)oz_1=xc{Zo(_‘y_1) 1} . (3.14)
We have the following:
_ -1
XO{ZO(y_l) 1} =xo(zoy) !
=xo(ytoz) (3.15)
= (xoy )z,
Hence, if T 99 A, then E(T) 44 E(A). O

Conversely, we can show that if T' - y4q A, then n(I') oy N(A).
THEOREM 3.11. ForTU{A} € F(ASG), if T +yq A, then n(T) oy n(A).

PROOF. As above, it is sufficient to show that n(A) is provable in the theory 2% of
QS-algebras for every axiom A of the theory of Abelian groups.
For the case of (G1), we have to show that

(xx(0xy))*x(0*xz)=x% (0% (y*x(0%2))) (3.16)

because n((xoy)oz) = (x*(0%y))*(0%z) and n(xo(yoz)) =x* (0% (y* (0% 2))).
By the proposition above, we have
(xk(0%y))*(0%xz)=x%((0%2) % (0x(0xy)))
=xx((0%z)*xy) (3.17)
=xx (0% (y*x(0%x2))).

Other cases are proved easily, so we omit their proofs.
The theorem can be proved completely. O

Moreover, it follows from Lemma 3.5 and Corollary 3.6 that we have oy n&E(t) =t
for every term t € 7 (2¥). For the case of Abelian groups, it is easy to prove that g
&n(s) = s for every term s € I (4%). Thus we have the following.

THEOREM 3.12. For these maps,
(1) T o9y nE(A) if and only if T oy A for allTU{A} € F(2.Y),
(2) Ty En(A) if and only if T yq A for allT U {A} € F(A9).
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4. Some properties. In this section, we prove other properties of Q S-algebras, espe-
cially properties about the G-part and mediality. That is,
(1) the G-part G(X) of a QS-algebra X is a normal subgroup generated by the class
of all elements of order 2 of X;
(2) every QS-algebra X is medial, that is, it satisfies the condition

(xxy)*k(z*xu)=(x*xz)*x(y*xu) 4.1)

for all elements x,y,z,u € X.
Let X be a QS-algebra. A subset G(X) = {x € X | 0% x = x} is called a G-part of X.
For the G-part of X, we have the following results.

PROPOSITION 4.1. If x,y € G(X),then x xy =y *X.
PROOF. Suppose x,y € G(X). Since 0* x = x and 0 * y = y, we have
x*kxy=(0%xx)%(0%xy)

= (0% (0%y))*xx (by(QS3)) (4.2)
=y *X. .

PROPOSITION 4.2. If x,y € G(X), then x xy € G(X).

PROOF. Suppose that x,y € G(X). It follows that (0% (x*y)) * (x*y) = (y *x) *
(x*ky)=(x*xy)*(x*xy)=0DbyLemma 3.5. Thus we have 0 (x % y) = x % y, that is,
x*xyeGX). O

Since any Q S-algebra X may be considered as an Abelian group, Proposition 4.2 im-
plies that G(X) is a (normal) subgroup of X. Moreover, since x2 = x-x = x % (0% x) =
x xx =0 for x € G(X), every nonunit element in G(X) is of order 2. Hence, we can
conclude that the G-part G(X) is the normal subgroup generated by the class of all
elements of order 2. It is easy to show that G(X) = {x € X | x is of order 2} U {0}.

For the statement (2) above, in [1, Theorem 3.6], it is proved that a QS-algebra X is
medial if and only if the condition x * (y * z) = (x * ) % (0 * z) holds for all x, v, z
€ X. On the other hand, by Lemma 3.7, we have (x xy) x (0% z) =zx (0k (x *xy)) =
z % (¥ x x). Thus X is medial if and only if the condition x % (y % z) = z % (¥ * x)
holds for all x,y,z € X. By using this characterization of mediality, we will prove the
following.

THEOREM 4.3. Every QS-algebra is medial.

PROOEF. It is sufficient to show that x x (y *xz) = z* (v * x) holds for all x,y,z € X.
Since
x*k(y*z)=0% (0% (x*x(y*2z))) (byCorollary 3.6)
=0x%((y*z)*x) (byLemma 3.5)
=0x((y*x)*z) (by(QS3))
=z%x(y*x) (byLemma 3.5),

(4.3)

it follows that X is medial. O
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5. Application. LetV = {x,y,z,...} be a set of variables and 0 a constant. We define
a term and equation as follows:
(1) Ois a term;
(2) each variable in V is a term;
(3) if s,t are terms, then st is also a term;
(4) if s,t are terms, then s =t is an equation.

Thus, for example, 0, 0 * x, x * (0% ), x % ¥ are terms and thus 0 = 0 * x, x *
(0% y) = x % y are equations. By t(x,y,...) we mean a term whose variables are in
{x,v,...}. We say that an equation s(x,y,...) =t(x,y,...) is satisfied in a Q S-algebra
X when for all elements a,b,... € X, we have u*(a,b,...) = v¥(a,b,...). In particular,
an equation t(x,y,...) = 0is said to be satisfied in X if t¥(a,b,...) = 0 for all elements
a,b,... € X. In the following, by t(a,b,...) we mean an element t¥(a,b,...) which is
an interpretation of a term t(x,y,...) in X, that is, t(a,b,...) is an abbreviation of
tX(a,b,...).

