IJMMS 2004:51, 2705-2717
PIL S0161171204401367
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

EULER CASE FOR A GENERAL FOURTH-ORDER
DIFFERENTIAL EQUATION
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We deal with an Euler case for a general fourth-order equation and under this case, we obtain
the general formula for the asymptotic form of the solutions.

2000 Mathematics Subject Classification: 34E05.

1. Introduction. In this paper, we examine the asymptotic form of a fundamental
set of solutions of the fourth-order differential equation

N\»—l

1

(poy”)" +(p1y") Z a2y +{a2 jy TV} | +pay =0 (1)
as x — oo, where x is the independent variable and the prime denotes d/dx. The func-
tions pi(x) (0 <i < 2) and g;(x) (i = 1,2) are defined on an interval [a, «), are not
necessarily real-valued, and are all nowhere zero in this interval. Our aims are to iden-
tify relations between qo, g1, po, p1, and p» that represents an Euler case for (1.1) and
to obtain the asymptotic forms of four linearly independent solutions under this case.
Al-Hammadi [2] obtained an asymptotic formula of Liouville-Green type for (1.1) which
extends those of Walker [9]. Also in [1], we consider (1.1) with p; = g2 = 0 and we give
a complete analysis for the case where

pypo=0(a;”?) (x — o). (1.2)

A fourth-order equation similar to (1.1) has been considered previously by Walker
[9, 10]. Eastham [4] considered an Euler case for (1.1) with p; = g» = 0 and showed
that this case represents a borderline between situations where all solutions have a
certain exponential character as x — o0 and where only two solutions have this charac-
ter. Al-Hammadi and Eastham [3] considered the case where the coefficients are small
for large x.

The Euler case for (1.1) that has been referred to is given by

’

&~constﬂ (i=1,2),
adi do (1.3)
—1/2y\/ .
(}9111171/2) const -
p1d, Po

as X — 00,
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We will use the recent asymptotic theorem of Eastham [6, Section 2] to obtain the
solutions of (1.1) under the above case. The main theorem for (1.1) is given in Section 4
with some discussion in Section 5.

2. A transformation of the differential equation. We write (1.1) in the standard way
[7] as a first-order system

Y' =AY, (2.1)

where the first component of Y is  and

0 1 0 0]
1 _ _

0 —thpol pi! 0
A= 1 1, 1 (2.2)

542 —Pit AP —5P0 4 1

1
| —P2 —5 a2 0 0]
As in [1], we express A in its diagonal form

T 'AT = A (2.3)

and we therefore require the eigenvalues A; and the eigenvectors v; (1 < j <4) of A.
The characteristic equation of A is given by

PoAt + A3+ pIA2 + oA +pr = 0. (2.4)

An eigenvector v; of A corresponding to A; is

1 1\
5d2 — P2A; ) , (2.5)

1
v = (1,2\‘,-,;902\5 + qu/\j,, >

where the superscript t denotes the transpose. We assume at this stage that the A; are
distinct, and we define the matrix T in (2.3) by

T= (U1 Uz U3 U4). (2.6)

Now from (2.2), we note that EA is symmetric, where

(2.7)

—_ o O O
o = O O
oS O = O
S O O

Hence, be [5, Section 2(i)], the v; have the orthogonality property

(Evi)'o;i=0 (k= j). (2.8)
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We define the scalars m; (1 < j <4) by
t
m; = (E U j) Uj,

and the row vectors

t
rj = (Evj)".
Hence, by [5, Section 2],

myin

L |matr

T1=|"2"%,
m3 7/3
myiry

mj =4pod} +3q1A° +2p1A; +qa.
Now we define the matrix U by
U=(v1 v2 v3 € Uv4)=TK,
where
_ o

€1 5
qay

The matrix K is given by

K=dg(1,1,1,¢1).
By (2.3) and (2.13), the transformation

Y=UZ

takes (2.1) into

Z'=(A-U'U)Z.
Now by (2.13),

U'U' =K 'T'T'K+K 'K/,
where
K~ 'K =dg(0,0,0,e7t¢)),

and we use (2.15).
Now if we write

2707

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
(2.21)
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then by (2.18)-(2.21), we have

¢Pij=wi; (1=<i,j<3),
bas = Pas+ €1 €],

Pis =Puer (1=<i<3),

bsj=€rlws; (1<j<3).

