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1. Introduction. The Banach contraction mapping principle is well known. There

are many generalizations of that principle to single- and multivalued mappings (see

[1, 4, 5, 10, 11, 12]). The study of maps satisfying some contractive conditions has been

the center of rigorous research activity since such mappings have many applications

(see [2, 3, 9, 13, 14, 15]).

In 1998, Ćirić [6] proved a common fixed point theorem for nonlinear mappings on

a complete metric space: let (X,d) be a complete metric space and S,T : X → X self-

maps such that d(STx,TSy) ≤ max{ϕ1[(1/2)(d(x,Sy)+d(y,Tx))],ϕ2[d(x,Tx)],
ϕ3[d(y,Sy)],ϕ4[d(x,y)]} for all x,y in X, where ϕi ∈ Φ (i = 1,2,3,4). If S or T is

continuous, then S and T have a unique common fixed point. This result improved and

extended a theorem of Fisher [8].

In this paper, using the concept of D-metric, we prove common fixed point theorems

which extend, improve, and unify the corresponding theorems of Fisher [8] and Ćirić

[6].

Throughout the paper, by Φ we denote the collection of functions ϕ : [0,∞)→ [0,∞)
which are continuous from the right, nondecreasing, and which satisfy the condition

ϕ(t) < t for all t > 0. We denote by N the set of all positive integers.

2. Preliminaries. Before proving the main theorem, we will introduce some defini-

tions and lemmas.

Definition 2.1 [7]. Let X be any nonempty set. A D-metric for X is a function

D :X×X×X → R such that

(1) D(x,y,z)≥ 0 for all x,y,z ∈X and equality holds if and only if x =y = z,

(2) D(x,y,z) =D(x,z,y) =D(y,x,z) =D(y,z,x) =D(z,x,y) =D(z,y,x) for all

x,y,z ∈X,

(3) D(x,y,z)≤D(x,y,a)+D(x,a,z)+D(a,y,z) for all x,y,z ∈X.

If D is a D-metric for X, then the ordered pair (X,D) is called a D-metric space

or the set X, together with a D-metric, is called a D-metric space. We note that to
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a given ordinary metric space (X,d) there corresponds a D-metric space (X,D), but

the converse may not be true (see Example 3.3). In this sense the D-metric spaces are

the generalizations of the ordinary metric space.

Definition 2.2 [7]. A sequence {xn} of points of aD-metric space X converges to a

point x ∈X if for an arbitrary ε > 0, there exists an n0 ∈N such that for all n>m≥n0,

D(xm,xn,x) < ε.

Definition 2.3 [7]. A sequence {xn} of points of a D-metric space X is said to be

a D-Cauchy sequence if for an arbitrary ε > 0, there exists an n0 ∈ N such that for all

p >n>m≥n0, D(xm,xn,xp) < ε.

Definition 2.4 [7]. A D-metric space X is a complete D-metric space if every D-

Cauchy sequence {xn} in X converges to a point x in X.

Definition 2.5. A real-valued function f defined on a metric space X is said to be

lower semicontinuous at a point t in X if limx→t inff(x)=∞ or limx→t inff(x)≥ f(t).
Definition 2.6. A real-valued function f defined on a metric space X is said to be

upper semicontinuous at a point t in X if limx→t supf(x)=∞ or limx→t supf(x)≤f(t).
Definition 2.7. Let x0 ∈ X and ε > 0 be given. Then the open ball B(x0,ε) in X

centered at x0 of radius ε is defined by

B
(
x0,ε

)= {y ∈X |D(x0,y,y
)
< ε if y = x0, sup

z∈X
D
(
x0,y,z

)
< ε if y ≠ x0

}
. (2.1)

Then the collection of all open balls {B(x,ε) : x ∈X} defines the topology on X denoted

by τ .

Lemma 2.8 [7]. The D-metric for X is a continuous function on X ×X ×X in the

topology τ on X.

Lemma 2.9 [6]. If ϕ1,ϕ2 ∈ Φ, then there is some ϕ ∈ Φ such that max
{
ϕ1(t),

ϕ2(t)
}≤ϕ(t) for all t > 0.

