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COEFFICIENTS OF PROLONGATIONS
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Sophus Lie developed a systematic way to solve ODEs. He found that transformations which
form a continuous group and leave a differential equation invariant can be used to simplify
the equation. Lie’s method uses the infinitesimal generator of these point transformations.
These are symmetries of the equation mapping solutions into solutions. Lie’s methods did
not find widespread use in part because the calculations for the infinitesimals were quite
lengthy, needing to calculate the prolongations of the infinitesimal generator. Nowadays,
prolongations are obtained using Maple or Mathematica, and Lie’s theory has come back
to the attention of researchers. In general, the computation of the coefficients of the (n)-
prolongation is done using recursion formulas. Others have given methods that do not
require recursion but use Fréchet derivatives. In this paper, we present a combinatorial
approach to explicitly write the coefficients of the prolongations. Besides being novel, this
approach was found to be useful by the authors for didactical and combinatorial purposes,
as we show in the examples.

2000 Mathematics Subject Classification: 34C14, 34A25, 22E99.

1. Introduction. For an ODE (written in the form ∆ = 0), in the independent vari-

able x and the dependent variable y , we define a one-parameter group of point trans-

formations x̃ = x̃(x,y,ε) and ỹ = ỹ(x,y,ε), where for ε = 0 we have the identity

transformation. The infinitesimal generator for this group of transformations is de-

fined as the vector field X = ξ(x,y)∂x+η(x,y)∂y , where ξ(x,y) = ∂x̃/∂ε|ε=0 and

η(x,y) = ∂ỹ/∂ε|ε=0. Lie’s theory is based on calculating these infinitesimal genera-

tors. To do this, we need to transform the derivatives y(k) in the ODE to obtain ỹ(k).
This is obtained, equivalently, by prolonging the infinitesimal generator to

X = ξ∂x+η∂y+η(1)∂y ′ +···+η(m)∂y(m), (1.1)

where the coordinates are given by η(k) := ∂ỹ(k)/∂ε|ε=0.

Normally, the coefficients of the prolongation are obtained recursively by the formula

η(n) = d
dx

η(n−1)−y(n) dξ
dx

, (1.2)

where d/dx represents the total derivative (see [3, page 12]). The prolongation of the

vector field can then be expressed as a linear combination of differential monomials of

the form (y ′)a1(y ′′)a2 ···(y(m))am .
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The coefficients of the derivative monomials that occur will produce the “determining

equations” (see [1]), obtained by solving

(
ξ∂x+η∂y+η(1)∂y ′ +···+η(m)∂y(m))(∆)≡ 0(mod∆). (1.3)

These equations form a system of partial differential equations, and its solutions form

a Lie group of point transformations, which determine the symmetries of the original

ODE. Each symmetry can be used to simplify the equation to one of lower order. See [2, 3]

for further details of these methods. The calculation by hand of these coefficients can

be tedious especially as the order of the ODE increases, and are generally obtained by

recursion algorithms on computer algebra software. We present here a direct formula

for the coefficients of these monomials, using a combinatorial approach.

2. The formulas. First, using a direct induction argument, we convert the recursive

expression of η(n) above to an expression in terms of total derivatives.

Lemma 2.1. The nth coefficient in the prolongation of the infinitesimal operator is

given by

η(n) = dnη
dxn

−
n∑
i=1

(
n
i

)
d(n+1−i)y
dx(n+1−i) ·

diξ
dxi

. (2.1)

Proof. For n = 1, we obtain the original definition in (1.2). Assume the formula

holds for n−1. By (1.2) and use of the product rule, we have

η(n) = dη
(n−1)

dx
− d

ny
dxn

dξ
dx

= d
dx

(
d(n−1)η
dx(n−1) −

n−1∑
i=1

(
n−1
i

)
d(n−i)y
dx(n−i)

· d
iξ
dxi

)
− d

ny
dxn

dξ
dx

,

η(n) = dnη
dxn

−
n−1∑
i=1

(
n−1
i

)
d(n+1−i)y
dx(n+1−i) ·

diξ
dxi

−
n−1∑
i=1

(
n−1
i

)
d(n−i)y
dx(n−i)

· d
(i+1)ξ
dx(i+1) −

dny
dxn

dξ
dx

.