(2.22)

Now to work out ¢ (1 < i,j < 4), it suffices to deal with y;; of the matrix T-1T’. Thus
by (2.10), (2.12), (2.6), and (2.11), we obtain
1m;

"“izﬁﬁ. (1<i<4), (2.23)

and, fori=j,1<1i, j<4,

, 1 1 ! 1, N
i = mi’l{/\j (pOAE + Eql;\i) +Ai<p02\§ + EqlAj) -y (P20 } (2.24)
Now we need to work out (2.23) and (2.24) in some detail in terms of py, p1, p2, 41, and
d2, then (2.22) in order to determine the form of (2.17).

3. The matrices A, T~!T’, and U~'U’. In our analysis, we impose a basic condition
on the coefficients as follows.
(I) p; (0<i<?2)andgq; (i=1,2) are nowhere zero in some interval [a, %), and

Pi :o(M) (i=0,1) (x — o),
di+1 Pi+1

3.1
ﬂ:o(ﬂ)_ (3.1)
p1 qaz
If we write
a=00 o-TB PP (3.2)
ai pi a;
then by (3.1) for (1 <i < 3),
€i=0(1) (x— o). 3.3)

Now as in [1], we can solve the characteristic equation (2.4) asymptotically as x — co.
Using (3.1) and (3.2), we obtain the distinct eigenvalues A; as

AM=-P2ss), (3.4)
qz

N=-22(14s,), (3.5)
p1

As=-PL(1+6), (3.6)
q1

A= -T14sy), (3.7)

Po
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where
61=0(e3), S62=0(e2)+0(€e3), 3=0(€1)+0(€2), 64=0(e1). (3.8)
Now by (3.1), the ordering of A; is such that
Aj=0(Aj1) (x — o, 1<j<3). (3.9)

Now we work out m; (1 < j <4) asymptotically as x — o; hence by (3.2), (3.3), (3.4),
(3.5), (3.6), (3.7), and (3.8), (2.12) gives, for 1 < j < 4,

mi =q2{1+0(e3)}, (3.10)

my = —q2{1+0(e2) +0(e3)}, (3.11)
2

ms = %{1+0(€1)+0(62)}, (3.12)
1
q3

my=—"5{1+0(e1)}. (3.13)
Po

Also by substituting A; (j = 1,2,3,4) into (2.12) and using (3.4), (3.5), (3.6), and (3.7),
respectively, and differentiating, we obtain

my = a5 {1+0(e3)} +q2{0(€;) + 0(€367) +0(€5¢5) +0(er63€3) ],
my=—q>{1+0(€2) +0(€3)} +q2{0(55) +0(eh) +0(e)€3)},

mj = (Zf)r{1+0(61)+0(€2)}+Zf{0(5'3)+0(eé)+0(€'1)}, (3.14)

a\ 4
m;——(—;) (1+0te0) + 24 0(5}) + o(esed) (e}

At this stage we also require the following conditions.
(1

&Ei, &Ei, QGi, @Ei, &62, P2
p qa a p

—~e3el(a,x) (1<i=<3). (3.15)
Po 1 1 2 2 p2

Further, differentiating (3.2) for €; (1 <1i < 3), we obtain

€] = 0(@61) +O(&el) +0(@61),
po p1 qz

e :o(q‘ 62) +o(@ez) +o(ﬂez), (3.16)
a1 qaz pP1

€= 0(&€3> +0(&63) +0(@63).
p2 P1 qaz
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For reference, we note that by substituting (3.4), (3.5), (3.6), and (3.7) into (2.4) and
differentiating, we obtain

81 =0(€) +0(e2€3) +0(ere3€3),
85 = 0(e3) +0(e3) +0(€1€3),
' / , , (3.17)
85 = 0(€}) +0(e3) +0(e5€3),
85 =0(e}) +0(er¢€]) +0(eseie3)
Hence by (3.16) and (3.17), and (3.15),
J, S "€ L(a,). (3.18)

For the diagonal elements y;; (1 < j <4) in (2.23), we can now substitute the estimates
(3.10), (3.11), (3.12), (3.13), and (3.14) into (2.23). We obtain