Lemma 2.10. Let (X,D) be a D-metric space. Let g : X×X → X be a mapping and let

S,T :X →X be mappings such that

max
{
D
(
STx,TSy,g(STx,TSy)

)
,D
(
TSy,STx,g(TSy,STx)

)}

≤max
{
ϕ1

[
1
2

(
D
(
x,Sy,g(x,Sy)

)+D(y,Tx,g(y,Tx)))
]
,

ϕ2
[
D
(
x,Tx,g(x,Tx)

)]
,ϕ3

[
D
(
y,Sy,g(y,Sy)

)]
,

ϕ4
[
D
(
x,y,g(x,y)

)]}
(2.2)

for all x,y ∈X, where ϕi ∈ Φ (i= 1,2,3,4),

x =y �⇒D(x,y,g(x,y))= 0, (2.3)
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and

max
{
D
(
x,z,g(x,z)

)
,D
(
x,y,g(x,z)

)
,D
(
y,z,g(x,z)

)}
≤D(x,y,g(x,y))+D(y,z,g(y,z)) (2.4)

for all x,y,z ∈ X. The sequence {xn} is defined by x0 ∈ X, x2n+1 = Tx2n, and x2n+2 =
Sx2n+1 for every n∈N∪{0}. Then

(I) for an arbitrary ε > 0, there exists a positive integer L such that L≤n<m implies

max{D(xn,xm,g(xn,xm)),D(xm,xn,g(xm,xn))}< ε,
(II) a sequence {xn}∞n=0 is a D-Cauchy sequence.

Proof. LetM =max{D(x0,x1,g(x0,x1)),D(x1,x2,g(x1,x2)),D(x2,x1,g(x2,x1))}.
Since all ϕi are nondecreasing functions by (2.2), (2.3), and (2.4),

max
{
D
(
x2,x3,g

(
x2,x3

))
,D
(
x3,x2,g

(
x3,x2

))}
=max

{
D
(
STx0,TSx1,g

(
STx0,TSx1

))
,D
(
TSx1,STx0,g

(
TSx1,STx0

))}

≤max
{
ϕ1

[
1
2

(
D
(
x0,Sx1,g

(
x0,Sx1

))+D(x1,Tx0,g
(
x1,Tx0

)))]
,

ϕ2
[
D
(
x0,Tx0,g

(
x0,Tx0

))]
,ϕ3

[
D
(
x1,Sx1,g

(
x1,Sx1

))]
,

ϕ4
[
D
(
x0,x1,g

(
x0,x1

))]}

≤max
{
ϕ1(M),ϕ2(M),ϕ3(M),ϕ4(M)

}
≤ϕ(M),

(2.5)

where ϕ ∈ Φ. Such ϕ exists from an extended version of Lemma 2.9. Therefore, we

have max{D(x2,x3,g(x2,x3)),D(x3,x2,g(x3,x2))} ≤ ϕ(M). Again, from (2.2), (2.3),

and (2.4), we get

max
{
D
(
x3,x4,g

(
x3,x4

))
,D
(
x4,x3,g

(
x4,x3

))}
=max

{
D
(
TSx1,STx2,g

(
TSx1,STx2

))
,D
(
STx2,TSx1,g

(
STx2,TSx1

))}

≤max
{
ϕ1

[
1
2

(
D
(
x2,Sx1,g

(
x2,Sx1

))+D(x1,Tx2,g
(
x1,Tx2

)))]
,

ϕ2
[
D
(
x2,Tx2,g

(
x2,Tx2

))]
,ϕ3

[
D
(
x1,Sx1,g

(
x1,Sx1

))]
,

ϕ4
[
D
(
x2,x1,g

(
x2,x1

))]}

≤max
{
ϕ1(M),ϕ2

[
ϕ(M)

]
,ϕ3(M),ϕ4(M)

}
≤ϕ(M).

