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Some new approximation methods are proposed for the numerical evaluation of the finite-
part singular integral equations defined on Hilbert spaces when their singularity consists
of a homeomorphism of the integration interval, which is a unit circle, on itself. Therefore,
some existence theorems are proved for the solutions of the finite-part singular integral
equations, approximated by several systems of linear algebraic equations. The method is
further extended for the proof of the existence of solutions for systems of finite-part singular
integral equations defined on Hilbert spaces, when their singularity consists of a system of
diffeomorphisms of the integration interval, which is a unit circle, on itself.
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1. Introduction. In recent years, finite-part singular integral equations are of increas-

ing technological importance in engineering mechanics. Fields like elasticity, plasticity,

and fracture mechanics are covered with success with finite-part singular integral equa-

tions methods. This type of singular integral equations consists in the generalization of

the Cauchy singular integral equations, which have been systematically studied during

the last decades.

The concept of finite-part singular integrals was firstly introduced by Hadamard [2, 3].

Many years later, Schwartz [13] analyzed some basic properties of the above type of

singular integrals.

Beyond the above, Kutt [4] proposed and investigated several numerical formulas

for the evaluation of the finite-part singular integrals. He also explained the difference

between a finite-part integral and a “generalized principle value integral.”

Some years later, Golberg [1] introduced some algorithms for the numerical evalua-

tion of the finite-part singular integrals and proposed several theorems for the conver-

gence of the numerical solutions. The method, which he investigated, is an extension

of the Galerkin’s and the collocation method.

On the other hand, Ladopoulos [5, 6, 7, 8, 9] has generalized the Sokhotski-Plemelj

formulas, in order to determine the limiting values of the finite-part singular integrals

defined over a smooth open or closed contour. He further introduced several numerical

methods for the evaluation of the finite-part singular integral equations of the first

and the second kind and has applied them to some important problems of fracture

mechanics.

Moreover, Ladopoulos et al. [10, 11] investigated basic concepts of functional analy-

sis in order to prove some general properties of finite-part singular integral equations.
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These integral equations were defined on Hilbert and Lp spaces, and by a proposed

method, they have been reduced to the equivalent Fredholm equations. Furthermore,

the above singular integral equations have been applied to the solution of several im-

portant crack problems.

Beyond the above, in the present study, the finite-part singular integral equations

defined on Hilbert spaces are investigated, when their singularity consists of a home-

omorphism of the integration interval, which is a unit circle, on itself. Hence, some

existence theorems are proposed for the solution of the above type of singular integral

equations, approximated by several systems of linear algebraic equations.

The method is further used in order to prove the existence of solutions for systems

of finite-part singular integral equations, too. The singularity of the above systems

consists of a system of diffeomorphisms of the integration interval, which is a unit

circle, on itself.

2. Existence theorems of finite-part singular integral approximations in Hilbert

spaces

Definition 2.1. Consider the finite-part singular integral equation

Φu(t)≡A(t)u(t)+ B(t)
πi

∫
=
Γ

u(x)
(x−t)µ dx+C(t)u

[
ϕ(t)

]

+D(t)
πi

∫
=
Γ

u(x)(
x−ϕ(t))µ dx

+
∫
Γ
k(t,x)u(x)dx = f(t), t ∈ Γ , µ ∈N,

(2.1)

where Γ denotes the unit circle Γ = {t : |t| = 1}, A(t),B(t),C(t),D(t),k(t,x) ∈Hβ,m×m
[12] (Banach space ofm×mmatrix-valued functions satisfying Hölder’s condition with

exponent β, 0< β≤ 1), f(t)∈Hβ,m,u(t) is the unknown function, andϕ(t) is a home-

omorphism of Γ on itself.

Theorem 2.2. Consider the finite-part singular integral equation (2.1), where ϕ(t)
satisfies the following condition:

ϕi(t)= t, ϕj(t)=ϕ
[
ϕj−1(t)

]
, 1≤ j ≤ i, i∈N. (2.2)

An approximate solution of (2.1) is of the form

un(t)=
n∑

l=−n
εltl, t = eis , (2.3)

where the coefficients εl, l = −n,. . . ,n, are obtained by solving the following system of

linear algebraic equations:

n∑
l=0

Aj−lεl+
−1∑
l=−n

Bj−lεl+
n∑
l=0

Cjlεl+
−1∑
l=−n

Djlεl+
n∑

l=−n
Kjlεl = fj (j =−n,. . . ,n), (2.4)
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with Aj , Bj , Cjl, Djl, and Kjl, j = ±1,±2, . . . , being the Fourier coefficients of the corre-

sponding matrix-valued functions

A1(t)=A(t)+B(t), B1(t)=A(t)−B(t), C1l(t)=
[
C(t)+D(t)][ϕ(t)]l,

D1l(t)=
[
C(t)−D(t)][ϕ(t)]l, K1l =

∫
Γ
k(t,x)xldx.

