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1. Introduction. The Banach contraction mapping principle is well known. There
are many generalizations of that principle to single- and multivalued mappings (see
[1,4, 5,10, 11, 12]). The study of maps satisfying some contractive conditions has been
the center of rigorous research activity since such mappings have many applications
(see [2, 3,9, 13, 14, 15]).

In 1998, Ciri¢ [6] proved a common fixed point theorem for nonlinear mappings on
a complete metric space: let (X,d) be a complete metric space and S,T : X — X self-
maps such that d(STx,TSy) < max{p[(1/2)(d(x,Sy)+d(y,Tx))],p2[d(x,Tx)],
@e3ld(y,Sy)],pald(x,y)]} for all x,y in X, where @; € ® (i =1,2,3,4).If S or T is
continuous, then S and T have a unique common fixed point. This result improved and
extended a theorem of Fisher [8].

In this paper, using the concept of D-metric, we prove common fixed point theorems
which extend, improve, and unify the corresponding theorems of Fisher [8] and Ciri¢
[6].

Throughout the paper, by ® we denote the collection of functions @ : [0, %) — [0, c0)
which are continuous from the right, nondecreasing, and which satisfy the condition
@(t) <t forallt>0.We denote by N the set of all positive integers.

2. Preliminaries. Before proving the main theorem, we will introduce some defini-
tions and lemmas.

DEFINITION 2.1 [7]. Let X be any nonempty set. A D-metric for X is a function
D:XXxXxX — R such that
(1) D(x,vy,z) =0 for all x,y,z € X and equality holds if and only if x = y = z,
2) D(x,yv,z) =D(x,z,y)=D(v,x,z) =D(y,z,x) =D(z,x,y) =D(z,v,x) for all
x,v,z€ X,
3) D(x,y,z) <D(x,v,a)+D(x,a,z)+D(a,y,z) forall x,y,z € X.

If D is a D-metric for X, then the ordered pair (X,D) is called a D-metric space
or the set X, together with a D-metric, is called a D-metric space. We note that to
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a given ordinary metric space (X,d) there corresponds a D-metric space (X,D), but
the converse may not be true (see Example 3.3). In this sense the D-metric spaces are
the generalizations of the ordinary metric space.

DEFINITION 2.2 [7]. A sequence {x,} of points of a D-metric space X converges to a
point x € X if for an arbitrary € > 0, there exists an ng € N such that for all n > m = ny,
D(Xm,Xn,X) <E.

DEFINITION 2.3 [7]. A sequence {x,} of points of a D-metric space X is said to be
a D-Cauchy sequence if for an arbitrary € > 0, there exists an ny € N such that for all
p>n>mz=ng, D(Xm,Xn,Xp) <E.

DEFINITION 2.4 [7]. A D-metric space X is a complete D-metric space if every D-
Cauchy sequence {x,} in X converges to a point x in X.

DEFINITION 2.5. A real-valued function f defined on a metric space X is said to be
lower semicontinuous at a point ¢ in X if lim,_;inf f(x) = o or lim, _;inf f(x) = f(t).

DEFINITION 2.6. A real-valued function f defined on a metric space X is said to be
upper semicontinuous at a point t in X if limy_; sup f (x) = co or limy_; sup f(x) < f(t).

DEFINITION 2.7. Let xo € X and € > 0 be given. Then the open ball B(xy,¢) in X
centered at xq of radius ¢ is defined by

B(xo,¢&) = {y € X | D(xo,y,y) <eif v =x¢, supD(x¢,y,z) < cif y :txo}. (2.1)
zeX

Then the collection of all open balls {B(x,¢) : x € X} defines the topology on X denoted
by T.

LEMMA 2.8 [7]. The D-metric for X is a continuous function on X x X x X in the
topology T on X.

LEMMA 2.9 [6]. If @1,@2 € ®, then there is some @ € ® such that max{Q;(t),
@2 ()} <@(t) forallt > 0.