(2.6)

Using the obtained relations max{D(x2,x3,g(x2,x3)),D(x3,x2,g(x3,x2))} ≤ ϕ(M)
and max{D(x3,x4,g(x3,x4)),D(x4,x3,g(x4,x3))} ≤ϕ(M), from (2.2), (2.3), and (2.4),
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we get

max
{
D
(
x4,x5,g

(
x4,x5

))
,D
(
x5,x4,g

(
x5,x4

))}
=max

{
D
(
STx2,TSx3,g

(
STx2,TSx3

))
,D
(
TSx3,STx2,g

(
TSx3,STx2

))}

≤max
{
ϕ1

[
1
2

(
D
(
x2,Sx3,g

(
x2,Sx3

))+D(x3,Tx2,g
(
x3,Tx2

)))]
,

ϕ2
[
D
(
x2,Tx2,g

(
x2,Tx2

))]
,ϕ3

[
D
(
x3,Sx3,g

(
x3,Sx3

))]
,

ϕ4
[
D
(
x2,x3,g

(
x2,x3

))]}

≤max
{
ϕ1
[
ϕ(M)

]
,ϕ2

[
ϕ(M)

]
,ϕ3

[
ϕ(M)

]
,ϕ4

[
ϕ(M)

]}
≤ϕ2(M).

(2.7)

Similarly, again from (2.2), (2.3), and (2.4), we get

max
{
D
(
x5,x6,g

(
x5,x6

))
,D
(
x6,x5,g

(
x6,x5

))}
=max

{
D
(
TSx3,STx4,g

(
TSx3,STx4

))
,D
(
STx4,TSx3,g

(
STx4,TSx3

))}

≤max
{
ϕ1

[
1
2

(
D
(
x4,Sx3,g

(
x4,Sx3

))+D(x3,Tx4,g
(
x3,Tx4

)))]
,

ϕ2
[
D
(
x4,Tx4,g

(
x4,Tx4

))]
,ϕ3

[
D
(
x3,Sx3,g

(
x3,Sx3

))]
,

ϕ4
[
D
(
x4,x3,g

(
x4,x3

))]}

≤max
{
ϕ1
[
ϕ(M)

]
,ϕ2

[
ϕ2(M)

]
,ϕ3

[
ϕ(M)

]
,ϕ4

[
ϕ(M)

]}
≤ϕ2(M).

(2.8)

In general, by induction, we get

max
{
D
(
xn,xn+1,g

(
xn,xn+1

))
,D
(
xn+1,xn,g

(
xn+1,xn

))}≤ϕ[n/2](M) (2.9)

for n≥ 2, where [n/2] stands for the greatest integer not exceeding n/2. Since ϕ ∈ Φ,

by Singh and Meade [13, Lemma 1], it follows that ϕn(M) → 0 as n → +∞ for every

M > 0. Thus, we obtain

max
{
D
(
xn,xn+1,g

(
xn,xn+1

))
,D
(
xn+1,xn,g

(
xn+1,xn

))}
�→ 0 as n �→∞. (2.10)

Suppose that (I) does not hold. Then there exists an ε > 0 such that for each i ∈ N,

there exist positive integers ni, mi, with i≤ni <mi, satisfying

ε ≤max
{
D
(
xni ,xmi ,g

(
xni ,xmi

))
,D
(
xmi,xni ,g

(
xmi,xni

))}
,

max
{
D
(
xni ,xmi−1,g

(
xni ,xmi−1

))
,D
(
xmi−1,xni ,g

(
xmi−1,xni

))}
< ε for i= 1,2, . . . .

(2.11)

Set

εi =max
{
D
(
xni ,xmi ,g

(
xni ,xmi

))
,D
(
xmi,xni ,g

(
xmi,xni

))}
,

ρi =max
{
D
(
xi,xi+1,g

(
xi,xi+1

))
,D
(
xi+1,xi,g

(
xi+1,xi

))}
for i= 1,2, . . . .

(2.12)
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Then we have

ε ≤ εi
=max

{
D
(
xni ,xmi ,g

(
xni ,xmi

))
,D
(
xmi,xni ,g

(
xmi,xni

))}
≤max

{
D
(
xni ,xmi−1,g

(
xni ,xmi−1

))
,D
(
xmi−1,xni ,g

(
xmi−1,xni

))}
+max

{
D
(
xmi−1,xmi ,g

(
xmi−1,xmi

))
,D
(
xmi,xmi−1,g

(
xmi,xmi−1

))}
< ε+ρmi−1, i= 1,2, . . . .

