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We study the distribution of Mahler’s measures of reciprocal polynomials with complex co-
efficients and bounded even degree. We discover that the distribution function associated
to Mahler’s measure restricted to monic reciprocal polynomials is a reciprocal (or antirecip-
rocal) Laurent polynomial on [1,∞) and identically zero on [0,1). Moreover, the coefficients
of this Laurent polynomial are rational numbers times a power of π . We are led to this dis-
covery by the computation of the Mellin transform of the distribution function. This Mellin
transform is an even (or odd) rational function with poles at small integers and residues that
are rational numbers times a power of π . We also use this Mellin transform to show that
the volume of the set of reciprocal polynomials with complex coefficients, bounded degree,
and Mahler’s measure less than or equal to one is a rational number times a power of π .
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1. Introduction. The Mahler’s measure of a polynomial f(x)∈ C[x] is given by the

expression

µ(f)= exp
{∫ 1

0
log

∣∣f (e2πit)∣∣dt}. (1.1)

If f(x) has degreeM and factors over C as f(x)=wM
∏M
m=1(x−βm), then by Jensen’s

formula,

µ(f)= ∣∣wM
∣∣ M∏
m=1

max
{
1,
∣∣βm∣∣}. (1.2)

It is readily apparent that Mahler’s measure is a multiplicative function on C[x]. In

this sense, Mahler’s measure forms a natural height function on C[x]. In this paper, we

study the distribution of values of Mahler’s measure restricted to the set of reciprocal

polynomials with bounded even degree and complex coefficients.

f(x) is said to be reciprocal if it satisfies the condition

xMf
(

1
x

)
= f(x). (1.3)

If f(x) is reciprocal and f(x)=∑M
m=0wmxm, then it is easily seen thatwm =wM−m for
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m = 0, . . . ,M . The reciprocal condition also imposes a condition on the roots of f(x):
if f(α)= 0, then f(α−1)= 0. If M = 2N, there exists a Laurent polynomial

pv(x)= v0+
N∑
n=1

vn
(
xn+x−n) (1.4)

such that f(x)= xNpv(x). We call pv(x) the reciprocal Laurent polynomial with coef-

ficient vector v. The collection of reciprocal Laurent polynomials with complex coeffi-

cients forms a graded algebra.

The integral defining Mahler’s measure makes sense for reciprocal Laurent polyno-

mials, and it is easily seen that µ(pv) = µ(f). It is convenient to work with reciprocal

Laurent polynomials since they form an algebra (the set of reciprocal polynomials is not

closed under addition). We define the reciprocal Mahler’s measure to be the function

µrec : CN+1 →R given by

µrec(v)= µ
(
pv
)= exp

{∫ 1

0
log

∣∣∣∣∣v0+2
N∑
n=1

vn cos
(
2πnt

)∣∣∣∣∣dt
}
. (1.5)

If v = (v0, . . . ,vL,0, . . . ,0) with vL ≠ 0, then there exist α1, . . . ,α2L not necessarily

distinct nonzero complex roots of pv(x). By reordering, if necessary, we may assume

αL+n =α−1
n , and we may write

xLpv(x)= vL
L∏
n=1

(
x−αn

)(
x−α−1

n
)
, (1.6)

and from Jensen’s formula, we have

µrec
(
v
)= ∣∣vL∣∣ L∏

n=1

max
{∣∣αn∣∣,∣∣α−1

n
∣∣}. (1.7)

From this expression, we see that for all v ∈ CN+1 and k ∈ C, the reciprocal Mahler’s

measure is

(i) nonnegative: µrec(v)≥ 0,

(ii) homogeneous: µrec(kv)= |k|µrec(v),
(iii) positive-definite: µrec(v)= 0 if and only if v= 0.

In addition, µrec is continuous as originally proved by Mahler [3].