WII—l +0( >+0( )+0(€36 )+0(€/2€§)+0(€/1€%€§,)’
249z QZ
1qg
+0( )+O< €)+0‘5 +0(€h) +0(ehe3),
W22 = 2 q» IZ2 2 (65) +0(€3) +0(€z€3)
Y33 = [2?’1 111]+0( >+0<ﬁ62>+0(@51>+0<£62> (3.19)
2 P1 qi1 pl 1221 @ @

+0(6%) +0(e5) +0(€),

1[ q 170] (ql ) (106 ) , ;2 ,
==|3—=— +0 €1 +0(—¢€1)+0(6,) +0(e5e5) +0(€7).
Was 21 a 7o @ 1 7o 1 (04) +0(ezer) +0(€7)

Now for the nondiagonal elements y;; (i # j, 1 <1i,j <4), we consider (2.24). Hence
(2.24) gives, fori=1and j = 2,

, 1 1 ! 1, N
Y12 :mfl{/\2<p02\%+§q1/\1>+2\1 (pof\5+§q12\2) +—§q2—(p2)\21) } (320)

Now by (3.4), (3.5), (3.2), and (3.10), we have

mytaA, (poi\{ +lq1/\1> = 1[2@ Pi ]e €3{1+0(e3)} +0(e26365), (3.21)
2 2L a2 m
1 4 , 4 I’ 4
m;1A1<poA§+Eq1)\1) :0(626362)4-0(6%6163)-4-[%4—2%—2%]
o (3.22)
+0(€263)[q1 @—&],
7 q2 p1
1 ’ -1 1q2 (QZ )
——q,mi" = +0 € (3.23)
2B =T, T g,

mil(p2As!) = 0<&63> +0("’1 ) Jro(—Z ) +0(e36%). (3.24)
p2 pP1 qaz
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Hence by (3.21), (3.22), (3.23), and (3.24), (3.20) gives
Yo = — 14; +O(q2 63) +0(&€3) +0(&63) +0<@616263>
pi p2 Po

24q qz (3.25)

+0(636’2) +0<ﬂ€263>.
a1
Similar work can be done for the other elements ;;; so we obtain

14q, (qZ ) (p{ ) ("11 ) ’ (P6 ) (pé )
=—=—=+0 +0 €3] +0 —€3)+0(e305)+0( —€1€3)+0| —=€2€3 ],
¥ 2612 qz P a (€353) po pa 2

i o(he) o(fera) vo ete) voteteso( Pace)
=———+0 +0( ey +0(—€7 €3] +0(e7€30,)0( —=€1€0€3 ],
Wia @ @ it o <! 3 (e1'€30}) p2123

24
Wor = —~ La; +0(q2 >+0(q2 )+0(6 )+0(€2p2>+0< pz)
2q> az a: P2 P2

+0( 6263) +O<@eleze3)
a1 Po

ll/23=[l@f&+1qz]+0(qlel)+o(ql )+O<Q1 )+O<ﬂel)
2q1 p1 2q qi a a p1

+0(&62>+0<p163>+0< >+0(—63)+0(6 )+O(@el)+0(6263&),
pP1 pP1 112 a2 Po p2
Yoy = €7 [1q1+0(q1 )+0<@€2>+0<q1 )+0(p0 )+0(@62>

2 q1 a1 a1 a1 Po Po

Po a; P>
+O< e)+06 +O< e)+0< eee)]
7o 3 (04) 2 1 P> 1€2€3
WYs1 = (Zz )+0< ) 0(67 €2)+0<*€2€3>+0(*€1€2€3)
2
a pi 2 Po s
:0(— )+0(—e>+066 +0<ee )+0( )+0<ee —)
Y32 42 py 2 (€205) 120, 611 =y,
Y34 =€l_1|: 1 ‘/11 +0< )+0(£€2> +0<p0 >+0(&EZ>
2011 011 a1 Po Po
, a p
0(54)4‘0(;16162)-%-0(;926 €2€3>:|
L[J41=€1|:0<@€2€ >+O( 26162)+0(&€1€2>+0<51€162>+0(@€1€%€§>:|,
a qz p2 Po
a1 Po

WYao = 0(%6162) +O<%elez) +0(85€1€2) +0(—€1€2> +0<p—€162> +O(Z €1€2€3>

sarvo(Bre) vo(fra) o fhe.) rotia) +o( P
3=¢€ +0 +0 +0( —€2 ) +0(6%€1) +0( —¢€
Vi 1[ 2a1 \p ¢ q,€2) T085e) + 0L e