(2.13)

Taking the limit as i→+∞, we get limεi = ε. On the other hand, by (2.2), (2.3), and (2.4),

εi =max
{
D
(
xni ,xmi ,g

(
xni ,xmi

))
,D
(
xmi,xni ,g

(
xmi,xni

))}
≤max

{
D
(
xni ,xni+1,g

(
xni ,xni+1

))
,D
(
xni+1,xni ,g

(
xni+1,xni

))}
+max

{
D
(
xni+1,xni+2,g

(
xni+1,xni+2

))
,D
(
xni+2,xni+1,g

(
xni+2,xni+1

))}
+max

{
D
(
xni+2,xmi+2,g

(
xni+2,xmi+2

))
,D
(
xmi+2,xni+2,g

(
xmi+2,xni+2

))}
+max

{
D
(
xmi+2,xmi+1,g

(
xmi+2,xmi+1

))
,D
(
xmi+1,xmi+2,g

(
xmi+1,xmi+2

))}
+max

{
D
(
xmi+1,xmi ,g

(
xmi+1,xmi

))
,D
(
xmi,xmi+1,g

(
xmi,xmi+1

))}
= ρni+ρni+1+max

{
D
(
xni+2,xmi+2,g

(
xni+2,xmi+2

))
,

D
(
xmi+2,xni+2,g

(
xmi+2,xni+2

))}
+ρmi+1+ρmi for i= 1,2, . . . .

(2.14)

We will now analyze the term max{D(xni+2,xmi+2,g(xni+2,xmi+2)),D(xmi+2,xni+2,
g(xmi+2,xni+2))} based on the parity of the subscripts.

Case 1. ni+2 is even and mi+2 is odd. From (2.2), (2.3), and (2.4), we have

max
{
D
(
xni+2,xmi+2,g

(
xni+2,xmi+2

))
,D
(
xmi+2,xni+2,g

(
xmi+2,xni+2

))}
=max

{
D
(
STxni ,TSxmi ,g

(
STxni ,TSxmi

))
,D
(
TSxmi,STxni ,g

(
TSxmi,STxni

))}

≤max
{
ϕ1

[
1
2

(
D
(
xni ,Sxmi ,g

(
xni ,Sxmi

))+D(xmi,Txni ,g
(
xmi,Txni

)))]
,

ϕ2
[
D
(
xni ,Txni ,g

(
xni ,Txni

))]
,ϕ3

[
D
(
xmi,Sxmi ,g

(
xmi,Sxmi

))]
,

ϕ4
[
D
(
xni ,xmi ,g

(
xni ,xmi

))]}

≤max
{
ϕ1

[
1
2

(
εi+ρmi+εi+ρni

)]
,ϕ2

(
ρni
)
,ϕ3

(
ρmi

)
,ϕ4

(
εi
)}

≤ϕ(εi+ρmi+ρni
)
.

(2.15)

Therefore, we have

max
{
D
(
xni+2,xmi+2,g

(
xni+2,xmi+2

))
,D
(
xmi+2,xni+2,g

(
xmi+2,xni+2

))}≤ϕ(ki),
(2.16)
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where ki = εi+ρmi+ρni . Substituting (2.16) into (2.14), taking the limit as i→+∞, and

using the right continuity of ϕ, we get

ε = lim
i→∞

εi ≤ lim
ki→ε+

ϕ
(
ki
)=ϕ(ε) < ε, (2.17)

which is a contradiction.

Case 2. Both ni+2 and mi+2 are odd. Then, we have

max
{
D
(
xni+2,xmi+2,g

(
xni+2,xmi+2

))
,D
(
xmi+2,xni+2,g

(
xmi+2,xni+2

))}
≤max

{
D
(
xni+2,xni+1,g

(
xni+2,xni+1

))
,D
(
xni+1,xni+2,g

(
xni+1,xni+2

))}
+max

{
D
(
xni+1,xmi+2,g

(
xni+1,xmi+2

))
,D
(
xmi+2,xni+1,g

(
xmi+2,xni+1

))}
= ρni+1+max

{
D
(
xni+1,xmi+2,g

(
xni+1,xmi+2

))
,D
(
xmi+2,xni+1,g

(
xmi+2,xni+1

))}
.