(2.5)

Moreover, consider the following conditions to be satisfied:

D(t)= C(t)A−1[ϕ(t)]B[ϕ(t)], (2.6)

ϕ′(t) �= 0, t ∈ Γ , ϕ′(t)∈Hβ, (2.7)

and the operator Φ is invertible in the Hilbert space L2,m [1], detA(t) does not vanish if

t ∈ Γ , and ϕ(t) satisfies the inequality

∥∥∥C[ϕ−1(t)
]
A−1(t)

[
ϕ−1(t)

]1/2∥∥∥< 1, (2.8)

where ϕ−1(t) is the inverse of ϕ(t).
Then, for sufficiently large n, the system (2.4) has a unique solution and the approx-

imate solution (2.3) converges to the exact solution of (2.1) at a rate described by the

inequality

∥∥u(t)−un(t)∥∥L2,m
≤ ξn−β, (2.9)

where ξ denotes a constant independent of n.

Proof. Consider the following operators to be valid on the space L2:

Fu(t)= 1
πi

∫
=
Γ

u(x)
(x−t)µ , G = 1

2
(I+F), H = 1

2
(I−F),

Ku(t)=
∫
Γ
k(t,x)u(x)dx, Lu(t)=u[ϕ(t)], Mnu(t)=

n∑
i=−n

εiti
(2.10)

with εi being the Fourier coefficients of u(t) and I the identity operator.

Furthermore, we introduce the operator

Π=AI+BF+Ku, (2.11)

where A and B are the operators corresponding to multiplication by A(t) and B(t),
respectively.

Moreover, the operator Πn is on the subspace ImMn of the space L2,m and is defined

by the relation

Πn =MnΠMn. (2.12)
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Hence, from (2.8), it follows that the operatorΠ2 = I+CA∗L has an inverse, whereA∗
is the operation of multiplying by A∗(t)=A−1[ϕ(t)]. Therefore, from (2.6), we obtain

Φ = (I+CA∗L)(A1G+B1H+K∗
)
, (2.13)

where

K∗ =Π−1
2 K. (2.14)

As the operator Φ is invertible, then the following operator is invertible too:

Φ∗ =Π−1
2 Φ =A1G+B1H+K∗. (2.15)

Furthermore, we consider the following operators:

Π2n =MnΠ2Mn =Mn
(
I+CA∗L

)
Mn =Mn+MnCA∗LMn,

Φ2n =
(
A1nG+B1nH+MnK∗

)
Mn,

(2.16)

where A1n and B1n denote multiplication by the matrices of polynomials of degree not

higher than n, uniformly approximating most accurately the matrices A1(t) and B1(t),
respectively.

Moreover, the operators Π2n are invertible for all n and the operators Φ2n are invert-

ible for sufficiently large n.

By putting

εn =
∥∥MnΦMn−Π2nΦ2n

∥∥, (2.17)

we obtain limn→∞ εn = 0.

Therefore, the operators MnΦMn are invertible, beginning with some n = n1, and

hence the system (2.4) has a unique solution and the proof of the requested inequality

(2.9) is obvious.

Theorem 2.3. Let the finite-part singular integral equation (2.1), whereϕ(t) satisfies

condition (2.2). An approximate solution of (2.1) is of the form (2.3), where the coefficients

εl, l = −n,. . . ,n, are obtained by solving the following system of linear algebraic equa-

tions:

n∑
k=0

[
Aj−k+

n∑
l=−n

DjlAl−k

]
εl+

−1∑
k=−n

[
Bj−k+

n∑
l=−n

DjlBl−k

]
εk+

n∑
k=−n

Kjlεk

= fj
(
j =−n,n),

(2.18)

whereAj , Bj ,Djl, andKjl, j =±1,±2, . . . , are the Fourier coefficients of the matrix-valued

functions given by (2.5).

Moreover, if conditions (2.7) and (2.8) are satisfied, and the operator K is continuously

invertible in the Hilbert space L2,m, then the system (2.18) has a unique solution for

sufficiently large n and the approximate solutions un(t) converge to the exact solution

u(t) of the finite-part singular integral equation (2.1) with a rate given by (2.9).
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Proof. By using inequality (2.8), the linear system (2.18) is equivalent to the opera-

tional-equation system

Φnun ≡Mn
(
I+CA∗L

)
Mn(AI+BF)Mnun+MnKMnun =Mnf , (2.19)

where the operatorsMn, L, F , and K are given by (2.10), I denotes the identity operator,

and A∗(t)=A−1[ϕ(t)].
Furthermore, the operator AI+BF is invertible and because of the conditions of the

theorem, beginning with some n = n∗, the operators Zn = Mn(AI + BF)Mn are also

invertible. Hence, the operators Z−1
n Mn converge strongly to (AI+BF)−1.

Moreover, the operators Π2n are invertible for all n and therefore the operators

Xn =Mn(I+CA∗L)Mn(AI+BF)Mn are invertible for n≥n∗ and the operators X−1
n Mn

converge strongly to (AI+BF)−1(I+CA∗L)−1. Hence, the system (2.18) has a unique

solution for sufficiently large n and the proof of Theorem 2.3 is completed.

