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The extended Fibonacci sequence of numbers and polynomials is introduced and studied.
The generating function, recurrence relations, an expansion in terms of multinomial co-
efficients, and several properties of the extended Fibonacci numbers and polynomials are
obtained. Interesting relations between them and probability problems which take into ac-
count lengths of success and failure runs are also established.
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1. Introduction. Let F(k)n , n≥ 0, be the sequence of Fibonacci numbers of order k. It

is well known that F(k)n+2 enumerates the number of different ways in which n (in total)

symbols {0,1} can be arranged in a line in such a way that k (or more) consecutive 1’s

do not appear. Philippou and Muwafi [12] showed that the number of arrangements

of {0,1}-sequences of length n, such that the last is 0 and k consecutive 1’s do not

appear, is given by F(k)n+1. Also, they showed that the probability mass function (pmf)

of the random variable Nk, which denotes the number of {0,1} Bernoulli trials until

the occurrence of the kth consecutive success (1 denotes success), is given by Pr(Nk =
n+k) = F(k)n+1/2n+k, n ≥ 0, in the symmetric case, that is, when the probability p of

success is equal to 1/2.

The distribution of the random variableNk has been termed as geometric distribution

of order k by Philippou et al. [9] who derived from its study the negative binomial and

the Poisson distribution of order k. Since then, an upsurge of interest has been observed

in the distributions of success/failure runs, as the extensive recent literature indicates

(for a recent review, see, e.g., Balakrishnan and Koutras [4]).

Motivated by the work of Philippou and Muwafi [12] and their work in [9], Philippou

et al. [8] introduced and studied the sequence of Fibonacci polynomials of order k and

expressed the pmf of the random variable Nk in terms of these polynomials. Philippou

et al. [10] introduced and studied a more flexible sequence of polynomials, the sequence

of Fibonacci-type polynomials of order k, and denoted it by F(k)n (x),n≥ 0. The sequence

of Fibonacci-type polynomials of order k is defined by F(k)0 (x)= 0, F(k)1 (x)= 1, and the

recurrence relation

F(k)n (x)=



x

n∑
i=1

F(k)n−i(x), 2≤n≤ k+1,

x
k∑
i=1

F(k)n−i(x), n≥ k+2.
(1.1)
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This sequence of polynomials includes as a special case the Fibonacci sequence of order

k, since F(k)n (1)= F(k)n , n≥ 0.

We recall the following results from Philippou et al. [10] and Philippou and Makri

[11]:

F(k)n (x)= (1+x)F(k)n−1(x)−xF(k)n−k−1(x), n≥ 3, (1.2)

along with the convention that F(k)n (x)= 0 for n< 0,

Gk(x;z)=
∞∑
n=0

F(k)n+1(x)z
n = 1

1−x(z+z2+···+zk) = 1−z
1−(1+x)z+xzk+1

, (1.3)

Pr
(
Nk =n+k

)= pn+kF(k)n+1

(
q
p

)
, n≥ 0, (1.4)

Pr
(
Ln < k

)= pn+1

q
F(k)n+2

(
q
p

)
, 0≤n≤ k−1, (1.5)

(in (1.5), Ln denotes the length of the longest success run in n Bernoulli trials).

In all of the above results the interest focuses exclusively on runs of 1’s. In the present

paper, we consider {0,1}-sequences of lengthn, where both runs of 1’s and 0’s are taken

into account. In Section 2, we introduce and study the sequence of extended Fibonacci

numbers, denoted by A(k,r)n (n≥ 0, k,r ≥ 2). The nth term of this sequence is defined

to be the number of arrangements of {0,1}-sequences of length n such that the last is

0 and there do not exist any k consecutive 1’s (or more) and any r consecutive 0’s (or

more). It is obvious that A(k,r)n = F(k)n+1 for n < r , or equivalently, limr→∞A
(k,r)
n = F(k)n+1,

n ≥ 0. The generating function, recurrence relations, an expansion in terms of multi-

nomial coefficients, and several interesting properties of this sequence are established.