(2.18)

Since ni+1 is even and mi+2 is odd, from Case 1, we have

max
{
D
(
xni+1,xmi+2,g

(
xni+1,xmi+2

))
,D
(
xmi+2,xni+1,g

(
xmi+2,xni+1

))}
=max

{
D
(
STxni−1,TSxmi ,g

(
STxni−1,TSxmi

))
,

D
(
TSxmi,STxni−1,g

(
TSxmi,STxni−1

))}

≤max
{
ϕ1

[
1
2

(
D
(
xni−1,Sxmi ,g

(
xni−1,Sxmi

))+D(xmi,Txni−1,g
(
xmi,Txni−1

)))]
,

ϕ2
[
D
(
xni−1,Txni−1,g

(
xni−1,Txni−1

))]
,ϕ3

[
D
(
xmi,Sxmi ,g

(
xmi,Sxmi

))]
,

ϕ4
[
D
(
xni−1,xmi ,g

(
xni−1,xmi

))]}

≤max
{
ϕ1

[
1
2

(
ρni−1+εi+ρmi+εi

)]
,ϕ2

(
ρni−1

)
,ϕ3

(
ρmi

)
,ϕ4

(
ρni−1+εi

)}

≤ϕ(εi+ρmi+ρni−1
)
.

(2.19)

Therefore, we get

max
{
D
(
xni+1,xmi+2,g

(
xni+1,xmi+2

))
,D
(
xmi+2,xni+1,g

(
xmi+2,xni+1

))}≤ϕ(li),
(2.20)

where li = εi+ρmi +ρni−1. Hence, substituting (2.20) into (2.18), then putting (2.18)

into (2.14), and taking the limit as i→+∞, we have

ε = lim
i→∞

εi ≤ lim
li→ε+

ϕ
(
li
)=ϕ(ε) < ε, (2.21)

which is a contradiction. In a similar manner, we get (2.17) and (2.21) for the cases in

which ni+2 and mi+2 are both even, and ni+2 is odd and mi+2 is even. That is, all

cases lead to a contradiction. Therefore (I) holds.
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We claim that {xn} is D-Cauchy. Let n,m,p (n < m < p) be any positive integers.

Then, by Definition 2.1 and (2.4),

D
(
xn,xm,xp

)≤D(xn,xm,g(xn,xm))+D(xn,xp,g(xn,xm))+D(xm,xp,g(xn,xm))
≤D(xn,xm,g(xn,xm))+2D

(
xn,xm,g

(
xn,xm

))+2D
(
xm,xp,g

(
xm,xp

))
= 3D

(
xn,xm,g

(
xn,xm

))+2D
(
xm,xp,g

(
xm,xp

))
.

(2.22)

Since limn→∞D(xn,xm,g(xn,xm)) = 0, we have limn→∞D(xn,xm,xp) = 0. Thus {xn}
is a D-Cauchy sequence.

3. Main results. Now we will prove the following fixed point theorems for a complete

D-metric space.

Theorem 3.1. Let (X,D) be a completeD-metric space. Letg :X×X →X be a function

and let S and T be self-maps on X satisfying (2.2), (2.3), and (2.4) of Lemma 2.10. For any

sequences {un},{vn} inX such that limn→∞un =α and limn→∞vn = β, limn→∞D(un,vn,
g(un,vn))=D(α,β,g(α,β)) for some α,β in X.

If S or T is continuous, then S and T have a unique common fixed point.

Proof. Let the sequence {xn} be defined by x0 ∈ X, x2n+1 = Tx2n, and x2n+2 =
Sx2n+1 for every n ∈ N∪ {0}. Then, by Lemma 2.10(II), it follows that {xn} is a D-

Cauchy sequence. Since X is a complete D-metric space, {xn} is convergent to a limit

u in X. Suppose that S is continuous. Then

u= lim
n→∞x2n+2 = lim

n→∞Sx2n+1 = S
(

lim
n→∞x2n+1

)
= Su. (3.1)

This implies that u is a fixed point of S. From (2.2), (2.3), and (2.4), we get D(u,Su,g(u,
Su))= 0 and

D
(
u,Tu,g(u,Tu)

)=D(u,TSu,g(u,TSu))
≤D(u,x2n+2,g

(
u,x2n+2

))+D(STx2n,TSu,g
(
STx2n,TSu

))
≤D(u,x2n+2,g

(
u,x2n+2

))

+max
{
ϕ1

[
1
2

(
D
(
x2n,Su,g

(
x2n,Su

))+D(u,Tx2n,g
(
u,Tx2n

)))]
,

ϕ2
[
D
(
x2n,Tx2n,g

(
x2n,Tx2n

))]
,ϕ3

[
D
(
u,Su,g(u,Su)

)]
,

ϕ4
[
D
(
x2n,u,g

(
x2n,u

))]}
.