+0(&€1€%€3> +0<@eleg)].
p2 qz

(3.26)
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Now we need to work out (2.22) in order to determine the form (2.17). Now by (3.19),
and (3.25) and (3.26), (2.22) will give

la, _lay
¢11—2q +0(A1), b22 2 2 +0(A2),
pi lay pi la
A +0(A3), =P 24 o(ay),
P33 o2 (A3) Pag o 2m (A4)
lay _la
¢12— 2 2o +0(As), ¢i3 = 2 2 +0(A¢),
_ _la
b14=0(A7), ¢21—*2q +0(As), (3.27)
1(11’1 qé) i a;
=-|—=+=)——"+0(A), —f—+0A ,
P23 AV (Ag) P24 2 (A1o)
1
¢31 =0(A11),  P32=0(A12), ¢34=*§%+0(A13),
1 4
pa1 =0(A1a), P42 =0(A1s), ¢43:*§%+0(A16);
where
A;€L(a, o) (1<i<16) (3.28)
by (3.15) and (3.18).
Now by (3.27) and (3.28), we write the system (2.17) as
=(A+R+S)Z, (3.29)
where
-nr m 0
n —Mm nN2—n —-n3
R = 3.30
0 0 -m (3:30)
0 0 n3 -2
with
14, (r1a;'"?) 1aq;
_lay g ) =4 3.31
m 2q2 nz plql,l/z ns qu ( )

and S € L(a,«) by (3.28).
4. The Euler case. Now we deal with (1.3) more generally, so we write (1.3) as
nk:ok%uwk) (1<k=<3), @.1)

where oy (1 < k < 3) are nonzero constants, @i(x) - 0 (1 <k <3, x — ), and also at
this stage we let

@ eL(a,o) (1<k=<3). (4.2)
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We note that by (4.1), the matrix A no longer dominates R and so Eastham’s theorem
[6, Section 2] is not satisfied which means that we have to carry out a second diagonal-
ization of the system (3.29).

First we write

A+R=)\4{51+Sz}, 4.3)

and we need to work out the matrix S; = const with the matrix S»>(x) = 0(1) as x — o
using (3.4), (3.5), (3.6), and (3.7) and the Euler case (4.1). Hence after some calculations,
we obtain

(0] —01 —01 0
—01 01 g1 —0? 03
Sl = ’
0 0 0?2 —03
0 0 —03 (o)
(4.4)
u;y U U 0
Uz U3 Uy Us
Sa(x) = 0 0 wus —usl|’
0 0 —Us —-Uy
where
wr=AA —us, ur =0 (@1 -8a) (1+84) 7,
Uz = ?\2/\411 —Uo, Ug=—Ur+U7,
. » (4.5)
us =03(@3—-04)(1+04) ',  us=2A3A; —uy,

U7 = —02 (@2 —84) (1+684) "

Itis clear that by (3.9) and (3.8), S2(x) — 0 as x — c. Hence we diagonalize the constant
matrix S;. Now the eigenvalues of the matrix S; are given by

1 =0, o =207, X3 = 0p + 03, X4 = 0 — O3. (4.6)
Let
o # (£03,+03+207). 4.7)

Hence by (4.7), the eigenvalues «; (1 < i <4) are distinct. Thus we use the transforma-
tion

Z=T\W (4.8)
in (3.29), where T; diagonalizes the constant matrix S;. Then (3.29) transforms to

W = (A +M+T7IST))W, (4.9)
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where

A1 = A TS Ty = diag (v1,02,03,04) = Agdiag (&, X2, &3, &4),
M = A4T{ 'S, Ty, (4.10)
T, 'ST) € L(a, ).

Now we can apply the asymptotic theorem of Eastham in [6, Section 2] to (4.9) provided
only that A; and M satisfy the conditions in [6, Section 2].

We first require that the v; (1 < j < 4) are distinct, and this holds because the «;
(1 = j <4) are distinct.