In Section 3, we introduce and study the sequence of extended Fibonacci polynomi-

als, denoted by A(k,r)n (x) (n ≥ 0, k,r ≥ 2), and analogous results are obtained. This

sequence constitutes an appropriate generalization of the numbers A(k,r)n in the sense

that A(k,r)n (1)=A(k,r)n , n≥ 0.

In Section 4, we consider the random variable W which denotes the number of

Bernoulli trials with common success probability p until the occurrence of the kth con-

secutive success or the r th consecutive failure, whichever comes sooner. The random

variable W has been initially studied by Feller [6, page 327] (see also Ebneshahrashoob

and Sobel [5]), and it is closely related to problems of practical interest in statistical

theory of runs and reliability theory (see, e.g., Koutras [7], Aki et al. [1], and the refer-

ences therein). The pmf ofW is expressed directly in terms of the polynomialsA(k,r)n (x)
offering an efficient way for the computation of the pmf of W , which is simpler from

the respective ways presented by Antzoulakos and Philippou [2, 3]. Relations between

the polynomials A(k,r)n (x) and probability problems which take into account lengths of

success and failure runs in a fixed number of n Bernoulli trials are also established.

In order to avoid unnecessary repetitions, we mention here that whenever sums and

products are taken over i and j, ranging from 1 to k−1 and from 1 to r−1, respectively,
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we will omit these limits for notational simplicity. Furthermore, whenever sums of the

form
∑b
m=ag(m) with a> b appear, they are taken to be zero.

2. Sequence of extended Fibonacci numbers. In the present section, we introduce

and study a new sequence of numbers which will be denoted by A(k,r)n (n≥ 0, k,r ≥ 2).

The nth term of this sequence is defined to be the number of arrangements of {0,1}-
sequences of length n such that the last is 0 and there do not exist any k consecutive

1’s (or more) and any r consecutive 0’s (or more). It follows from the above definition

that A(k,r)n = F(k)n+1 for n < r , or equivalently, limr→∞A
(k,r)
n = F(k)n+1, n ≥ 0. We call this

sequence the sequence of extended Fibonacci numbers. In the following two theorems

we derive an expansion ofA(k,r)n in terms of multinomial coefficients and the generating

function of the numbers A(k,r)n , respectively.

Theorem 2.1. Let A(k,r)n , n≥ 0, be the sequence of the extended Fibonacci numbers.

With the convention A(k,r)0 = 1,

A(k,r)n =
r−1∑
m=0

∑
∑
i
∑
j(i+j)nij=n−m

(∑
i
∑
j nij

)
!∏

i
∏
j nij !

, n≥ 0. (2.1)

Proof. First we observe that (2.1) is true for n= 0. Assume now that n≥ 1. Modify-

ing a combinatorial argument of Philippou and Muwafi [12] (see also Antzoulakos and

Philippou [2]), we observe that an arrangement of {0,1}-sequences of length n belongs

to the ones enumerated by A(k,r)n if and only if it is of the form

00···0︸ ︷︷ ︸
m

E1E2 ···EΣiΣjnij , 0≤m≤ r −1, 1≤ i≤ k−1, 1≤ j ≤ r −1, (2.2)

such that nij of the E’s are of the form 11···1︸ ︷︷ ︸
i

00···0︸ ︷︷ ︸
j

, where 1≤ i≤ k−1 and 1≤ j ≤

r −1, and the nonnegative integers nij satisfy the condition
∑
i
∑
j(i+j)nij = n−m.

Fix m and nij . Then the number of the above arrangements is

(∑
i
∑
j nij

)
!∏

i
∏
j nij !

. (2.3)

The proof of the theorem then follows easily by noting that m and nij may vary

subject to the conditions 0≤m≤ r −1 and
∑
i
∑
j(i+j)nij =n−m.

Theorem 2.2. Let Ak,r (z) be the generating function of the sequence of the extended

Fibonacci numbers A(k,r)n , n≥ 0. Then

Ak,r (z)= 1+z+z2+···+zr−1

1−(z+z2+···+zr−1
)(
z+z2+···+zk−1

) . (2.4)
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Proof. Using Theorem 2.1, we get

Ak,r (z)=
∞∑
n=0

A(k,r)n zn

=
∞∑
n=0

r−1∑
m=0

zm
∑

∑
i
∑
j(i+j)nij=n−m

(∑
i
∑
j nij

)
!∏

i
∏
j nij !