(3.2)

Taking the limit when n tends to infinity, by hypothesis, we getD(u,Tu,g(u,Tu))=
0. Thus, we have u= Su= Tu. Therefore, u is the common fixed point of S and T . The

proof for T continuous is similar.
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We will now show that u is unique. Suppose that v is also a common fixed point of

S and T . Then, from (2.2), (2.3), and (2.4),

max
{
D
(
u,v,g(u,v)

)
,D
(
v,u,g(v,u)

)}

=max
{
D
(
STu,TSv,g(STu,TSv)

)
,D
(
TSv,STu,g(TSv,STu)

)}

≤max
{
ϕ1

[
1
2

(
D
(
u,Sv,g(u,Sv)

)+D(v,Tu,g(v,Tu)))
]
,

ϕ2
[
D
(
u,Tu,g(u,Tu)

)]
,ϕ3

[
D
(
v,Sv,g(v,Sv)

)]
,ϕ4

[
D
(
u,v,g(u,v)

)]}

=max
{
ϕ1

[
1
2

(
D
(
u,v,g(u,v)

)+D(v,u,g(v,u)))
]
,

ϕ2
[
D
(
u,u,g(u,u)

)]
,ϕ3

[
D
(
v,v,g(v,v)

)]
,ϕ4

[
D
(
u,v,g(u,v)

)]}

≤ϕ(max
{
D
(
u,v,g(u,v)

)
,D
(
v,u,g(v,u)

)})
.

(3.3)

We write max{D(u,v,g(u,v)),D(v,u,g(v,u))} ≤ ϕ(max{D(u,v,g(u,v)),D(v,u,
g(v,u))}), which implies that max{D(u,v,g(u,v)),D(v,u,g(v,u))}=0, that is,u=v .

Therefore, the common fixed point of S and T is unique.

Remark 3.2. LetX be a complete metric space with a metricd. If we takeD(x,y,z)=
max{d(x,y),d(x,z),d(y,z)} and g(x,y) = x for all x,y,z ∈ X, then Theorem 3.1 is

Ćirić’s [6, Theorem 2] which has extended a theorem of Fisher [8].

The following example shows that a D-metric is a proper extension of a metric d.

Example 3.3. Let d be a metric on R. Define the functionϕ :R×R→R byϕ(x,y)=
(x −y)2 for all x,y ∈ R. Then, clearly, ϕ is not metric since ϕ(2,1/2) > ϕ(2,1)+
ϕ(1,1/2). Let G,H : R×R×R → R be functions such that G(x,y,z) = max{d(x,y),
d(x,z),d(y,z)} and H(x,y,z) = max{ϕ(x,y),ϕ(x,z),ϕ(y,z)} for all x,y,z ∈ R.

Then, clearly, G andH areD-metric for R. ButH is aD-metric that is a proper extension

of the metric d. Therefore, a D-metric space is a proper extension of a metric space.

Corollary 3.4. Let (X,D) be a complete D-metric space. Let g : X ×X → X be a

function and let S and T be self-maps on X satisfying

max
{
D
(
STx,TSy,g(STx,TSy)

)
,D
(
TSy,STx,g(TSy,STx)

)}

≤ c ·max
{

1
2

[
D
(
x,Sy,g(x,Sy)

)+D(y,Tx,g(y,Tx))],

D
(
x,Tx,g(x,Tx)

)
,D
(
y,Sy,g(y,Sy)

)
,D
(
x,y,g(x,y)

)}
(3.4)

for all x,y ∈ X, where x = y implies D(x,y,g(x,y)) = 0 and max{D(x,z,g(x,z)),
D(x,y,g(x,z)),D(y,z,g(x,z))}≤D(x,y,g(x,y))+D(y,z,g(y,z)) for all x,y,z∈X.
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For any sequences {un},{vn} in X such that limn→∞un = α and limn→∞vn = β,

limn→∞D(un,vn,g(un,vn))=D(α,β,g(α,β)) for some α,β in X.