LEMMA 2.10. Let (X,D) be a D-metric space. Let g : X Xx X — X be a mapping and let
S,T: X — X be mappings such that

max {D(STx,TSy,g(STx,TSy)),D(TSy,STx,g(TSy,STx))}

< maX{cm [%(D(x,Sy.g(x,Sy)) +D(y,Tx,g(y,Tx>))],

2.2
@2[D(x,Tx,g9(x,Tx))],@3[D(y,S¥,9(y,S¥))], =2

<p4[D(x,y,g(x,y))]}
forall x,y € X, where p; € ® (i =1,2,3,4),

x=y=D(x,y,9(x,¥)) =0, (2.3)
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and

max {D(x,z,9(x,z)),D(x,v,9(x,2)),D(v,z,9(x,2))} o
<D(x,»,9(x,¥)) +D(»,2,9(¥,2)) '

for all x,y,z € X. The sequence {xy} is defined by xy € X, Xon+1 = TXopn, and Xop,2 =
SXxons1 for every n e NU{0}. Then
(I) foran arbitrary € > 0, there exists a positive integer L such that L <n < m implies
max{D (Xn,Xm,d (Xn, Xm)),D(Xm,Xn,g(Xm,Xn))} <g,
(Il) a sequence {xy};_ is a D-Cauchy sequence.

PROOF. LetM =max{D(xo,x1,9(x0,X1)),D(x1,x2,9(x1,x2)),D(x2,x1,9(x2,X1))}.
Since all @; are nondecreasing functions by (2.2), (2.3), and (2.4),

max {D(x2,x3,9(x2,x3)),D(x3,x2,9(x3,%x2))}
=max {D(5Txq,TSx1,9(STx0,TSx1)),D(TSx1,STx0,9(TSx1,5Tx0))}

< maX{Cpl [%(D(Xo,le,g(Xo,le)) +D(X1,TX0,Q(X1,TX0)))],

2[D(x0, Tx0,9(x0, Tx0)) ], 3[D (x1,5x1,9(x1,5x1)) ], (2.5)
PalD (x0, 1,9 (x0, 1)) |

<max {Q1(M),p2(M),p3(M),ps(M)}
= (M),

where @ € ®. Such @ exists from an extended version of Lemma 2.9. Therefore, we
have max{D(x2,x3,g(x2,x3)),D(x3,X2,9(x3,x2))} < @(M). Again, from (2.2), (2.3),
and (2.4), we get

max {D(x3,X4,9(x3,x4)),D (x4,x3,9(x4,x3))}
=max {D(TSx1,STx2,9(TSx1,STx2)),D(STx2,TSx1,9(STx2,TSx1))}
< max{qn [%(D(xz,le,g(xg,le)) +D(x1,Tx2,g(x1,Tx2)))],
@2[D(x2,Tx2,g(x2,Tx2)) ], @3[D (x1,5x1,9(x1,5x1)) ], (2.6)
<P4[D(X2,X1,Q(X2,X1))]}

<max {@1 (M), p:[@M)],p3(M),@s(M)}
<@(M).

Using the obtained relations max{D (x»,x3,g(x2,Xx3)),D(x3,Xx2,9(Xx3,Xx2))} < @(M)
and max{D(x3,x4,9(x3,X4)),D(x4,x3,9(x4,Xx3))} < (M), from (2.2), (2.3), and (2.4),
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we get

max {D (x4, X5,9(x4,%5)), D (x5,x4,9 (x5,%4)) }
=max {D(STx>,TSx3,9(STx2,TSx3)),D(TSx3,STx2,9(TSx3,5Tx2))}

< max{cpl [%(D(X2,3X3,Q(X2,SX3)) +D(x3,Tx2,g(X3,Tx2)))],
@2[D(x2,Tx2,g(x2,Tx2))], @3[D(x3,5x3,9(x3,5x3)) ], (2.7)
P4 [D(xz,x3,g(x2,x3))]}

smax{@;[@M)],p:[@M)],@3[@M)],@s[@(M)]}

< % (M).