By properties (i), (ii), and continuity, we find that µrec is a symmetric distance function

in the sense of the geometry of numbers (see, for instance, the discussion in [1, Chapter

IV]). µrec satisfies all the properties of a vector norm except the triangle inequality. The

“unit ball” is thus not convex. Explicitly,

�N+1 =
{
v∈ CN+1 : µrec(v)≤ 1

}
(1.8)

is a symmetric star body. By property (iii), this star body is bounded. We call �N+1 the

degreeN star body determined by the reciprocal Mahler’s measure. One of the principal

results presented here is the computation of the volume (Lebesgue measure) of �N+1.
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We introduce the monic reciprocal Mahler’s measure νrec : CN →R defined by

νrec
(
b
)= µrec

(
b

1

)
. (1.9)

Thus νrec(b) is the Mahler’s measure of the monic reciprocal Laurent polynomial

p̃b(x)=
(
xN+x−N)+b0+

N−1∑
n=1

bn
(
xn+x−n). (1.10)

We denote Lebesgue measure on Borel subsets of CN by λ2N and introduce the distribu-

tion function associated with the monic reciprocal Mahler’s measure hN(ξ) : [0,∞)→
[0,∞) given by

hN(ξ)= λ2N
{
b∈ CN : νrec(b)≤ ξ

}
. (1.11)

hN(ξ) encodes statistical information about the distribution of Mahler’s measures of

reciprocal polynomials with complex coefficients and even degree bounded by 2N.

The distribution function hN(ξ) is increasing and continuous from the right. From

(1.7), we see νrec(b) ≥ 1 for all b ∈ CN , and thus hN(ξ) is identically zero on [0,1). In

fact, hN(1) = 0. To see this, suppose b ∈ CN with νrec(b) = 1. Then, from (1.7), p̃b(x)
has all its roots on the unit circle. Thus, if α is a root of p̃b(x), then so is α=α−1. We

find that b∈RN , and hence the set of b∈ CN such that νrec(b)= 1 has λ2N -measure 0.

Thus hN(1)= 0, and hN(ξ) is continuous at ξ = 1.

We recall the definition of the Mellin transform. Given a function g : [0,∞)→ R, the

Mellin transform of g is the function of the complex variable s given by

ĝ(s)=
∫∞

0
ξ−2sg(ξ)

dξ
ξ
. (1.12)

We will give an explicit formula for hN(ξ) by computing its Mellin transform. We

note that, since hN(ξ) is identically zero on [0,1], the integral defining ĥN(s) can be

written with domain of integration [1,∞).
The integral defining ĥN(s) converges in the half plane�(s) > N. To see this, we use

the following consequence of Jensen’s inequality:

µ(f)≤ ∥∥f(x)∥∥2, (1.13)

where ‖f(x)‖2 is the Euclidean norm of the coefficient vector of f(x). Thus from (1.10),

we have

νrec(b)≤
(
2+∣∣b0

∣∣2+2
∣∣b1

∣∣2+···+2
∣∣bN−1

∣∣2
)1/2 ≤

√
2
(
1+∣∣b0

∣∣2+···+∣∣bN−1

∣∣2
)1/2

,
(1.14)

and hence

{
b∈ CN : νrec(b)≤ ξ

}⊂ {b∈ CN :
(
1+∣∣b0

∣∣2+···+∣∣bN−1

∣∣2
)1/2 ≤ ξ√

2

}
. (1.15)
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The latter set is a “slice” of a solid sphere of dimension 2N + 1, and is thus a solid

sphere of dimension 2N with radius less than ξ/
√

2. Thus there exists a constant C
such that

hN(ξ)= λ2N
{
b∈CN : νrec(b)≤ ξ

}≤ Cξ2N. (1.16)

It follows that

ĥN(s)=
∫∞

1
ξ−2shN(ξ)

dξ
ξ
≤ C

∫∞
1
ξ2N−2s dξ

ξ
. (1.17)

The latter integral converges if �(s) > N, and hence ĥN(s) is defined in the half plane

�(s) > N.

We follow the method introduced by Chern and Vaaler in [2] to express the volume

of �N+1 in terms of the Mellin transform of hN(ξ).