(2.2)

After a change of indices, we obtain

η(n) = dnη
dxn

−
n−1∑
i=1

(
n−1
i

)
d(n+1−i)y
dx(n+1−i) ·

diξ
dxi

−
n−2∑
i=0

(
n−1
i

)
d(n−i)y
dx(n−i)

· d
(i+1)ξ
dx(i+1) −

dy
dx

dnξ
dxn

,
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η(n) = dnη
dxn

−
n−1∑
i=1

((
n−1
i

)
+
(
n−1
i−1

))
d(n+1−i)y
dx(n+1−i) ·

diξ
dxi

− dy
dx

dnξ
dxn

= dnη
dxn

−
n−1∑
i=1

(
n
i

)
d(n+1−i)y
dx(n+1−i) ·

diξ
dxi

− dy
dx

dnξ
dxn

= dnη
dxn

−
n∑
i=1

(
n
i

)
d(n+1−i)y
dx(n+1−i) ·

diξ
dxi

.

(2.3)

Definition 2.2. The ith power order of a monomial of derivatives of the form

(y ′)a1(y ′′)a2 ···(y(n))an , where aj ≥ 0, j = 1, . . . ,n, is defined as the integer

si = si
(
(y ′)a1(y ′′)a2 ···(y(n))an) :=:

n∑
j=i
aj. (2.4)

The J-order of the monomial is defined as the integer

q = q((y ′)a1(y ′′)a2 ···(y(n))an) :=:
n∑
i=1

si. (2.5)

Note that s1 is the usual degree of the monomial, and the J-order is equal to q =∑n
i=1 si =

∑n
i=1 iai. We present an expression for the nth total derivative in terms of the

derivative monomials as follows.

Proposition 2.3. The expansion of the nth total derivative with respect to x for a

differential operator in two variables x, y , where y is the dependent variable, is given

by

dn

dxn
=

∑
(a1,a2,...,an)
ai≥0,q≤n

n!

(n−q)!∏n
i=1

(
ai!isi

) ·(y ′)a1 ···(y(n))an ·∂x(n−q)∂ys1 , (2.6)

where q is the corresponding J-order.

Proof. For n = 1, we have s1 = a1, and the possible tuples in the summation are

(0) and (1):

∑
(a1)=(0),(1)

1!(
1−s1

)
!a1!1s1

(y ′)a1∂x(1−s1)∂ys1

= 1!
1!0!10

∂x+ 1!
0!1!11

y ′∂y = ∂x+y ′∂y = d
dx

.

(2.7)
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Now, using the total derivative definition, we have

dn

dxn
= d
dx

(
dn−1

dxn−1

)

= (∂x+y ′∂y+y ′′∂y ′ +···+y(n)∂y(n−1))·( dn−1

dxn−1

)
.

(2.8)

An arbitrary term in the expansion of dn/dxn with respect to the derivatives in the

y variable will be of the form

α·(y ′)b1(y ′′)b2 ···(y(n))bn , (2.9)

and let si be the corresponding power orders of the term. The idea is to look at the

possible ways this term could have appeared in the expansion of (2.8). We pair up the

terms in the total derivative part with the corresponding terms in the (n−1)th total

derivative part, which can add to our particular term in dn/dxn. Depending on our

arbitrary term, some terms cannot be paired, so we have to add existence conditions

to the terms.

By the induction hypothesis and the nature of the terms in the first factor in (2.8),

the restrictions on the choices of exponents are bi ≥ 0 for all i and q = ∑n
i=1 si ≤ n,

where si =
∑n
j=i bj . Notice that this condition gives only two choices for bn, namely, 0

or 1, and in the case bn = 1 we have bi = 0 for all i = 1, . . . ,n−1. We will consider the

two cases separately.

Case 1 (bn = 1, bi = 0 for all i = 1, . . . ,n−1). The only way we can obtain this term

is by applying y(n)∂y(n−1) to the last term in the expansion of the (n−1)th derivative.

In this case, si = 1 for all i and q =n. Thus

α·(y ′)0 ···(y(n−1))0 ···(y(n))1

=y(n)∂y(n−1)

(
(n−1)!