∏
i

∏
j

(
zi+j

)nij

=
r−1∑
m=0

zm
∑
Sm,n

(∑
i
∑
j nij

)
!∏

i
∏
j nij !

∏
i

∏
j

(
zi+j

)nij ,
(2.5)

where Sm,n (0 ≤m ≤ r −1) denotes the set of nonnegative solutions of the equation∑
i
∑
j(i+ j)nij = n−m for 0 ≤ n < ∞. We observe that Sm,n = Sn, where Sn denotes

the set of nonnegative solutions of the equation
∑
i
∑
j nij = n for 0 ≤ n < ∞. Thus,

utilizing the multinomial theorem, we get

Ak,r (z)=
( r−1∑
m=0

zm
)∑
Sn

(∑
i
∑
j nij

)
!∏

i
∏
j nij !

∏
i

∏
j

(
zi+j

)nij

=
( r−1∑
m=0

zm
) ∞∑
n=0

∑
∑
i
∑
j nij=n

(∑
i
∑
j nij

)
!∏

i
∏
j nij !

∏
i

∏
j

(
zi+j

)nij

=
( r−1∑
m=0

zm
) ∞∑
n=0

(∑
i

∑
j
zi+j

)n

=
( r−1∑
m=0

zm
)(

1−
∑
i
zi
∑
j
zj
)−1

,

(2.6)

which completes the proof of the theorem.

The evaluation of the sequence A(k,r)n via Theorem 2.1 is not a simple task since it

involves solutions of Diophantine equations. In the following proposition, we derive a

simple recursive scheme for the evaluation of the sequence A(k,r)n .

Proposition 2.3. The sequence of the extended Fibonacci numbers A(k,r)n satisfies

the following recursive scheme:

A(k,r)n =




1, n= 0,1,

1+
∑
i

∑
j

i+j≤n

A(k,r)n−(i+j), 2≤n≤ r −1,

∑
i

∑
j

i+j≤n

A(k,r)n−(i+j), r ≤n≤ k+r −2,

∑
i

∑
j
A(k,r)n−(i+j), n≥ k+r −1,

(2.7)

with the convention that A(k,r)n = 0 for n< 0.
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Proof. Theorem 2.2 implies that

∞∑
n=0

A(k,r)n zn
(

1−
∑
i

∑
j
zi+j

)
= 1+z+z2+···+zr−1 (2.8)

which may be written equivalently as

∞∑
n=0

A(k,r)n zn−
∑
i

∑
j

∞∑
n=0

A(k,r)n−(i+j)z
n = 1+z+z2+···+zr−1. (2.9)

The proof of Proposition 2.3 follows by equating the coefficients of zn on both sides

of the above equation.

A more efficient recursive scheme satisfied by the sequence of the extended Fibonacci

numbers is presented in the following proposition.

Proposition 2.4. The sequence of the extended Fibonacci numbers A(k,r)n satisfies

the following recursive scheme:

A(k,r)n =




1, n= 0,1,

2A(k,r)r−1 −A(k,r)r−k−1−1, n= r ,

2A(k,r)r −A(k,r)r−k , n= r +1,

2A(k,r)n−1 −A(k,r)n−r−1−A(k,r)n−k−1+A(k,r)n−k−r , n≥ 2, n≠ r ,r +1,

(2.10)

with the convention that A(k,r)n = 0 for n< 0.

Proof. It follows from Theorem 2.2 that the generating function Ak,r (z) of the se-

quence A(k,r)n , n≥ 0, may be written as

Ak,r (z)= 1−z−zr +zr+1

1−2z+zr+1+zk+1−zk+r , (2.11)

which implies that

∞∑
n=0

(
A(k,r)n −2A(k,r)n z+A(k,r)n zr+1+A(k,r)n zk+1−A(k,r)n zk+r

)
zn = 1−z−zr +zr+1.

(2.12)

Equating the coefficients of zn on both sides of the above equation, we may easily

complete the proof of Proposition 2.4.