Similarly, again from (2.2), (2.3), and (2.4), we get

max {D (x5, X6,9(X5,%6)),D (x6,X5,9 (x6,X5)) }
=max {D(TSx3,5Tx4,9(TSx3,5Tx4)),D(STx4,TSx3,9(STx4,TSx3))}

< maX{QDI [%(D(X4,SX3,g(X4,SX3)) +D(X3,TX4,Q(X3,TX4)))],

@2[D (x4, Tx4,9(x4,Tx4)) ], P3[D(x3,5%3,9(x3,5x3)) ], (2.8)
P4 [D(X4,X3,Q(X4,X3))]}
<max{@1[@M)],@:[@* (M) ], @s[@M)],ps[@(M)]}
<@*(M).

In general, by induction, we get

max {D (xpn, Xn+1,9 (Xn,Xn+1)), D (Xn+1,Xn, 9 (Xn+1,xn)) } < @21 (M) (2.9

for n > 2, where [n/2] stands for the greatest integer not exceeding n/2. Since ¢ € ®,
by Singh and Meade [13, Lemma 1], it follows that @™ (M) — 0 as n — +o for every
M > 0. Thus, we obtain

max {D (Xn, Xn+1,9 (Xn, Xn+1)), D (Xn+1,Xn, 9 (Xn+1,Xn))} — 0 asn— oco. (2.10)

Suppose that (I) does not hold. Then there exists an € > 0 such that for each i € N,
there exist positive integers n;, m;, with i < n; < m;, satisfying
€ =max {D(Xn;, Xm;» 9 (Xn;, Xm;)), D (Xm;s Xn;, 9 (Xm;, Xn;)) )
max {D (Xn,;, Xm;~1,9 (Xn;, Xm;=1) ), D(Xm;~1,Xn;, G (Xm;—1,Xn,))} <€ fori=1,2,....
(2.11)

Set

& = max {D(Xnilxmilg(xninxmi))7D(Xm,'axn,':g(xm,'sxn,'))}r

, (2.12)
pi =max {D(x{,xi41,9(Xi,Xi41) ), D (Xiv1, X1, 9 (Xi41,%x))} fori=1,2,....
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Then we have

e<g
=max {D(xni,xmisg(xni:xmi)),D(xmi:xni:g(xmivxni))}
<max {D(Xn;, Xm;-1,9 (Xn;, Xm;—1) ), D (Xm;~1,Xn;, 9 (Xm;—1,%Xn,)) } (2.13)
+max {D (Xm;-1,Xm;» 9 (Xm;-1,Xm;)), D (Xmys Xmi—1,9 (X Xmy-1)) }

<&+pmi-1, 1=1,2,....
Taking the limit as i — +o0, we get lime; = ¢. On the other hand, by (2.2), (2.3), and (2.4),

& =max {D (Xn;, Xm;, G (Xn;, Xm;) ), D (Xm; Xy, g (Xm, X)) }

<max {D(Xn;, Xn;+1,9 (Xn;» Xn;+1) )y D (X 41, X0 9 (Xn+1,Xn;)) }
+max {D (Xpn;+1,Xn;42,9 (Xn;+1,Xn;42) ), D (X2, Xn; 41,9 (Xni+2:Xn;41)) |
+max {D(Xn,+2,Xm,;+2,9 (Xn;+2,Xm;+2) ), D (Xm;+2, Xn;+2, 9 (Xm;+2,Xn,+2) ) }
+max {D (Xm;+2, Xm;+1,9 (Xm;+2,Xm;+1) ), D (Xm; 41, Xm; 42,9 (Xm+1, Xmy+2))
+max {D (Xm;+1,Xm;, 9 (Xm;+1,Xm;) )y D (Xm;, Xmy+1,9 (Xm;, Xmi+1)) }

= P, + Py +1 +MAXA{D (X, 42, Xm;+2,9 (Xng 2, Xm+2)),

D (Xm;+2,Xn;+2,9 (Xm;+2,Xn;+2)) }

+Pmir1+Ppm; fori=1,2,....
(2.14)