1
1

(n−1)!
·(y(n−1))·∂y)=y(n)∂y. (2.10)

On the other hand, for this case,

n!
(n−q)!∏(

bi!isi
)∂xn−∑si∂y = ∂y =α. (2.11)

Case 2 (bn = 0). We look at the possible “sources” for the term α · (y ′)b1(y ′′)b2

···(y(n−1))bn−1 to occur in the expansion of (2.8).

For clarity, we have sometimes dropped the limits in the summation and product,

and it is understood what the limits are from the context of the tuples in the formula.

Thus

α·(y ′)b1 ···(y(n−1))bn−1 =
n−1∑
j=0

αj, (2.12)
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where

α0 = ∂x
(

(n−1)!(
(n−1)−∑ri)!

1∏(
bi!iri

) ·(y ′)b1 ···(y(n−1))bn−1 ·∂x(n−1)−∑ri∂yr1

)
,

α1 =




y ′∂y

(
(n−1)!

(n−1)−(∑ri−1
)
!

b1∏(
bi!iri

)
·(y ′)b1−1(y ′′)b2 ···(y(n−1))bn−1 ·∂x((n−1)−(∑ri−1))∂yr1−1

)
if b1 > 0,

0 if b1 = 0,

αj =




y(j)∂y(j−1)

(
(n−1)!

(n−1)−(∑ri−1
)
!

1∏(
bi!iri

) jbj
bj−1+1

·(y ′)b1 ···(y(j−1))bj−1+1(y(j))bj−1 ···(y(n−1))bn−1

·∂x((n−1)−(∑ri−1))∂yr1

)
if bj > 0,

0 if bj = 0.
(2.13)

The term ri denotes the ith power order of the term in the expansion form of the

(n−1)th total derivative, and there are n−1 of them, hence the summation goes from

1 to n−1. Then si = ri for i = 1, . . . ,n−1 and sn = 0. Thus
∑n−1
i=1 ri =

∑n
i=1 si, and the

J-degrees coincide. We make these changes in the above expressions, and in α0 we

multiply and divide by n− q. The conditions in each formula can then be dropped,

giving

α0 = ∂x
(
(n−1)!(n−q)

(n−q)!
1∏(
bi!isi

) ·(y ′)b1 ···(y(n−1))bn−1 ·∂x((n−1)−q)∂ys1
)
,

α1 =y ′∂y
(
(n−1)!
(n−q)!

b1∏(
bi!isi

) ·(y ′)b1−1(y ′′)b2 ···(y(n−1))bn−1 ·∂x(n−q)∂ys1
)
,

αj =y(j)∂y(j−1)

(
(n−1)!
(n−q)!

1∏(
bi!isi

) jbj
bj−1+1

·(y ′)b1 ···(y(j−1))bj−1+1(y(j))bj−1 ···(y(n−1))bn−1 ·∂x(n−q)∂ys1
)
.

(2.14)

Applying the differential operators in each case, we obtain

α0 = (n−1)!(n−q)(
n−∑si)!

1∏(
bi!isi

) ·(y ′)b1 ···(y(n−1))bn−1 ·∂x(n−q)∂ys1 ,

α1 = (n−1)!
(n−q)!

b1∏(
bi!isi

) ·(y ′)b1(y ′′)b2 ···(y(n−1))bn−1 ·∂x(n−q)∂ys1 ,

αj = (n−1)!
(n−q)!

1∏(
bi!isi

) jbj
bj−1+1

bj−1+1

1

·(y ′)b1 ···(y(j−1))bj−1
(
y(j)

)bj ···(y(n−1))bn−1 ·∂x(n−q)∂ys1 .

(2.15)
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Collecting all terms αj for j = 0, . . . ,n−1, we have

α·(y ′)b1 ···(y(n−1))bn−1

= (n−1)!
(
n−q+∑jbj)

(n−q)!∏(
bi!isi

) ·(y ′)b1 ···(y(n−1))bn−1 ·∂x(n−q)∂ys1 .
(2.16)

In the formula above we can extend the product of derivatives to include (y(n))bn

since bn = 0. We also have q =∑n
i=1 si =

∑n−1
i=1 ri ≤ n−1. The only case where this sum

is equal to n has been dealt with in Case 1, so we can rewrite the condition as q ≤ n.