The sequence of the extended Fibonacci numbers A(k,r)n has a number of interesting

properties. In the sequel we report a few of them.

(P1) A(k,r)n = F(k)n+1 for 0 ≤ n < r , or equivalently, limr→∞A
(k,r)
n = F(k)n+1, n ≥ 0. ((P1)

follows by the fact that when 1≤n< r , then the number A(k,r)n reduces to the number

of arrangements of {0,1}-sequences of length n which end with 0 and k consecutive

1’s do not appear.)
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(P2) A(k+1,k+1)
n = F(k)n+1 for n ≥ 0. ((P2) follows by the fact that Ak+1,k+1(z) = Gk(1;z)

which may be easily derived using (1.2) for x = 1 and Theorem 2.2. (P2) leads to a new

and very interesting interpretation of the number F(k)n+1 via the interpretation of the

number A(k+1,k+1)
n .)

(P3)A(r,k)n denotes the number of arrangements of {0,1}-sequences of lengthnwhich

end with 1, such that in each arrangement there do not exist any k consecutive 1’s (or

more) and any r consecutive 0’s (or more). ((P3) may be easily verified by Theorem 2.1

or by symmetry reasons.)

(P4) The number, say B(k,r)n , of arrangements of {0,1}-sequences of length n (≥ 1),
such that in each arrangement there do not exist any k consecutive 1’s (or more) and

any r consecutive 0’s (or more), is given by B(k,r)n =A(k,r)n +A(r,k)n . ((P4) follows directly

from the definition of the number A(k,r)n and (P3).)

(P5) The number of arrangements of {0,1}-sequences of length n (≥ 1), which have

either a run of 1’s of length at least k or a run of 0’s of length at least r , is given by

2n−B(k,r)n . ((P5) follows immediately from (P4).)

(P6) The number of arrangements of {0,1}-sequences of length n (≥ k−1), in which

the length of the longest run of 1’s is k−1 and there are no r consecutive 0’s, is given

by B(k,r)n −B(k−1,r )
n . ((P6) follows immediately from (P4).)

3. Sequence of extended Fibonacci polynomials. Presently, we introduce and study

a new sequence of polynomials, denoted by A(k,r)n (x) (n ≥ 0, k,r ≥ 2). The polynomi-

als A(k,r)n (x) constitute an appropriate extension of the numbers A(k,r)n in the sense

that A(k,r)n (1) = A(k,r)n , n ≥ 0. We call this sequence the sequence of extended Fibonacci

polynomials.

We begin with the definition of the sequence of extended Fibonacci polynomials

A(k,r)n (x), and subsequently we derive its generating function.

Definition 3.1. The sequence of the extended Fibonacci polynomials A(k,r)n (x) is

given by

A(k,r)n (x)=




1, n= 0,

x, n= 1,

xn+
∑
i

∑
j

i+j≤n

xjA(k,r)n−(i+j), 2≤n≤ r −1,

∑
i

∑
j

i+j≤n

xjA(k,r)n−(i+j), r ≤n≤ k+r −2,

∑
i

∑
j
xjA(k,r)n−(i+j), n≥ k+r −1,

(3.1)

with the convention that A(k,r)n (x)= 0 for n< 0.
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Theorem 3.2. Let Ak,r (x;z) be the generating function of the extended Fibonacci

polynomials A(k,r)n (x). Then

Ak,r (x;z)= 1+xz+(xz)2+···+(xz)r−1

1−(xz+(xz)2+···+(xz)r−1
)(
z+z2+···+zk−1

) . (3.2)

Proof. Using Definition 3.1, we get

Ak,r (x;z)= 1+xz+
r−1∑
n=2


xn+

∑
i

∑
j

i+j≤n

xjA(k,r)n−(i+j)


zn

+
k+r−2∑
n=r

∑
i

∑
j

i+j≤n

xjA(k,r)n−(i+j)z
n+

∞∑
n=k+r−1

∑
i

∑
j
xjA(k,r)n−(i+j)z

n

=
r−1∑
m=0

(xz)m+
∑
i

∑
j
zi(zx)j

r−1∑
n=i+j

A(k,r)n−(i+j)z
n−(i+j)