We will now analyze the term max{D (xXy; 2, Xm;+2,9 (Xn;+2,Xm;+2)), D (Xm;+2,Xn;+2,
9(Xm;+2,Xn;+2))} based on the parity of the subscripts.
CASE 1. n;+2is even and m; + 2 is odd. From (2.2), (2.3), and (2.4), we have

max {D (Xn,+2,Xm;+2,9 (Xn;+2: Xm;+2) ), D (X, 42, Xn;+2, G (Xm;+2, Xn,+2)) }
=max {D(STxn;, TSXm,;,g(STXxn,;, TSXm,)),D(TSxm;, STXn;,g(TSXm;,STxn,))}
< max{qn [%(D(xni,Sxmi,g(xni,Sxmi)) +D(xmi,Txni,g(xmi,Txni)))],
@2[D (xn;, TXn;, 9 (Xn;, Txn;)) ], @3[D (X, SXmyy G (Xmy, SXm;)) ],
LD (X X 8 (X X)) |
< max{(pl [%(si +Pm; + & +pni)],(P2(Pni),Q93 (pmi):q)4(fi)}

S @&+ Pm; +Pn;)-
(2.15)

Therefore, we have

max {D(xn,1+2sxmi+2ag(Xni+2vxmi+2)):D(xmi+2,xn,1+ng(xmi+2aXni+2))} < p(ki),
(2.16)
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where k; = &+ py; + pn,. Substituting (2.16) into (2.14), taking the limit as i — +oo, and
using the right continuity of @, we get

5=11meiskhm @ (ki) =@(e) <¢, (2.17)
i—et

1—00

which is a contradiction.
CASE 2. Both n;+2 and m; + 2 are odd. Then, we have

max {D(X‘I’L,‘+2!Xmi+21g(xni+2)xmi+2))!D(xmi+2)xﬂi+2!g(xmi+21xni+2))}
<max {D(Xn;12,Xn;+1,9 (Xn;+2:Xn;41) ), D (X401, Xn; 42,9 (X1, Xn;42)) }
+max {D(X‘Yli+l!Xmi+21g(x‘ni+lyxml’+2))yD(xmi+21Xni+l!g(Xmi+2|xni+l))}

= p‘}’l1'+1+max {D(Xni+lsxmi+2;g(xni+1yxmi+2));D(xmi+21Xni+l,g(Xmi+2;xni+1))}-
(2.18)

Since n; +1 is even and m; + 2 is odd, from Case 1, we have

max {D(Xni+lsxmi+2:g(xni+lyxmi+2));D(xmi+2yxni+lsg(Xmi+2,xni+1))}
= max {D (STlel'—li Tsxmiyg(STxni—la TSXml))l
D(TSxm;,STxn;~1,9(TSXm,;,STxn;-1))}

1
= max {(pl |:§ (D (xni—lysxmiyg(xni—lysxmi))"'D(xmi, Txni—hg(xm,'a Txn,-—l)))] ’
@2 [D (X‘}’Li—la Txni—lyg(xnl'—ls Tx‘ni—l))]!(p3 [D(xmiysxmi;g(xmissxmi))];

4D (xni—l !Xmi!g(xni—l 1xmi))]}

1
< maX{cm [E(pnifl + &+ Pm; +ei)],cpz(pni71).<pa(pmi),cm(pnrl +a)}

= (p(sl +pml +p1’£,’*1)'
(2.19)

Therefore, we get

max {D (Xn;+1,Xm;+2,9 (Xn;+1,Xm;+2) ), D (Xm;12, Xn;+1,9 (Xm+2,Xn;41)) } < @(Li),
(2.20)

where l; = & + pm, + pn,-1. Hence, substituting (2.20) into (2.18), then putting (2.18)
into (2.14), and taking the limit as i — + o0, we have

e=lime; < llim @) =@e) <¢, (2.21)
i—Et

1—

which is a contradiction. In a similar manner, we get (2.17) and (2.21) for the cases in
which n; +2 and m; + 2 are both even, and n; + 2 is odd and m; + 2 is even. That is, all
cases lead to a contradiction. Therefore (I) holds.
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We claim that {x,} is D-Cauchy. Let n,m,p (n < m < p) be any positive integers.
Then, by Definition 2.1 and (2.4),