Hence, the formula above can be written as

α·(y ′)b1(y ′′)b2 ···(y(n))bn
= n!
(n−q)!∏(

bi!isi
) ·(y ′)b1 ···(y(n))bn ·∂x(n−q)∂ys1 , (2.17)

where bi ≥ 0, q ≤n.

We now use Proposition 2.3 in the formula from Lemma 2.1 to get a descriptive for-

mula for the prolongation of the vector field in terms of the derivative monomials.

Theorem 2.4. For the vector field X = ξ∂x+η∂y , the (m)th prolongation

X = ξ∂x+η∂y+η(1)∂y ′ +···+η(m)∂y(m) (2.18)

satisfies, for n= 1, . . . ,m,

η(n) =
∑

(b1,b2,...,bn)
bi≥0,q≤n

n!

(n−q)!∏n
i=1

(
bi!iri

) ·(y ′)b1 ···(y(n))bn ·ηxn−qyr1

−
∑

(b1,b2,...,bn)
bi≥0,q≤n+1

n!q
(n+1−q)!∏(

bi!iri
) ·(y ′)b1 ···(y(n))bn ·ξxn+1−qyr1−1 ,

(2.19)

where ri is the ith power order and q is the J-order of each monomial.

Proof. We apply Proposition 2.3 to the η and ξ parts of the formula given in

Lemma 2.1.

The η part gives

dnη
dxn

=
∑

(b1,b2,...,bn)
bi≥0,

∑n
i=1 ri≤n

n!(
n−∑n

i=1 ri
)
!
∏n
i=1

(
ai!iri

) ·(y ′)b1 ···(y(n))bn ·ηxn−∑riyr1 ,

(2.20)

where ri =
∑n
k=i bk.
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The ξ part gives

n∑
j=1

(
n
j

)
d(n+1−j)y
dx(n+1−j) ·

djξ
dxj

=
n∑
j=1

∑
(a1,a2,...,aj)

ai≥0,
∑j
i=1 si≤j

(
n
j

)
j!(

j−∑j
i=1 si

)
!
∏j
i=1

(
ai!isi

)

·(y ′)a1 ···(y(j))aj (y(n+1−j))·ξxj−∑siys1 .

(2.21)

We use a change of index as follows:

bi = ai for 1≤ i≤ j, i �=n+1−j,
bi = 0 ∀j < i≤n, i �=n+1−j,
bi = 1 for i=n+1−j.

(2.22)

If n+ 1 > 2j, we have (b1, . . . ,bn) = (a1, . . . ,aj,0, . . . ,1,0, . . . ,0), where 1 occurs in

position n+1−j; if n+1≤ 2j, we have (b1, . . . ,bn)= (a1, . . . ,an+1−j+1, . . . ,aj,0, . . . ,0).
Let ri =

∑n
k=i bi, and express

j∏
i=1

(
ai!isi

)=
∏n
i=1

(
bi!iri

)
bn+1−j(n+1−j)! . (2.23)

We now justify that the change of index can be made simultaneously for all the terms

in the summation, and thus the condition
∑j
i=1 si ≤ j is equivalent to the condition∑n

i=1 ri ≤n+1 for each term. Notice that the term is 0 if bn+1−j = 0, and we can assume

bn+1−j > 0.

The change of index gives us in both cases

n∑
i=1

ri =
n∑
i=1

ibi =
j∑
i=1

iaj+(n+1−j)= (n+1−j)+
j∑
i=1

si. (2.24)

We check that no other tuples (except the ones given by the change of index) appear.

Consider the tuples for which n+1−j > j. Since
∑n
i=1 ri ≤ n+1, we necessarily have

bn+1−j = 1. Furthermore, if some bi �= 0 for some i > j, then
∑n
i=1 ri ≥ (n+1−j)·1+i >

n+1, a contradiction. Hence bi = 0 for all i > j, i �=n+1−j. Now, consider the tuples

for which n+1− j ≤ j, then
∑n
i=1 ri− (n+1− j) ≤ (n+1)− (n+1− j) = j; and since∑n

i=1 ri− (n+1− j) = ∑j
i=1 si+

∑n
i=j+1 ibi, we obtain bi = 0 for all i > j. We can then

simultaneously change the condition for the tuples in the summation

n∑
i=1

ri ≤n+1⇐⇒
j∑
i=1

si ≤ j. (2.25)
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Performing these changes and using (2.24), (2.23), (2.21) can be expressed as

n∑
j=1

∑
(b1,b2,...,bn)

bi≥0,
∑n
i=1 ri≤n+1

(
n
j

)
j!(n+1−j)!bn+1−j(

j−(∑n
i=1 ri−(n+1−j)))!∏n

i=1

(
bi!iri

)