+
∑
i

∑
j
zi(zx)j

k+r−2∑
n=r

A(k,r)n−(i+j)z
n−(i+j)

+
∑
i

∑
j
zi(zx)j

∞∑
n=k+r−1

A(k,r)n−(i+j)z
n−(i+j)

=
r−1∑
m=0

(xz)m+
∑
i

∑
j
zi(zx)j

∞∑
n=i+j

A(k,r)n−(i+j)z
n−(i+j)

=
r−1∑
m=0

(xz)m+
∑
i

∑
j
zi(zx)jAk,r (x;z).

(3.3)

The proof of Theorem 3.2 follows by solving the last equation for Ak,r (x;z).

In the following two propositions, we present a closed formula in terms of multi-

nomial coefficients for A(k,r)n (x) and a recursive scheme alternative to Definition 3.1,

which is satisfied by A(k,r)n (x), respectively.

Proposition 3.3. Let A(k,r)n (x), n ≥ 0, be the sequence of the extended Fibonacci

polynomials. Then

A(k,r)n (x)=
r−1∑
m=0

xm
∑

∑
i
∑
j(i+j)nij=n−m

(∑
i
∑
j nij

)
!∏

i
∏
j nij !

∏
i

∏
j

(
xj
)nij . (3.4)

Proof. The proof of the proposition may be easily established using Theorem 3.2

and the proof of Theorem 2.2 in reverse order.
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Proposition 3.4. The sequence of the extended Fibonacci polynomials A(k,r)n (x) sat-

isfies the following recursive scheme:

A(k,r)n (x)=




1, n= 0,

x, n= 1,

(1+x)A(k,r)r−1 (x)−xA(k,r)r−k−1(x)−xr , n= r ,
(1+x)A(k,r)r (x)−xA(k,r)r−k (x), n= r +1,

(1+x)A(k,r)n−1 (x)−xrA(k,r)n−r−1(x)

−xA(k,r)n−k−1(x)+xrA(k,r)n−k−r (x), n≥ 2, n≠ r ,r +1,

(3.5)

with the convention that A(k,r)n (x)= 0 for n< 0.

Proof. It follows from Theorem 3.2 that

Ak,r (x;z)= 1−z−xrzr +xrzr+1

1−(1+x)z+xrzr+1+xzk+1−xrzk+r . (3.6)

Therefore

1−z−xrzr +xrzr+1

=
∞∑
n=0

{
A(k,r)n (x)−(1+x)zA(k,r)n (x)+xrzr+1A(k,r)n (x)

+xzk+1A(k,r)n (x)−xrzk+rA(k,r)n (x)
}
zn.

(3.7)

Equating the coefficients of zn on both sides of the above equation, we may easily

complete the proof of Proposition 3.4.

Next, we give an interesting identity which relates the polynomial A(r,k)n (x/y) with

the polynomial A(k,r)n (y/x).

Proposition 3.5. Let A(k,r)n (x) be the sequence of the extended Fibonacci polynomi-

als. Then

ynA(r,k)n

(
x
y

)
= xn

k−1∑
i=1

A(k,r)n−i

(
y
x

)
, n≥ 1. (3.8)

Proof. Using Theorem 3.2, we obtain

∞∑
n=1

ynA(r,k)n

(
x
y

)
zn

=Ar,k
(
x
y

;yz
)
−1

=
(
1+yz+(yz)2+···+(yz)r−1

)(
xz+(xz)2+···+(xz)k−1

)
1−(xz+(xz)2+···+(xz)k−1

)(
yz+(yz)2+···+(yz)r−1

)
= (xz+(xz)2+···+(xz)k−1) ∞∑

n=0

A(k,r)n

(
y
x

)
(xz)n.

(3.9)
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The proof of Proposition 3.5 follows by equating the coefficients of zn on both sides

of the above equation.