Theorem 1.1. For each positive integer N,

λ2N+2
(
�N+1

)= 2πĥN(N+1). (1.18)

Proof. The volume of �N+1 is given by

λ2N+2
(
�N+1

)= ∫
C
λ2N

{
b∈ CN : µrec

(
b

z

)
≤ 1

}
dλ2(z). (1.19)

By the homogeneity of µrec, we see that

λ2N

{
b∈ CN : µrec

(
b

z

)
≤ 1

}
= λ2N

{
zc∈ CN : µrec

(
zc

z

)
≤ 1

}

= |z|2Nλ2N

{
c∈ CN : µrec

(
c

1

)
≤ 1
|z|

}

= |z|2NhN
(

1
|z|

)
(1.20)

and thus the integral in (1.19) can be written as∫
C
|z|2NhN

(
1
|z|

)
dλ2(z)= 2π

∫ 1

0
r 2N+1hN

(
1
r

)
dr. (1.21)

The domain of integration in the latter integral is [0,1) since hN(1/r) is identically

zero on [1,∞). By the change of variables r = 1/ξ, we find

λ2N+2
(
�N+1

)= 2π
∫∞

1
ξ−2(N+1)−1hN(ξ)dξ = 2πĥN(N+1). (1.22)

If we regard the integral defining ĥN(s) as a Lebesgue-Stieltjes integral, we may use

integration by parts to write

ĥN(s)=−ξ
−2shN(ξ)

2s

∣∣∣∣∞
1
+ 1

2s

∫∞
1
ξ−2sdhN(ξ). (1.23)
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SincehN(1)=0 andhN(ξ) is dominated byCξ2N , the first term vanishes when�(s) > N.

After a change of variables, we can write

ĥN(s)= 1
2s

∫
CN
νrec(b)−2sdλ2N(b). (1.24)

The latter integral is interesting enough to name

HN(s)=
∫
CN
νrec(b)−2sdλ2N(b). (1.25)

The bulk of this paper is committed to the discovery thatHN(s) analytically continues

to a rational function of s.

Theorem 1.2. For each positive integer N, the function HN(s) extends by analytic

continuation to an (even or odd) rational function. In particular,

HN(s)=
N∏
n=1

2πs
s2−n2

. (1.26)

Corollary 1.3. For each positive integer N,

λ2N+2
(
�N+1

)= 2NπN+1(N+1)N

(2N+1)!
. (1.27)

Proof. This follows immediately from Theorems 1.1 and 1.2.

Corollary 1.4. For each positive integer N, hN(ξ) is a reciprocal or antireciprocal

Laurent polynomial on the domain [1,∞) and identically zero on [0,1). Explicitly, if ξ ≥ 1,

then

hN(ξ)= 2NπN
N∑
n=1

(−1)N−nnN

(N+n)!(N−n)!
(
ξ−2n+(−1)Nξ2n). (1.28)

Proof. ĥN(s)=HN(s)/2s is a rational function whose denominator is a product of

distinct linear factors of the form s−n. We use the partial fraction decomposition to

write

ĥN(s)=
N∑
n=1

(
ρ(n)
s−n +

ρ(−n)
s+n

)
, ρ(n)= Res

s=n
(
ĥN(s)

)
. (1.29)

We compute ρ(n):

(s−n)ĥN(s)= π
s+n

N∏
m=1
m≠n

2πs
s2−m2

, (1.30)
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and so

ρ(n)=πN2N−2nN−2
n−1∏
m=1

1(
n2−m2

) N∏
m=n+1

1(
n2−m2

)
=πN2N−2nN−2

(
n!

(n−1)!(2n−1)!

)(
(−1)N−n(2n)!
(N+n)!(N−n)!

)
=πN2N−1nN(−1)N−n

1
(N+n)!(N−n)! .

(1.31)

It is clear that ρ(−n)= (−1)Nρ(n), and so

ĥN(s)=
N∑
n=1

ρ(n)
(

1
s−n +

(−1)N

s+n
)
. (1.32)

A quick calculation shows that, for s > n,

2
∫∞

1
ξ−2s(ξ−2n±ξ2n)dξ

ξ
= 1
s+n ±

1
s−n. (1.33)

And so, by the uniqueness of the Mellin transform, we find that

hN(ξ)=
N∑
n=1

2ρ(n)
(
ξ−2n+(−1)Nξ2n) (1.34)

for ξ ∈ (1,∞). The lemma follows by substituting (1.31) into (1.34).