·(y ′)b1 ···(y(n))bn ·ξxn+1−∑riyr1−1

=
∑

(b1,b2,...,bn)
bi≥0,

∑n
i=1 ri≤n+1

n!(
n+1−∑n

i=1 ri
)
!
∏n
i=1

(
bi!iri

) ·
( n∑
j=1

(n+1−j)bn+1−j

)

·(y ′)b1 ···(y(n))bn ·ξxn+1−∑riyr1−1

=
∑

(b1,b2,...,bn)
bi≥0,

∑n
i=1 ri≤n+1

n!
∑
ri(

n+1−∑ri)!∏(
bi!iri

) ·(y ′)b1 ···(y(n))bn ·ξxn+1−∑riyr1−1 .

(2.26)

Now we combine both parts (2.20) and (2.26) to obtain

η(n) =
∑

(b1,b2,...,bn)
bi≥0,

∑n
i=1 ri≤n

n!(
n−∑n

i=1 ri
)
!
∏n
i=1

(
bi!iri

) ·(y ′)b1 ···(y(n))bn ·ηxn−∑riyr1

−
∑

(b1,b2,...,bn)
bi≥0,

∑n
i=1 ri≤n+1

n!
∑
ri(

n+1−∑ri)!∏(
bi!iri

) ·(y ′)b1 ···(y(n))bn ·ξxn+1−∑riyr1−1 ,

(2.27)

where ri =
∑n
k=i bk. If we use q = q(b1, . . . ,bn)=

∑
ri, we obtain formula (2.19).

Corollary 2.5. Equation (2.19) can be written alternatively as

η(n) =
∑

(b1,b2,...,bn)
bi≥0

q=∑ni=1 ri≤n+1

n!
(n+1−q)!

n∏
i=1

(
y(i)

)bi
bi!iri

·[(n+1−q)ηxn−qyr1 −(q)ξxn+1−qyr1−1
]
.

(2.28)

Example 2.6. Consider the second-order ODE y ′′ = (y ′)3. The second prolongation

of the infinitesimal vector field is

X = ξ∂x+η∂y+η(1)∂y ′ +η(2)∂y ′′. (2.29)

We apply this prolongation to the equation y ′′ −(y ′)3 = 0, and get

η(2)−3(y ′)2η(1) = 0. (2.30)
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The determining equations for the symmetries are obtained by making the coefficients

of the terms (y ′)n equal to 0, since the functions ξ, η depend only on x, y . We apply

formula (2.19).

For η(2), we consider tuples (a1,a2) such that q = a1+2a2 ≤ 3; see Table 2.1.

Table 2.1

Tuple Term η coefficient ξ coefficient

a1 = 0, a2 = 1 y ′′ = (y ′)3 ηy −2ξx
a1 = 2, a2 = 0 (y ′)2 ηyy −2ξxy
a1 = 1, a2 = 0 y ′ 2ηxy −ξxx
a1 = 0, a2 = 0 1 ηxx
a1 = 1, a2 = 1 y ′y ′′ = (y ′)4 −3ξy
a1 = 3, a2 = 0 (y ′)3 −ξyy

The coefficients for η(1) are easily obtained. Multiplying by −3(y ′)2 and working

modulo the original differential equation, we obtain the following determining equa-

tions in Table 2.2.

Table 2.2

Term η(2) coefficient η(1) coefficient Determining equation

(y ′)4 −3ξy +3ξy 0= 0

(y ′)3 ηy−2ξx−ξyy −3ηy+3ξx −2ηy+ξx−ξyy = 0

(y ′)2 ηyy−2ξxy −3ηx ηyy−2ξxy−3ηx = 0

y ′ 2ηxy−ξxx 0 2ηxy−ξxx = 0

1 ηxx 0 ηxx = 0

Solving the determining equations, we obtain the general solution for the infinitesi-

mal generator:

ξ(x,y)= c(6xy+y3−6y2)+d(2x+y2)+ey+f ,
η(x,y)= c(6y−4x)+2d.