In ending this section, we mention a few properties of the sequence of polynomials

A(k,r)n (x):

A(k,r)n (1)=A(k,r)n , n≥ 0, (3.10)

A(k,r)n (x)= F(k)n+1(x), 0≤n< r, (3.11)

lim
r→∞A

(k,r)
n (x)= F(k)n+1(x). (3.12)

Relation (3.10) is obvious, while relation (3.11) may be verified by relation (1.2) and

Proposition 3.4, which implies that

A(k,r)n (x)= (1+x)A(k,r)n−1 (x)−xA(k,r)n−k−1(x), 2≤n< r. (3.13)

Relation (3.12) is equivalent to relation (3.11) and follows by the fact that limr→∞Ak,r (x;

z)=Gk(x;z) (see also relation (1.3)).

Furthermore, we mention that relation (3.10) and Proposition 3.5 for x =y = 1 imply

that

A(r,k)n =
k−1∑
i=1

A(k,r)n−i , n≥ 1, (3.14)

and therefore the numbers B(k,r)n , introduced in (P4) of Section 2, may be expressed in

the alternative form

B(k,r)n =
k−1∑
i=0

A(k,r)n−i , n≥ 1. (3.15)

4. Probability applications. Let {Xn, n = 1,2, . . .} be a sequence of independent

Bernoulli trials with common success probability p (0 < p < 1), and let W be a ran-

dom variable denoting the waiting time until a success run of length k (event E1) or

a failure run of length r (event E0) occurs, whichever comes sooner. Denote by P(n)
the pmf of the random variable W , that is, P(n) = Pr(W = n). Also, let P1(n) (P0(n))
be the probability that at the nth trial the sooner event between E1 and E0 occurs and

the sooner event is E1 (E0). Feller [6, page 327] (see also Ebneshahrashoob and Sobel [5]

and Antzoulakos and Philippou [2]) derived the probability generating function of the

random variable W which is given by

H(z)=
∞∑
n=0

P(n)zn =
∞∑
n=0

P1(n)zn+
∞∑
n=0

P0(n)zn =H1(z)+H0(z), (4.1)
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where

H1(z)= (pz)k (1−pz)[1−(qz)r ]
(1−pz)(1−qz)−(pz)(qz)[1−(pz)k−1

][
1−(qz)r−1

] , (4.2)

H0(z)= (qz)r (1−qz)[1−(pz)k]
(1−pz)(1−qz)−(pz)(qz)[1−(pz)k−1

][
1−(qz)r−1

] . (4.3)

In the present section, we relate the pmf of the random variable W and probabilities

which are related with lengths of success and failure runs in terms of the polynomials

A(k,r)n (x), n≥ 0.

Theorem 4.1. Let A(k,r)n (x) be the sequence of the extended Fibonacci polynomials.

Then the pmf P(n), n≥ 0, of the random variable W is given by

P(n)= pnA(k,r)n−k

(
q
p

)
+qnA(r,k)n−r

(
p
q

)
. (4.4)

Proof. Relation (4.2) and Theorem 3.2 imply that

H1(z)=
∞∑
n=0

P1(n)zn

= (pz)k 1+qz+(qz)2+···+(qz)r−1

1−[pz+(pz)2+···+(pz)k−1
][
qz+(qz)2+···+(qz)r−1

]
= (pz)kAk,r

(
q
p

;pz
)

(4.5)

from which we get that

P1(n)= pnA(k,r)n−k

(
q
p

)
, n≥ 0. (4.6)

In a similar way, using relation (4.3) and Theorem 3.2, we may derive that

P0(n)= qnA(r,k)n−r
(
p
q

)
, n≥ 0. (4.7)

The proof of Theorem 4.1 then follows by relations (4.1), (4.6), and (4.7).

Theorem 4.1 and Proposition 3.4 offer an efficient way for the computation of the

pmf of W , which is simpler from the respective ways presented by Antzoulakos and

Philippou [2, 3].

For the symmetric case, that is, p = q = 1/2, we have the following interesting corol-

lary which may be justified by relation (3.10).