We outline the proof of Theorem 1.2. Given α∈ (C\{0})N , we can create the unique

monic reciprocal Laurent polynomial p̃a(x) having α1, . . . ,αN , α−1
1 , . . . ,α−1

N as roots. We

will use the change of variables α� a to write HN(s) as an integral over root vectors

of reciprocal Laurent polynomials, as opposed to coefficient vectors. This change of

variables is useful, since by (1.7), νrec(a) is a simple product in the roots of p̃a(x) (i.e.,

in the coordinates of α). Analysis of the Jacobian of this change of variables will allow

us to writeHN(s) as the determinant of an N×N matrix, the entries of which are Mellin

transforms which evolve to rational functions of s. Theorem 1.2 will follow from the

evaluation of the determinant of this matrix.

Before proceeding to the proof of Theorem 1.2, we present µrec and �N+1 from an-

other perspective. Given the positive integerM , we define the Mahler’s measure function

to be µ : CM+1 → R, where µ(u) is the Mahler’s measure of the polynomial with coeffi-

cient vector u. As was shown in [2], µ is nonnegative, homogeneous, positive-definite,

and continuous. Thus µ is a symmetric distance function and the set

�M+1 =
{
u∈ CM+1 : µ(u)≤ 1

}
(1.35)

is a bounded symmetric star body. Let M = 2N and consider the linear map Λ : CN+1 →
C2N+1 defined by Λ(v)= (v0,v1, . . . ,vN−1,vN,vN−1, . . . ,v1,v0)T. We define V =Λ(CN+1)
to be the subspace of reciprocal coefficient vectors. By (1.1), (1.4), and (1.5), we find

µrec(v) = µ(Λ(v)). Thus, the star body formed by the intersection of �2N+1 and V is
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related to the reciprocal star body. Specifically,

�N+1 =Λ−1(V ∩�2N+1
)
. (1.36)

Every bounded symmetric star body uniquely determines a symmetric distance func-

tion [1, Chapter IV.2, Theorem 1]. Thus, armed with µ and Λ, we could “discover” µrec.

Equation (1.7) can be recovered from the symmetry in the definition of Λ, so we would

lose no information if we were to define µrec in this manner.

The volume of �M+1 as well as the subspace volume of the star body formed by

intersecting �M+1 with the subspace of real coefficient vectors were investigated in [2].

Thus the computation of the volume of �N+1 yields subspace volume information of

another “slice” of �2N+1.

2. A change of variables. Let C× = C\{0}, and define the map �N : (C×)N → CN by

�N(α)= a, where

xNp̃a(x)=
N∏
n=1

(
x+αn

)(
x+α−1

n
)
. (2.1)

Thus the nth coordinate function of �N is given by εn(α1, . . . ,αN,α−1
1 , . . . ,α−1

N ), where

εn is the nth elementary symmetric function in 2N variables. Let EN : CN → CN be the

function whose nth coordinate function is en, the nth elementary symmetric function

in N variables. That is, given β∈ CN , if b= EN(β), then

N∏
n=1

(
x+βn

)= xN+N−1∑
n=0

bnxn. (2.2)

It is well known that the (complex) Jacobian of EN(β) is given by |V(β)|2, where

V(β)=
∏

1≤m<n≤N

(
βn−βm

)= det



1 1 ··· 1

β1 β2 ··· βN
β2

1 β2
2 ··· β2

N
...

...
. . .

...

βN−1
1 βN−1

2 ··· βN−1
N


(2.3)

is the Vandermonde determinant. We will relate the Jacobian of �N to the Jacobian of EN .

Lemma 2.1. For each positive integer N, the Jacobian of �N(α) is given by

∣∣∣∣V(α1+ 1
α1
, . . . ,αN+ 1

αN

)∣∣∣∣2

·
N∏
n=1

∣∣∣∣(α2
n−1

α2
n

)∣∣∣∣2

. (2.4)

Proof. By definition, εn(x1, . . . ,xN,x′1, . . . ,x
′
N) is composed of all monomials of de-

gree n in the variables x1, . . . ,xN , x′1, . . . ,x
′
N . If we impose the relation xmx′m = 1 for

m= 1, . . . ,N, then εn(x1, . . . ,xN,x′1, . . . ,x
′
N) is no longer homogeneous. In this situation,

it is easy to see that the monomials of degree n of εn(x1, . . . ,xN,x′1, . . . ,x
′
N) are exactly
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the monomials which do not contain both xm and x′m for m= 1, . . . ,N. Hence,