D(anxmnxp) <D (Xn, Xm, g (Xn,Xm)) +D(Xn,xp:Q(xn,xm)) +D(Xm,xpag(xn:xm))
<D(xn,Xm,g(Xn,Xm))+2D (X, Xm, g (Xn,Xm)) +2D (X, Xp, g (Xm,Xp))

=3D(Xn, Xm, 9 (Xn,Xm)) +2D(xmvxpvg(xm;xp))-
(2.22)

Since limy— e« D (Xpn, Xm, g (Xn,Xm)) = 0, we have limy . D (Xpn, Xm,Xp) = 0. Thus {x;}
is a D-Cauchy sequence. |

3. Main results. Now we will prove the following fixed point theorems for a complete
D-metric space.

THEOREM 3.1. Let (X,D) be a complete D-metric space. Letg : X XX — X be a function
and letS and T be self-maps on X satisfying (2.2), (2.3), and (2.4) of Lemma 2.10. For any
sequences {uy}, {vy} in X such thatlim,, .. Uy, = x andlim,, .. v, = B, limy, . D (Uy, Uy,
gun,vy)) =D(,B,9(x,B)) for some x,p in X.

If' S or T is continuous, then S and T have a unique common fixed point.

PROOF. Let the sequence {x,} be defined by x¢ € X, Xon+1 = TX2p, and Xopi2 =
Sxon+1 for every n € Nu {0}. Then, by Lemma 2.10(II), it follows that {x,} is a D-
Cauchy sequence. Since X is a complete D-metric space, {x;,} is convergent to a limit
u in X. Suppose that S is continuous. Then

u = lim xop42 = lim Sxop41 = S( lim X2n+1> =Su. 3.1)
Nn—oo n—oo n—oo

This implies that u is a fixed point of S. From (2.2), (2.3), and (2.4), we get D (u,Su,g(u,
Su)) =0 and

D(u,Tu,g(u,Tu)) =D(u,TSu,g(u, TSu))
<D(u,xon:2,9 (U, x2n42)) +D(STx2, TSU,g(STx20, TSU))

< D(u,Xom+2,9 (U, X2042))
+max {(pl [% (D (x2n,Su,g(x2n,Su))+D(u, Txon,g(u, TXZn)))]’
(e2))] [D(x2n, TXZn,g(XZm Tin))],(P3 [D(u,Su,g(u,Su))],

PalD (o 1,9 (2,01
(3.2)

Taking the limit when » tends to infinity, by hypothesis, we get D (u, Tu,g(u,Tu)) =
0. Thus, we have u = Su = Tu. Therefore, u is the common fixed point of S and T. The
proof for T continuous is similar.
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We will now show that u is unique. Suppose that v is also a common fixed point of
S and T. Then, from (2.2), (2.3), and (2.4),

max {D(u,v,g(u,v)),D(v,u,g(v,u))}
=max {D(STu, TSv,g(STu, TSv)),D(TSv,STu,g(TSv,STu))}

smax{cpl[%(D(u,Sv,g(u,Sv)) +D(v,Tu,g(v,Tu)))],
(pz[D(u,Tu,g(u,Tu))],(pg[D(v,Sv,g(v,Sv))],cm[D(u,v,g(u,v))]}

=max{cp1[%(D(u,v,g(u,v)) +D(v,u,g(v,u)))],

P2[D(,1t,9(1,10) 92D (v,v.g (v,0) L @a[D (v, g (w,v)) ]|

< (p(maX {D(u,U,g(u,U)),D(U:u,g(v;”))})-
(3.3)

We write max{D(u,v,g(u,v)),D(v,u,g(v,u))} < @max{D(u,v,g(u,v)),D(v,u,
g(v,u))}), which implies that max{D (u,v,g(u,v)),D(v,u,g(v,u))} =0, thatis,u=v.
Therefore, the common fixed point of S and T is unique. O

REMARK 3.2. Let X be acomplete metric space with a metric d. If we take D (x,y,z) =
max{d(x,y),d(x,z),d(y,z)} and g(x,y) = x for all x,y,z € X, then Theorem 3.1 is
Ciri¢’s [6, Theorem 2] which has extended a theorem of Fisher [8].