(2.31)

If we define the coefficients in formula (2.19) as functions of the tuples that satisfied

the given condition, we obtain a compact notation.

Definition 2.7. Consider a tuple of n nonnegative integers (c1,c2, . . . ,cn). Let ri =∑n
j=i cj . Define the number

β
(
c1,c2, . . . ,cn

)
:= n!(

n−∑n
i=1 ri

)
!
∏n
i=1

(
ci!iri

) (2.32)

when
∑n
i=1 ri ≤n, and let β(c1,c2, . . . ,cn) := 0 otherwise.
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Formula (2.19) can then be written in terms of this β function as

η(n) =
∑

(b1,b2,...,bn)
β
(
b1, . . . ,bn

)·(y ′)b1 ···(y(n))bn ·ηxn−∑riyr1
−

∑
(b1,b2,...,bn)

∑
ri

n+1
β
(
b1, . . . ,bn,0

)·(y ′)b1 ···(y(n))bn ·ξxn+1−∑riyr1−1 .
(2.33)

Combining both terms in one summation, we obtain the following.

Corollary 2.8. The prolongations formula in (2.19) can be written as

η(n) =
∑

(b1,b2,...,bn)
γ
(
b1,b2, . . . ,bn

)·(y ′)b1 ···(y(n))bn , (2.34)

where

γ
(
b1,b2, . . . ,bn

)
= β(b1, . . . ,bn

)
ηxn−

∑
riyr1 −

∑
ri

n+1
β
(
b1, . . . ,bn,0

)
ξxn+1−∑riyr1−1 .

(2.35)

Note 2.9. This formula provides a direct calculation of the coefficients of the deriv-

ative monomials in the prolongation of the vector field. This, together with the equation

itself, is used now to set up the determining equations. We do not need to display the

entire prolongation, but we can write directly the coefficients by computing the β and

γ functions.

3. Other examples

Example 3.1. Calculate the coefficient of (y ′)2(y(5)) in the eighth-prolongation of

a vector field. Using our formulas, the coefficient α1 is given by

α1 = γ(2,0,0,0,1,0,0,0)

= β(2,0,0,0,1,0,0,0)ηxyyy− 7
9
β(2,0,0,0,1,0,0,0,0)ξxxyy

= 8!
(1)!(2)!1321314151

ηxyyy− 7
9

9!
(2)!(2)!1321314151

ξxxyy

= 168ηxyyy−588ξxxyy.

(3.1)

Similarly, the coefficient of (y ′′)4 will be

α2 = γ(0,4,0,0,0,0,0,0)

= β(0,4,0,0,0,0,0,0)ηyyyy− 4
9
β(0,4,0,0,0,0,0,0,0)ξxyyy

= 8!
(0)!(4)!1424

ηyyyy− 4
9

9!
(1)!(4)!1424

ξxyyy

= 105ηyyyy−420ξxxyy

(3.2)
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and the coefficient of (y ′′)y(7) is

α3 = γ(0,1,0,0,0,0,1,0)

= 0− 9
9
β(0,1,0,0,0,0,1,0,0)ξy

=− 9!
(0)!(1)!12223141516171

ξy

=−36ξy.

(3.3)

Example 3.2. As another example, consider the equation (∆=)4y2y(3)−18yy ′y ′′

+15(y ′)3 = 0. The third prolongation applied to the equation gives

4y2η(3)−18yy ′η(2)+(45(y ′)2−18yy ′′
)
η′ +(8yy(3)−18y ′y ′′

)
η= 0. (3.4)

We compute directly the coefficients of the third prolongations of X = (ξ(x,y),η(x,
y)) in terms of the monomials (y ′)b1(y ′′)b2(y3)b3 modulo ∆= 0; see Table 3.1.