εn
(
x1, . . . ,xN,x′1, . . . ,x

′
N
)

= en
(
x1+x′1, . . . ,xN+x′N

)+(monomials of degree<n).
(2.5)

In general, εn(x1, . . . ,xN,x′1, . . . ,x
′
N) has monomials of degree n−2M : those monomials

which contain xm and x′m, where m runs over a subset of 1, . . . ,N of cardinality M . By

counting the number of times each monomial of degree n−2M appears, we arrive at

the identity

εn

(
α1, . . . ,αN,

1
α1
, . . . ,

1
αN

)
= en

(
α1+ 1

α1
, . . . ,αN+ 1

αN

)

+
(
N−n−2

1

)
en−2

(
α1+ 1

α1
, . . . ,αN+ 1

αN

)

+
(
N−n−4

2

)
en−4

(
α1+ 1

α1
, . . . ,αN+ 1

αN

)
+···

=
[N/2]∑
M=0

(
N−n−2M

M

)
en−2M

(
α1+ 1

α1
, . . . ,αN+ 1

αN

)
,

(2.6)

where [N/2] is the integer part of N/2.

Thus

�N(α)=


1 0 ··· 0

∗ 1 ··· 0
...

...
. . .

...

∗ ∗ ··· 1

EN(β), (2.7)

where

β=
(
α1+ 1

α1
, . . . ,αN+ 1

αN

)T

, (2.8)

and ∗ represents entries which are not necessarily 0. The Jacobian of EN(β)= |V(β)|2,

and thus by the chain rule, we arrive at the formula for the Jacobian of �N(α) given in

the statement of the lemma.

The Jacobian of �N(α) is nonzero for λ2N -almost all points of (C×)N , and there are

2NN! preimages for λ2N -almost all a ∈CN . Employing the change-of-variables formula,

we find

HN(s)=
∫
CN
νrec(a)−2sdλ2N(a)

= 1
2NN!

∫
(C×)N

{ N∏
n=1

max
{∣∣αn∣∣,∣∣α−1

n
∣∣}−2s

∣∣∣∣(α2
n−1

α2
n

)∣∣∣∣2
}

×
∣∣∣∣V(α1+ 1

α1
, . . . ,αn+ 1

αn

)∣∣∣∣2

dλ2N(α).

(2.9)
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The latter integral admittedly looks formidable; however, this change of variables is

beneficial since it allows us to exploit the multiplicative nature of νrec.

3. HN(s) is a determinant. We first prove a short technical lemma concerning de-

terminants.

Lemma 3.1. Let N be a positive integer. If I = I(j,k) is an N×N matrix and SN is the

Nth symmetric group, then

det(I)= 1
N!

∑
τ∈SN

∑
σ∈SN

sgn(τ)sgn(σ)
N∏
n=1

I
(
τ(n),σ(n)

)
. (3.1)

Proof.

N∏
n=1

I
(
τ(n),σ(n)

)= N∏
n=1

I
(
n,σ ◦τ−1(n)

)
. (3.2)

Thus we can write (3.1) as

1
N!

∑
τ∈SN

∑
σ∈SN

sgn
(
σ ◦τ−1) N∏

n=1

I
(
n,σ ◦τ−1(n)

)

= 1
N!

∑
τ∈SN

∑
σ∈SN

sgn(σ)
N∏
n=1

I
(
n,σ(n)

)= ∑
σ∈SN

sgn(σ)
N∏
n=1

I
(
n,σ(n)

)
,

(3.3)

which is the familiar formula for det(I).