The following example shows that a D-metric is a proper extension of a metric d.

EXAMPLE 3.3. Let d be ametric on R. Define the function  : RXR — Rby @ (x,y) =
(x —y)? for all x,y € R. Then, clearly, @ is not metric since @(2,1/2) > @(2,1) +
@(1,1/2). Let G,H : RXR xR — R be functions such that G(x,y,z) = max{d(x,y),
d(x,z),d(y,z)} and H(x,y,z) = max{@(x,y),p(x,z),p(y,z)} for all x,y,z € R.
Then, clearly, G and H are D-metric for R. But H is a D-metric that is a proper extension
of the metric d. Therefore, a D-metric space is a proper extension of a metric space.

COROLLARY 3.4. Let (X,D) be a complete D-metric space. Let g : X XX — X be a
function and let S and T be self-maps on X satisfying

max {D(STx,TSy,g(STx,TSy)),D(TSy,STx,g(TSy,5Tx))}

< c-max{%[D(x,Sy,g(x,Sy)) +D(y,Tx,g(y,Tx))], (3.4)

D(X,Tx,g(x,Tx)),D(y,Sy,g(y,Sy)),D(x,y,g(x,y))}

for all x,y € X, where x = y implies D(x,y,g(x,y)) = 0 and max{D(x,z,g(x,z)),
D(x,v,9(x,z)),D(y,z,9(x,2))} <D(x,y,9(x,v))+D(y,z,g(v,z)) forallx,y,ze X.
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For any sequences {uy},{vy,} in X such that lim,_.u, = « and lim,_.v, = B,
limy, .co D (U, Vi, @ (Ui, V) = D(x, B, g(x, B)) for some &, B in X.
If S or T is continuous, then S and T have a unique common fixed point.

PROOF. The proof follows by taking @;(t) =c-t with0O<c <1 (i =1,2,3,4) in
Theorem 3.1. |

We will prove the following corollary using another condition instead of continuity
in Theorem 3.1.

COROLLARY 3.5. Let (X,D) be a complete D-metric space. Let g : X x X — X be a
function, let S and T be self-maps on X satisfying (2.2), (2.3), and (2.4) of Lemma 2.10,
and, for each u € X withu + Su or u + Tu, let

inf {D(x,u,g(x,u)) +D(x,5x,9(x,5x)) +D(y, Ty,g(y,Ty)):x,y € X} > 0.
(3.5)

For any sequences {ay,} and {b, } in X such thatlim,_. a,, = u and lim,_. b, = v, the
following conditions hold:

(1) limy o D(an,bn,g(an,bn)) = D(u,v,g(u,v)),

(2) limy—~o D(an,bm,g(an,bw)) =D(an,v,g(ay,v)) for eachn € N,

(3) limy—~co D(byy,an,g (b, an)) = D(v,an,g(v,a,)) for eachn € N.
Then S and T have a unique common fixed point.

PROOF. From Lemma 2.10(I) and (II), the sequence {x,} defined by xg € X, x2n+1 =
TXon, and X242 = Sx2n11 for every x € Nu {0} is a D-Cauchy sequence. Since X is a
complete D-metric space, there exists u € X such that {x,} converges to u. Then we
have

D (Xon+1,X2m+2,9 (Xon+1,X2m+2))

=D(TSx2n-1,STXom, g(TSX2n-1,STX2m))
1
<max {(Pl [E (D (x2m,SX2n-1,9 (X2m,SX2n-1)) +D (X2n-1, TX2m, g (X2n-1, TXZm)))],
@2[D (X2m, TX2m, g (Xom, TX2m)) ], ®3[D (X2n-1,SX2n-1,9 (X2n-1,5X2n-1))],