We also define a condition (C) which plays an important role to develop our theory:

(C) for all x and for all y, there exists t(x,y) such that

(0% (0%x))*(0x(0xy)) =0%(0xt(x,y)), t(x,x)=0. (5.1)

By using condition (C), we have the following theorem which shows the relation between
Q-algebras and QS-algebras.

THEOREM 5.1. Let (X;*,0) be a Q-algebra. (X;*,0) satisfies condition (C) if and only
if (X*;%,0) is a QS-algebra, where X* = {0x (0*a) | a € X}.

PROOF. If part. For all u,v € X*, there exist a,b € X such that u = 0% (0 x a),
v = 0x(0xb). It follows from condition (C) that u * v € X* and that X* is a subalgebra
of X. Hence, X* is a Q-algebra. We define u-v = ux (0% v) and u~! = 0 % u. Since
u,v,0 € X*, we have u - v € X*. Moreover for this operation, we can show that

i u-v=v-u,
i) u-0=0-u=mu,
(i) w-Oxu)=0xu)-u=0,
iv) (w-v)-w=u-(v-w).
For the sake of simplicity, we only prove the case of (iv). Before doing so, we note the
following result: (u-v)-w = (u-w)-v for all u,v,w € X*. Because

(u-v)-w=wWwm-v)*x(0*xw)

=(u*x(0*xv))* (0*xw)

= (u*(0*w)) * (0%v) (5.2)

=(u-w)-v,

it follows from the result that (u-v)- w=(v-u)-w=@w-w)-u=u-(v-w).

Thus the above means that (X*;-,—1,0) is an Abelian group. For this group, if we
define uov =u-(0*v), then (X*;0,0) is a QS-algebra. Clearly we have uov = u- (0 *
v)=ux(0x(0xv)) =uxv for all u,v € X*. That is, (X*;%,0) is a QS-algebra.
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Only if part. Conversely, we suppose that (X*;*,0) is a QS-algebra. For all u,v € X*,
there exist a,b € X suchthat u = 0% (0% a), v =0% (0% b). Since uxv € X*, uxv
has to have a form of 0% (Oxt(a,b)). This means that X* satisfies the condition

VxVy3t(x,y) (0% (0%x))* (0% (0%xy))=0x(0xt(x,y)). (5.3)

Itis obvious that t(a,a) = O forall a € X, thatis, t(x,x) = 0. Thus X* satisfies condition
(C). O

We consider some cases of t (x,y) as corollaries to the theorem. First of all, let t (x, y)
be a form of x x y, that is, t(x,y) = x * . In this case, condition (C) has a form of

(0% (0%x))*% (0% (0%y)) =0% (0% (x*xy)). (5.4)

For amap f: X — X* defined by f(x) = 0 (0*x), since (x,y) € Ker f if and only if
0% (0*xx) = 0% (0% ), we have that X/Ker f, the quotient Q-algebra modulo Ker f, is
isomorphic to X*, that is, X/Ker f = X*. Hence, we have the following.

COROLLARY 5.2. If f: X — X* isamap defined by f(x) = 0% (0% Xx), then X/Ker f =
X*.

We define a term t"(x,y) for all nonnegative integers n as follows:

t%0x, ) = 0% (x *y),

(5.5)
£ (x, ) =", ) % (0% (0% (x % ))).
In this case, the corresponding condition (C,) is
(Cn)
(0% (0%x))* (0% (0%y)) =0% (0 t"(x,y)). (5.6)

We now have the following result as to condition (Cy).

COROLLARY 5.3. Let X be a QS-algebra. If X satisfies condition (C,,), then X* is an
Abelian group in which every element has order at most (n+2).

PROOF. For condition (Cy), if we take y = 0, then we have 0 % (0 % x) = 0 % (0 %
t"(x,0)), that is,
0% (0%x) =0%[0%{((0%x)* (0% (0%x)))* (0% (0kx))*---%(0%(0xx))}]. (5.7)

Since any element u € X* has a form of 0 % (0 x a) for some element a € X, it follows
from (C,) that
u=0%[0%x{((0kxa)*x(0x(0xa)))*x(0x(0Oxa))*x---% (0% (0*a))}]
=0k [0k {((---((Oxa)xu)xu)*x---)xu}]

=((---((Oka)ku)*u)*k---)*u (5.8)

(- ((O%ku) sk u) k) * - - ) ku.
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On the other hand, since (0% u)*u = (0% u)* (0% (0*u)) =u~'-u~! in the Abelian
group X*, we have

) utey = ()™ =y (D (5.9)
and hence u"*? = 0. This means that each element of X* has order at most n+2. [
As the last case, we suppose t(x,y) = (x*y) * (¥ % x). Since condition (C) is
(0% (0%x))*% (0% (0%xy))=0% (0% ((x*ky)*k(y*xx))) (5.10)
in this case, if we take y = 0, then we have the condition
0% (0%x)=0% (0% (x*x(0%x))). (5.11)
This implies that
0x(0xa)=0%(0x(ax(0xa))) (5.12)

for all a € X. In particular, any element u € X* satisfies the condition. Hence, since
u =0 (0xu) for all elements u € X*, we have in the Abelian group X*

u=uxO0*xu)=u-u. (5.13)

This means that every element of X* is an idempotent. But u - uu means u = 0 and
X* = {0} is trivial.

COROLLARY 5.4. Let X be a Q-algebra. If X satisfies the condition
(0% (0%x))* (0% (0%y)) =0 (0% ((x*ky)*(y*xx))), (5.14)

then X* is an Abelian group in which every element is an idempotent.
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