Using (2.3), we expand the Vandermonde determinant as a sum over the symmetric

group to find

∣∣∣∣V(α1+ 1
α1
, . . . ,αn+ 1

αn

)∣∣∣∣2

=
∣∣∣∣∣ ∑
σ∈SN

sgn(σ)
N∏
n=1

(
αn+ 1

αn

)σ(n)−1
∣∣∣∣∣

2

, (3.4)

which we rewrite as

∑
σ∈SN

∑
τ∈SN

sgn(σ)sgn(τ)
N∏
n=1

(
αn+ 1

αn

)σ(n)−1(
αn+ 1

αn

)τ(n)−1

. (3.5)

Substituting this expression into (2.9), we can write HN(s) as

1
2NN!

∫
(C×)N

{ N∏
n=1

max
{∣∣αn∣∣,∣∣α−1

n
∣∣}−2s

∣∣∣∣∣
(
α2
n−1

α2
n

)∣∣∣∣∣
2}

×
( ∑
σ∈SN

∑
τ∈SN

sgn(σ)sgn(τ)
N∏
n=1

(
αn+ 1

αn

)σ(n)−1(
αn+ 1

αn

)τ(n)−1
)
dλ2N(α).

(3.6)
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Exchanging the sums and the integral, and consolidating the products, we find

HN(s)=
∑
σ∈SN

∑
τ∈SN

sgn(σ)sgn(τ)
1

2NN!

×
∫
(C×)N

{ N∏
n=1

max
{∣∣αn∣∣,∣∣α−1

n
∣∣}−2s

×
(α2

n−1

α2
n

)(α2
n−1

α2
n

)(
αn+ 1

αn

)σ(n)−1(
αn+ 1

αn

)τ(n)−1
}
dλ2N(α).

(3.7)

By an application of Fubini’s theorem, we find

HN(s)= 1
N!

∑
σ∈SN

∑
τ∈SN

sgn(σ)sgn(τ)
N∏
n=1

�
(
σ(n),τ(n)

)
, (3.8)

where �(J,K) is given by

1
2

∫
C×

max
{|α|,∣∣α−1

∣∣}−2s
(
α− 1

α

)(
α− 1

α

)(
α+ 1

α

)J−1(
α+ 1

α

)K−1dλ2(α)
|α|2 . (3.9)

Applying Lemma 3.1 to (3.8), we find that HN(s) is the determinant of the N×N matrix

�= �(J,K).

4. The entries of � are rational functions of s. We will view �(J,K), not only as an

entry in a matrix, but also as a function of s. We note that λ2(α)/|α|2 is normalized

Haar measure on C×. Thus �(J,K;s) is invariant under the substitution α� α−1, and

we may write

�(J,K;s)=
∫
C\D

|α|−2s
(
α− 1

α

)(
α− 1

α

)(
α+ 1

α

)J−1(
α+ 1

α

)K−1dλ2(α)
|α|2 , (4.1)

where D is the open unit disk. By setting α= reiθ , we may write �(J,K;s)= ĥ(J,K;r),
where h(J,K;r) is given by

∫ 2π

0

(
reiθ− 1

reiθ

)(
r
eiθ

− e
iθ

r

)(
reiθ+ 1

reiθ

)J−1( r
eiθ

+ e
iθ

r

)K−1

dθ (4.2)

for r ∈ [1,∞), and identically zero on [0,1).
By the change of variables θ � −θ, we see that h(J,K;r) = h(K,J;r). We conclude

that � is a symmetric matrix whose J,K entry is ĥ(J,K;s).

Lemma 4.1. �(J,K;s) analytically continues to a rational function. Specifically,

�(J,K;s)=π
N∑
n=1

cn(J)cn(K)
2s

s2−n2
, (4.3)
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where

cn(J)=




 J−1
J+n

2

−
 J−1
J+n

2
−1


 if n< J and n≡ J(mod2),

1 if n= J,
0 otherwise.

(4.4)

Proof. Without loss of generality, we assume K ≥ J. There is a constant � such that

h(J,K;r) < �rJ+K on [1,∞). Thus the integral defining �(J,K;s) converges in the half

plane �(s) > (J+K)/2.

Writing (reiθ+1/reiθ)J−1 and (r/eiθ+eiθ/r)K−1 as sums with binomial coefficients,

we may rewrite (4.2) as

h(J,K;r)=
J−1∑
j=0

K−1∑
k=0

(
J−1

j

)(
K−1

k

)
rJ+K−2(j+k)−2

×
∫ 2π

0

(
r 2+ 1

r 2
−(e2iθ+e−2iθ))e(J−K−2(j−k))iθdθ.