@4[D (X2m, X2n-1,9 (X2m,X2n-1))]

1
<max {(P [E (D (x2m,X2n,9 (X2m,X2n)) +D(X2n—1,X2m+1sg(x2n—1,x2m+l)))]:

1
@2[D (X2m, Xom+1,9 (X2m, Xom+1)) |, @3[D (Xon-1,X2n,9 (X2n-1,X2n))],

@4 [D(me,xgn,l,g(XZm,Xanl))]}-
(3.6)

Thus, we obtain lim,, ..o D (X2y+1,U,g(X2n+1,U)) = 0. Assume that u = Suor u = Tu.
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Then, by hypothesis, we have

0 <inf {D(x,u,g(x,u)) +D(x,Sx,9(x,5x)) +D (v, Ty,g(»,T¥)) : x,y € X}
<inf{D(x2n+1,U,g(X2n11,u)) + D (X2n11,SX2n+1,9 (X2n+1,SX2n+1))

+ D (xon+2, TXon+2,9 (Xons2, TXons2)) :m € N}
(3.7)
=inf {D(x2n+1,U,9 (Xons1,U)) + D(X2n+1,X2n+2,9 (Xon+1,Xon+2))

+D(X2n+2,X2n+3,9 (X2n+2,X2n+3)) 1 € N}

This is a contradiction. Therefore, we have u = Su = Tu.
On the other hand, we can prove the existence of a unique common fixed point of S
and T by a method similar to that of Theorem 3.1. |

ACKNOWLEDGMENT. This work was supported by Korea Research Foundation
Grant (KRF-2003-015-C00039).

REFERENCES

[1] D.W.Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969),
458-464.

[2] J. L. C. Camargo, An application of a fixed-point theorem of D. W. Boyd and J. S. W. Wong,
Rev. Mat. Estatist. 6 (1988), 25-29.

[3] S.K. Chatterjea, Applications of an extension of a theorem of Fisher on common fixed point,
Pure Math. Manuscript 6 (1987), 35-38.

[4] 1j. B. Ciri¢, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45
(1974), 267-273.

[5] —, A new fixed-point theorem for contractive mappings, Publ. Inst. Math. (Beograd)
(N.S.) 30(44) (1981), 25-27.

[6] __, Common fixed points of nonlinear contractions, Acta Math. Hungar. 80 (1998), no. 1-
2, 31-38.

[7]  B. C. Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math.
Soc. 84 (1992), no. 4, 329-336.
[8]  B. Fisher, Some results on fixed points, Acta Math. Acad. Sci. Hungar. 33 (1979), no. 3-4,
289-292.
[9] 0. Hadzi¢, Some applications of a common fixed point theorem, Studia Univ. Babes-Bolyai
Math. 28 (1983), 67-74.
[10] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969),
326-329.
[11] H. K. Pathak, Fixed point theorems for weak compatible multi-valued and single-valued
mappings, Acta Math. Hungar. 67 (1995), no. 1-2, 69-78.
[12] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer.
Math. Soc. 226 (1977), 257-290.
[13] S.P.Singh and B. A. Meade, On common fixed point theorems, Bull. Austral. Math. Soc. 16
(1977), no. 1, 49-53.
[14] M. Turinici, Multivalued contractions and applications to functional-differential equations,
Acta Math. Acad. Sci. Hungar. 37 (1981), no. 1-3, 147-151.



COMMON FIXED POINT THEOREMS 2819

[15] A. Wieczorek, Applications of fixed-point theorems in game theory and mathematical eco-
nomics, Wiadom. Mat. 28 (1988), no. 1, 25-34.

Hee Soo Park: Department of Applied Mathematics, Changwon National University, Changwon
641-773, Korea
E-mail address: pheesoo@changwon.ac.kr

Jeong Sheok Ume: Department of Applied Mathematics, Changwon National University,
Changwon 641-773, Korea
E-mail address: jsume@changwon.ac.kr


mailto:pheesoo@changwon.ac.kr
mailto:jsume@changwon.ac.kr