3. Existence theorems of other kinds of finite-part singular integral approxima-

tions in Hilbert spaces

Definition 3.1. Consider the finite-part singular integral equation

Nu(t)≡A(t)u(t)+ B(t)
πi

∫
=
Γ

u(x)
(x−t)µ dx+C(t)u

[
ϕ(t)

]

+D(t)
πi

∫
=
Γ

u
[
ϕ(t)

]
(x−t)µ dx+

∫
Γ
k(t,x)u(x)dx = f(t), t ∈ Γ , µ ∈N,

(3.1)

where Γ denotes the unit circle Γ = {t : |t| = 1}, A(t),B(t),C(t),D(t),k(x,t)∈Hβ,m×m,

f(t) ∈ Hβ,m, u(t) is the unknown function, and ϕ(t) is a homeomorphism of Γ on

itself.

Theorem 3.2. Let the finite-part singular integral equation (3.1), where an approxi-

mate solution is of the form (2.3) with the coefficients εl, l=−n,. . . ,n, to be obtained by

solving the system of linear algebraic equations

n∑
k=0

Aj−kεk+
−1∑

k=−n
Bj−kεk+

n∑
l=−n

[
C∗jl+D∗jl+Kjl

]
εl = fj (j =−n,. . . ,n), (3.2)

where Aj , Bj , and Kjl, j = ±1,±2, . . . , are the Fourier coefficients of the matrix-valued

functions given by (2.5) and C∗jl and D∗jl are the Fourier coefficients of the matrix-valued

functions C(t)[ϕ(t)]l and (D(t)/πi)
∫=Γ (|ϕ(t)|l/(x−t)), respectively.

Moreover, if condition (2.7) is satisfied and the operatorN is invertible in L2,m, then the

system (3.2) has unique solutions for sufficiently large n and the approximate solutions

of (3.2) converge to the exact solution with a rate given by (2.9).

Proof. We use the following representation for the finite-part singular integral

equation (3.1):

N = Φ+FL−LF, (3.3)
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where Φ denotes the finite-part singular integral equation (2.1) and F , L are the opera-

tors given by (2.10).

Therefore, since the operator FL− LF , under the assumption concerning ϕ(t), is

completely continuous, it is easily proved that the system (3.2) has unique solutions

for sufficiently large n.

Definition 3.3. Consider the system of finite-part singular integral equations

Tu(t)≡A(t)u(t)+ B(t)
πi

∫
=
Γ

u(x)
(x−t)µ dx

+
ξ∑
k=1

[
Ck(t)u

[
ϕk(t)

]+Dk(t)
πi

∫
=
Γ

u(x)(
x−ϕk(t)

)µ dx
]

+
∫
Γ
k(t,x)u(x)dx = f(t),

(3.4)

where Γ denotes the unit circle Γ = {t : |t| = 1},A(t),B(t),Ck(t),Dk(t),k(t,x)∈Hβ,m×m
(0< β≤ 1), f(t)∈Hβ,m,u(t) is the unknown function, andϕk, k= 1,2, . . . ,ξ, is a system

of diffeomorphisms of Γ on itself.

The proof of the following theorem is analogous to the proof of Theorem 2.2.

Theorem 3.4. Let the system of finite-part singular integral equations (3.4), while

an approximate solution is of the form (2.3) with the coefficients εl, l = −n,. . . ,n, to be

obtained by solving the system of linear algebraic equations

n∑
l=0

Aj−lεl+
−1∑
l=−n

Bj−lεl+
ξ∑
k=1

[ n∑
l=0

C(k)jl εl+
−1∑
l=−n

D(k)jl εl

]
+

n∑
l=−n

Kjlεl

= fj (j =−n,. . . ,n),
(3.5)

where Aj , Bj , and Kjl are the Fourier coefficients of the corresponding matrix-valued

functions given by (2.5) and C(k)jl and D(k)jl are the Fourier coefficients of [Ck(t) +
Dk(t)](ϕk(t))l and [Ck(t)−Dk(t)](ϕk(t))l, respectively.

Moreover, if condition (2.7) is satisfied and the operator T is invertible in L2,m, then

the system (3.5) has unique solutions for sufficiently large n.

4. Conclusions. A finite-part singular integral equations analysis has been presented

by proposing several approximation methods. Some existence theorems were proved

for the solutions of the systems of linear algebraic equations on which the finite-part

singular integral equations are approximated. The singularity of the above type of sin-

gular integral equations consists of a homeomorphism of the integration interval (unit

circle) on itself.

The method was further extended in order to prove the existence of solutions for

systems of finite-part singular integral equations, when their singularity consists of a

system of diffeomorphisms of the integration interval (unit circle) on itself.
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Hence, the present study was devoted to a basic description of numerical schemes,

the vigorous foundation and comparison of a series of approximate methods and algo-

rithms, and their application to the numerical solution of finite-part singular integral

equations defined on Hilbert spaces.
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