(4.5)

The integral appearing in this expression can be readily evaluated:

∫ 2π

0

(
r 2+ 1

r 2
−(e2iθ+e−2iθ))e(J−K−2(j−k))iθdθ

=



2π
(
r 2+ 1

r 2

)
, k= j+ (K−J)

2
,

−2π, k= j+1+ (K−J)
2

,

−2π, k= j−1+ (K−J)
2

.

(4.6)

If J �≡K(mod2), we see that h(J,K;r) (and hence �(J,K;s)) is identically zero.

The conditions given in (4.6) allow us to eliminate one of the summations in (4.5). We

use the facts that 0 ≤ k ≤ K−1 and 0 ≤ j ≤ J−1 together with the conditions in (4.6)

to find conditions on j. Specifically,

k= j+ K−J
2

�⇒ 0≤ j ≤ J−1,

k= j+1+ K−J
2

�⇒ 0≤ j ≤min
{
J+K

2
−2,J−1

}
,

k= j−1+ K−J
2

�⇒max
{
J−K

2
+1,0

}
≤ j ≤ J−1.

(4.7)

Since K ≥ J, we can write

max
{
J−K

2
+1,0

}
= δJK, min

{
J+K

2
−2,J−1

}
= J−1−δJK, (4.8)
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where δJK = 1 if J =K and is 0 otherwise. From this information, we may writeh(J,K;r)
as

2π

J−1∑
j=0

(
J−1

j

) K−1
K−J

2
+j

r 2J−4j+
J−1∑
j=0

(
J−1

j

) K−1
K−J

2
+j

r 2J−4j−4

−
J−1∑
j=δJK

(
J−1

j

) K−1
K−J

2
+j−1

r 2J−4j−
J−1−δJK∑
j=0

(
J−1

j

) K−1
K−J

2
+j+1

r 2J−4j−4

.
(4.9)

Using the convention that (K−1
K )= 0 and (K−1

−1 )= 0, we may eliminate δJK from the latter

two sums. Reindexing each sum based on the powers of rand simplifying the binomial

coefficients, we find

h(J,K;r)= 2π

 J/2∑
l=−J/2+1

J−1
J
2
−l

K−1
K
2
−l

r 4l+
J/2−1∑
l=−J/2

J−1
J
2
+l

K−1
K
2
+l

r 4l

−
J/2∑

l=−J/2+1

J−1
J
2
−l

 K−1
K
2
−l−1

r 4l−
J/2−1∑
l=−J/2

J−1
J
2
+l

 K−1
K
2
+l−1

r 4l

.
(4.10)

Note that in the case that J is odd, these sums run over consecutive odd multiples of

1/2. Reindexing the first and third sum by l�−l, we may combine the first and second

sums, and the third and fourth sums. We may then write h(J,K;r) as

2π

 J/2−1∑
l=−J/2

J−1
J
2
+l

K−1
K
2
+l

(r 4l+r−4l)− J/2−1∑
l=−J/2

J−1
J
2
+l

 K−1
K
2
+l−1

(r 4l+r−4l)
.
(4.11)

Due to the symmetry in the summands, we may reindex the sums using only positive

indices. Let l0 = 0 if J and K are even, and l0 = 1/2 if J and K are odd; then

h(J,K;r)= 2π


 K−1
J+K

2
−1

−
K−1
J+K

2


(r 2J+r−2J)

+2π
J/2−1∑
l=l0


J−1
J
2
+l

−
 J−1
J
2
+l−1




K−1
K
2
+l

−
 K−1
K
2
+l−1


(r 4l+r−4l).

(4.12)

We are now in position to compute ĥ(J,K;s). There is a correspondence between

the coefficients and powers of r which appear in h(J,K;r) and the poles and residues

of ĥ(J,K;s). As was demonstrated in the proof of Corollary 1.4, the Mellin transform

of r 4l+r−4l analytically continues to the rational function s/(s2−4l2). Thus �(J,K;s)
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extends to a rational function:

�(J,K;s)= 2π


 K−1
J+K

2
−1

−
K−1
J+K

2


 s
s2−J2

+2π
J/2−1∑
l=l0


J−1
J
2
+l

−
 J−1
J
2
+l−1




K−1
K
2
+l

−
 K−1
K
2
+l−1


 s
s2−4l2

.