Table 3.1

Term Determining equation

1 4y2ηxxx = 0

y ′′ 4y2ηxxx−18yηx = 0

y ′ 12y2ηxxy−4y2ξxxx−18yηxx = 0

(y ′)2 12y2ηxyy−12y2ξxxy−36yηxy+18yξxx+45ηx = 0

(y ′)3 4y2ηyyy−12y2ξxyy+30ηy−(30/y)η−18yηyy+36yξxy = 0

(y ′)(y ′′) 4y2ηyy−36y2ξxy−18yηy+18η= 0

(y ′)4 −4y2ξyyy+15ξy+18yξyy = 0

(y ′)2(y ′′) −24y2ξyy = 0

Looking for nontrivial solutions, the last two equations and the third equation in

Table 3.1 imply ηx = 0, reducing the system to

ξxx = 0,

2y2ηyyy+15ηy−
(

15
y

)
η−9yηyy = 0,

2y2ηyy−9yηy+9η= 0.

(3.5)

Since ηx = 0, we solve the equations and obtain the infinitesimal generators

ξ(x,y)= ax+b,
η(x,y)= cy29/6+dy+e. (3.6)
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Example 3.3. Consider the equation y(3) = (3/2)((y ′′)2/y ′). The third prolonga-

tion applied to the equation gives

y ′η(3)−3y ′′η(2)+(y(3))η′ = 0. (3.7)

We compute the coefficients of the prolongation of X = (ξ(x,y),η(x,y)) in terms of

the monomials (y ′)b1(y ′′)b2(y3)b3 modulo the equation, multiply it by y ′, and obtain

Table 3.2.

Table 3.2

Term Determining equation

(y ′)2 ηxxx = 0

(y ′)2y ′′ −3ηxy = 0

(y ′)3 3ηxxy−ξxxx = 0

(y ′)4 3ηxyy−3ξxxy = 0

(y ′)5 ηyyy−3ξxyy = 0

(y ′)3(y ′′) 3ξxy = 0

y ′y ′′ −3ηxx = 0

(y ′)2(y ′′)2 −(3/2)ξy = 0

(y ′)6 −ξyyy = 0

(y ′)4(y ′′) −3ξyy = 0

(y ′′)2 (3/2)ηx = 0

Since ξy = 0, ηx = 0, the system reduces to ξxxx = 0, ηyyy = 0. Thus, the point

symmetries of the equation are given by ξ(x,y)= ax2+bx+c, η(x,y)= dy2+ey+f .

Example 3.4. Consider the equation y(6) =y2. To find the symmetries, we need to

find the sixth prolongation, which can take several pages to write. It is obvious that

X = 1∂x is a symmetry, but is it the only one? Our formulas will help determine this

without finding the sixth prolongation of the vector field.

Applying the infinitesimal operator, we obtain

η(6)−2yη= 0. (3.8)

We look selectively at the determining equations. First, find the one that does not

depend on derivatives, namely,

α1ηxxxxxx−2yη= 0. (3.9)

Our formulas give directly the value of α1 = 1.

Since the original equation depends only on the sixth derivative, we look for terms

depending on the derivative of ξ. The lowest derivative of ξ occurs for ξx7−qyr1−1 when
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q = 7 and r1 = 2. Thus consider the term

α2ξyy(4)y(2) (3.10)

of J-order 7. Our formulas give α2 = 1 and produce the determining equation ξy = 0.

As a third equation, we consider terms involving η and ξ with lowest-order deriva-

tives, for q = 6, r1 = 1. This term corresponds to

α3ηy−α4ξx = 0. (3.11)

The coefficients are calculated by Corollary 2.5,α3 = 1,α4 =−6, and we have produce

three determining equations

ηxxxxxx−2yη= 0, ξy = 0, ηy+6ξx = 0. (3.12)

The last two equations produce η = −6yf ′(x)+g(x). Replacing this into the first

equation and using linear independence, we obtain g(x)= 0, f(x)= c. Thus η= 0 and

ξ = c which indicate that X = ∂x is the only symmetry of the differential equation.

Note 3.5. An interesting combinatorial question refers to how many nonzero terms

will be in the prolongation, for which we need to know how manyn-tuples (b1,b2, . . . ,bn)
of nonnegative integers satisfy the condition

∑n
i=1 ri =

∑n
i=1 ibi ≤ n. This is a number

theory question, which we leave for the reader to find an answer for.
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