Corollary 4.2. For p = q = 1/2, the pmf P(n), n≥ 0, of the random variable W is

expressed in terms of the numbers A(k,r)n as

P(n)= A
(k,r)
n−k +A(r,k)n−r

2n
. (4.8)

Next, we turn our attention to some probability problems related with lengths of

success and failure runs. Let L(1)n , L(0)n , and Xn be random variables denoting the length
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of the longest success run, the length of the longest failure run, and the outcome of the

nth trial, respectively, in n independent Bernoulli trials with common success proba-

bility p (0<p < 1). Then we have the following theorem.

Theorem 4.3. Let A(k,r)n (x) be the sequence of the extended Fibonacci polynomials.

Then, for n≥ 1,

Pr
(
L(1)n < k, L(0)n < r

)= pnA(k,r)n

(
q
p

)
+qnA(r,k)n

(
p
q

)
. (4.9)

Proof. Noting that

P1(n+k)= pkPr
(
L(1)n < k, L(0)n < r , Xn = 0

)
, n≥ 1, (4.10)

it follows from relation (4.6) that

Pr
(
L(1)n < k, L(0)n < r , Xn = 0

)= pnA(k,r)n

(
q
p

)
, n≥ 1. (4.11)

In a similar way, using relation (4.7), we may obtain that

Pr
(
L(1)n < k, L(0)n < r , Xn = 1

)= qnA(r,k)n

(
p
q

)
, n≥ 1. (4.12)

The obvious identity

Pr
(
L(1)n < k, L(0)n < r

)= 1∑
i=0

Pr
(
L(1)n < k, L(0)n < r , Xn = i

)
, (4.13)

along with relations (4.11) and (4.12), completes the proof of Theorem 4.3.

An alternative formula of the probability Pr(L(1)n < k, L(0)n < r), which may be easily

justified by Theorem 4.3 and Proposition 3.5, is provided in the following corollary.

Corollary 4.4. LetA(k,r)n (x) be the sequence of the extended Fibonacci polynomials.

Then, for n≥ 1,

Pr
(
L(1)n < k, L(0)n < r

)= pn+1

q

k−1∑
i=0

q
p
A(k,r)n−i

(
q
p

)
. (4.14)

We note that the evaluation of the probabilities Pr(L(1)n < k, L(0)n < r) through

Theorem 4.3 (or Corollary 4.4) and Proposition 3.4 seems to be more efficient compared

with a respective result of Antzoulakos and Philippou [3].

In the following corollary we give alternative derivations of (1.4) and (1.5).

Corollary 4.5. Let F(k)n (x) be the sequence of Fibonacci-type polynomials of order

k. Then, for n≥ 1,

Pr
(
L(1)n < k

)= pn+1

q
F(k)n+2

(
q
p

)
, (4.15)

Pr
(
Nk =n+k

)= pn+kF(k)n+1

(
q
p

)
. (4.16)
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Proof. First we observe that

lim
r→∞Pr

(
L(1)n < k, L(0)n < r

)= Pr
(
L(1)n < k

)
. (4.17)

Corollary 4.4 and relation (3.12) imply that

lim
r→∞Pr

(
L(1)n < k, L(0)n < r

)= pn+1

q

k−1∑
i=0

q
p
F(k)n+1−i

(
q
p

)
. (4.18)

The proof of relation (4.15) then follows by relations (1.1), (4.17), and (4.18).

Next, letting r →∞, relations (4.11) and (3.12) yield

Pr
(
L(1)n < k, Xn = 0

)= pnF(k)n+1

(
q
p

)
, n≥ 1. (4.19)

Since Pr(Nk =n+k) can be written in the form

Pr
(
Nk =n+k

)= pkPr
(
L(1)n < k, Xn = 0

)
, n≥ 1, (4.20)

we readily obtain relation (4.16).

In ending, we note that using Theorems 4.3 and relation (4.15) we may derive several

interesting results concerning probabilities which involve shortest or longest success

and/or failure runs. For instance, letting n≥ 1, we have that

Pr
(
L(1)n < k, L(0)n ≥ r)= Pr

(
L(1)n < k

)−Pr
(
L(1)n < k, L(0)n < r

)
= p

n+1

q
F(k)n+2

(
q
p

)
−pnA(k,r)n

(
q
p

)
−qnA(r,k)n

(
p
q

)
.

(4.21)
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