(4.13)

Reindexing this sum by setting n= 2l, we find

�(J,K;s)= 2π


 K−1
J+K

2
−1

−
K−1
J+K

2


 s
s2−J2

+2π
∑
n


 J−1
J+n

2

−
 J−1
J+n

2
−1




K−1
K+n

2

−
 K−1
K+n

2
−1


 s
s2−n2

,

(4.14)

where the sum is overn∈ {1,3, . . . ,J−2} if J and K are odd, and overn∈ {2,4, . . . ,J−2}
if J and K are even. If J =K, the leading coefficient is 1. Using (4.4) we may write (4.14)

as in the statement of the lemma. It is easy to verify that expression (4.3) is symmetric

in J and K, giving �(J,K;s) = �(K,J;s) as expected. Additionally, if J �≡ K(mod2), the

expression in (4.3) yields �(J,K;s)= 0. This proves the lemma.

We identify �(J,K;s) with the rational function it extends to. When J and K are odd,

�(J,K;s) has poles at ±1,±3, . . . ,±min{J,K}. When J and K are even, �(J,K;s) has

poles at ±2,±4, . . . ,±min{J,K}. �(J,K;s) has a zero of multiplicity one at 0.

We are now in position to prove the first part of Theorem 1.2. HN(s) is the determi-

nant of �, and the entries of � extend to rational functions of s. Since the determinant

is a polynomial in the entries of a matrix, HN(s) itself extends to a rational function

of s. In fact, since the determinant is a homogeneous polynomial in the entries of a

matrix and the entries of � analytically continue to odd functions, HN(s) analytically

continues to an even rational function when N is even, and analytically continues to an

odd rational function when N is odd. We also see that HN(s) has a zero of multiplicity

N at 0.

5. HN(s) is a simple product. In this section, we express det(�) as a simple prod-

uct. The structure of the poles and residues of �(J,K;s) will allow us to find linear

dependence relations on the rows of �.

Let Bn be the N ×N matrix whose J,K entry is the integer cn(J)cn(K). Then by

Lemma 4.1, we have the matrix equation

�=
N∑
n=1

Bn
2πs
s2−n2

. (5.1)
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DefineωT
n ∈QN to be the row vector given byωT

n = (cn(K))NK=1. It follows then that the

Jth row vector of Bn is given by cn(J)ωT
n, and thus every row of Bn is a scalar multiple

of ωT
n.

We may find a nonzero vector ψ∈QN such that ωT
nψ= 0 for 1≤n≤N−1. In fact,

Bnψ= 0 for 1≤n≤N−1, leading us to the vector equation

�ψ=
N∑
n=1

Bnψ
2πs
s2−n2

= BNψ 2πs
s2−N2

. (5.2)

We see that (�− BN(2πs/(s2 −N2)))ψ = 0, and so det(�− BN(2πs/(s2 −N2))) = 0.

From the definition of BN and Lemma 4.1, we find

�−BN 2πs
s2−N2

=


�(1,1) �(1,2) ··· �(1,N)
�(2,1) �(2,2) ··· �

(
2,N

)
...

...
. . .

...

�(N,1) �(N,2) ··· �(N,N)− 2πs
s2−N2

 . (5.3)

Taking determinants and exploiting the multilinearity of the determinant, we obtain

the following:

det


�(1,1) �(1,2) ··· �(1,N)
�(2,1) �(2,2) ··· �(2,N)

...
...

. . .
...

�(N,1) �(N,2) ··· �(N,N)

= det


�(1,1) �(1,2) ··· 0

�(2,1) �(2,2) ··· 0
...

...
. . .

...

�(N,1) �(N,2) ··· 2πs
s2−N2

 .
(5.4)

The left-hand side isHN(s). By a simple induction argument, we finally arrive at a simple

product formulation of HN(s):

HN(s)=
N∏
n=1

2πs
s2−n2

. (5.5)
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