If S or T is continuous, then S and T have a unique common fixed point.

Proof. The proof follows by taking ϕi(t) = c · t with 0 < c < 1 (i = 1,2,3,4) in

Theorem 3.1.

We will prove the following corollary using another condition instead of continuity

in Theorem 3.1.

Corollary 3.5. Let (X,D) be a complete D-metric space. Let g : X ×X → X be a

function, let S and T be self-maps on X satisfying (2.2), (2.3), and (2.4) of Lemma 2.10,

and, for each u∈X with u≠ Su or u≠ Tu, let

inf
{
D
(
x,u,g(x,u)

)+D(x,Sx,g(x,Sx))+D(y,Ty,g(y,Ty)) : x,y ∈X}> 0.
(3.5)

For any sequences {an} and {bn} in X such that limn→∞an =u and limn→∞bn = v , the

following conditions hold:

(1) limn→∞D(an,bn,g(an,bn))=D(u,v,g(u,v)),
(2) limm→∞D(an,bm,g(an,bm))=D(an,v,g(an,v)) for each n∈N,

(3) limm→∞D(bm,an,g(bm,an))=D(v,an,g(v,an)) for each n∈N.

Then S and T have a unique common fixed point.

Proof. From Lemma 2.10(I) and (II), the sequence {xn} defined by x0 ∈X, x2n+1 =
Tx2n, and x2n+2 = Sx2n+1 for every x ∈ N∪{0} is a D-Cauchy sequence. Since X is a

complete D-metric space, there exists u ∈ X such that {xn} converges to u. Then we

have

D
(
x2n+1,x2m+2,g

(
x2n+1,x2m+2

))

=D(TSx2n−1,STx2m,g
(
TSx2n−1,STx2m

))

≤max
{
ϕ1

[
1
2

(
D
(
x2m,Sx2n−1,g

(
x2m,Sx2n−1

))+D(x2n−1,Tx2m,g
(
x2n−1,Tx2m

)))]
,

ϕ2
[
D
(
x2m,Tx2m,g

(
x2m,Tx2m

))]
,ϕ3

[
D
(
x2n−1,Sx2n−1,g

(
x2n−1,Sx2n−1

))]
,

ϕ4
[
D
(
x2m,x2n−1,g

(
x2m,x2n−1

))]}

≤max
{
ϕ1

[
1
2

(
D
(
x2m,x2n,g

(
x2m,x2n

))+D(x2n−1,x2m+1,g
(
x2n−1,x2m+1

)))]
,

ϕ2
[
D
(
x2m,x2m+1,g

(
x2m,x2m+1

))]
,ϕ3

[
D
(
x2n−1,x2n,g

(
x2n−1,x2n

))]
,

ϕ4
[
D
(
x2m,x2n−1,g

(
x2m,x2n−1

))]}
.

(3.6)

Thus, we obtain limn→∞D(x2n+1,u,g(x2n+1,u))= 0. Assume that u≠ Su or u≠ Tu.
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Then, by hypothesis, we have

0< inf
{
D
(
x,u,g(x,u)

)+D(x,Sx,g(x,Sx))+D(y,Ty,g(y,Ty)) : x,y ∈X}

≤ inf
{
D
(
x2n+1,u,g

(
x2n+1,u

))+D(x2n+1,Sx2n+1,g
(
x2n+1,Sx2n+1

))

+D(x2n+2,Tx2n+2,g
(
x2n+2,Tx2n+2

))
:n∈N}

= inf
{
D
(
x2n+1,u,g

(
x2n+1,u

))+D(x2n+1,x2n+2,g
(
x2n+1,x2n+2

))

+D(x2n+2,x2n+3,g
(
x2n+2,x2n+3

))
:n∈N}

= 0.

(3.7)

This is a contradiction. Therefore, we have u= Su= Tu.

On the other hand, we can prove the existence of a unique common fixed point of S
and T by a method similar to that of Theorem 3.1.
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