Second, we need to show that

- —0 (x — ) (4.11)

fori+jand 1 <1i,j<4.Now

M
Ui —Uj

= (i—xj) TS Ty = 0(1)  (x — o). (4.12)

Thus (4.11) holds. Third, we need to show that
Sy e L(a, ). (4.13)
Thus it suffices to show that
uj(x)el(a,») (1=<i<y). (4.14)

Now, by (3.4), (3.5), (3.6), (3.7), and (4.5),

uj =0(eje2€3) +0(ere1€3) +0(€e5€1€2) +0(@') +0(5}),
u, = 0(") +0(54),
uy = 0(eje2) +0(ehe1) +0(85€1€2) +0(7) +0(84),
uy = 0(@7) +0(54) +0(@3), (4.15)
us =0(p;3) +0(5}),
ug = 0(€7) +0(e163) +0(@3) +0(55),
uz = 0(@3) +0(63).

Thus by (4.15), (3.18), and (4.2), (4.14) holds and consequently (4.13) holds. Now we
state our main theorem for (1.1).

THEOREM 4.1. Let the coefficients qi, q», and p, in (1.1) be in C'*[a, ) and let p
and p be CV[a, ). Let (3.1), (3.15), (4.1), (4.2), and (4.7) hold.
Let
Relj(x) (j=1,2),

4.16
Re[)\l+/\2—2\3—)\4—2ﬂ1+2f]2i[11[2] ( )
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be one sign in [a, ), where

Il = [4?]% + ()\1 —Az)z]l/z,

o172 4.17)
I = [4I’I§+(A3—A4) ] .
Then (1.1) has solutions
-1/2 1 x
Y1 ~d; exp(zj [A1+/\2+Il]dt),

a

172 1~
y2=0{q1/ exp(§f [?\1+/\2—Il]dt)}, (4.18)

a

X
Vi = o{qfl/zpl"lexp (%J [A3+ A4+ (—1)"+112]dt>} (k =3,4).
a

PROOF. Before applying the theorem in [6, Section 2], we show that the eigenvalues
Uy of A; + M satisfy the dichotomy condition [8]. As in [1], the dichotomy condition
holds if

(Mj—m)=f+g (G#k 1<j, k<4), (4.19)
where f has one sign in [a, o) and g belongs to L[a, ) [6, (1.5)]. Now since the eigen-
values of A; + M are the same as the eigenvalues of A+ R, hence by (2.3) and (3.23),

1 1 k+1
Uk = 5(7\3 +A2-2m1) + E(_l) L (k=1,2),

(—1)k+1 (4.20)

1
uk:E(A3+)\4—2r[2)+ I (k:3,4).

Thus by (4.20) and (4.16), (4.19) holds. Since (4.9) satisfies all the conditions for the
asymptotic result [6, Section 2], it follows that, as x — o, (4.9) has four linearly inde-
pendent solutions

Wetx) = fex+oDexp ( | pt)dt) (4.21)

with ey being the coordinate vector with kth component unity and other components
being zero. Now we transform back to Y by means of (2.16) and (4.8), where T; in (4.8)
is given by

1 1 0 0
1 -1 -1 -1
T = 0 0 1 1 (4.22)
0O 0 -1
We obtain
Yi(x)=UT1Wi(x) (1<k=<4). 4.23)

Now using (2.13), (2.14), (2.15), (4.20), (4.21), (4.22), and (3.31) in (4.23) and carrying out
the integration of (1/2)(q5/q) and (q]"°pi") /ai*pi", for 1 < k < 4, we obtain (4.18).
O
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5. Discussion. (i) In the familiar case, the coefficients which are covered by Theorem
4.1 are p;(x) =c;x% (i=0,1,2) and g;(x) = ¢j.2x%+2 (i = 1,2) with real constants «;
and ¢; (0 <i <4). Then the Euler case (4.2) is given by

0(0—0(3:1. (5-1)

The values of oy (1 <k < 3) in (4.1) are given by

1 1 1
o= qucocgl, o = (oq - EO(g)cocgl, o3 = Eagcocgl. (5.2)

Also in this example, @ (x) =0 in (4.1).
(ii) Also the theorem covered the class of the coefficients

po=cox®e*’,  pr=cix®eVNN py = cpxeem,
(5.3)
@ =c3xeX, gy =cyxe ™
with real constants ¢;, «; (0 <i<4) and b(> 0).
The Euler case (4.1) is given by
0(3—0(0=b—1. (5.4)
The values of oy (1 <k <4) in (4.1) are given by
1, 1
o = Ebcoc3 , oy = EUI' o3 = —071. (5.5)
Also
1
@ =-o4b 'x7t,  @,=4b! (50(3 —al)x’b, @3 =blozxt. (5.6)
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