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We extend the Putnam-Fuglede theorem and the second-degree Putnam-Fuglede theorem to
the nonnormal operators and to an elementary operator under perturbation by quasinilpo-
tents. Some asymptotic results are also given.
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1. Introduction. LetH be a complex Hilbert space and let B(H) be the Banach algebra

consisting of all the bounded linear operators on H. For the normal operators, we have

the following well-known Putnam-Fuglede (PF) theorem [7].

Theorem 1.1. If N, M are normal operators in B(H), and if X ∈ B(H) such that

NX =XM , then N∗X =XM∗.

Putnam [7] also obtained another important result that we call the second-degree PF

(SPF) theorem.

Theorem 1.2. If N, M are normal operators in B(H), and if X ∈ B(H) such that

N(NX−XM)= (NX−XM)M , then NX =XM .

If we let A = (N1,N2) and B = (M1,M2) denote tuples of commuting operators in

B(H), and define the elementary operators ∆(A,B) and ∆(A∗,B∗) ∈ B(B(H)) by

∆(A,B)(X)=N1XN2−M1XM2,

∆(A∗,B∗)(X)=N∗1 XN∗2 −M∗
1 XM

∗
2 ,

(1.1)

then an extension of the classical PF theorem, Theorem 1.1, is obtained as follows (see

[4, 5]).

Theorem 1.3. If the operators Ni,Mi ∈ B(H), i= 1,2, are normal, then ∆(A,B)(X)= 0

for some X ∈ B(H) implies ∆(A∗,B∗)(X)= 0.

Let A= (N1,N2) and B= (M1,M2). For n= 2,3, . . . , we define the high-order elemen-

tary operator ∆(n)(A,B) by

∆(n)(A,B)(X)=∆(A,B)
(
∆(n−1)
(A,B) (X)

)
, X ∈ B(H). (1.2)

2. Putnam-Fuglede theorem under perturbation by quasinilpotents

Theorem 2.1. Let A, B be normal operators, and let C , D be quasinilpotents such

that AC = CA, BD =DB. If (A+C)X =X(B+D) for some X ∈ B(H), then AX =XB.
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Proof. If (A+C)X = X(B+D), then AX−XB =−(CX−XD). For any N,M ∈ B(H),
denote by δNM the linear operator on B(H):

δNM(X)=NX−XM ; (2.1)

then δAB(X)=−δCD(X), so

δ(n)AB (X)= (−1)nδ(n)CD(X). (2.2)

Since σ(δCD)= σ(C)−σ(D)= {0} (see [6]), we have n
√
‖δ(n)CD‖→ 0. But

n
√∥∥∥δ(n)AB (X)

∥∥∥≤ n
√∥∥∥δ(n)CD

∥∥∥ n
√
‖X‖, (2.3)

so
n
√
‖δ(n)AB (X)‖ → 0. The theorem follows by a result of Anderson and Foiaş [1] which

says that if A, B are normal operators, and
n
√
‖δ(n)AB (X)‖→ 0, then AX−XB = 0.

Remark 2.2. With the operators A and B being normal, it follows from Theorem 2.1

that (A+C)X = X(B+D)⇒ (A∗+C)X = X(B∗+D). It is, however, not true in general

that (A+C)∗X =X(B+D)∗ (see [9]).

We give now a simple application of Theorem 2.1.

Corollary 2.3. Let N be a normal operator and let C be a quasinilpotent that com-

mutes withN. If f is a polynomial of degreen such that f(N+C)= 0, then f (k)(N)Ck = 0

for k = 0,1, . . . ,n. So C is nilpotent of order at most n. Moreover, if f has no multiple

root, then C = 0.

Proof. It is easy to see that

f(N+C)= f(N)+f ′(N)C+ f
′′(N)
2!

C2+···+ f
(n)(N)
n!

Cn. (2.4)

Applying Theorem 2.1 to (2.4), we have f(N)= 0 and

f ′(N)C+ f
′′(N)
2!

C2+···+ f
(n)(N)
n!

Cn = 0, (2.5)

or

(
f ′(N)+ f

′′(N)
2!

C+···+ f
(n)(N)
n!

Cn−1
)
C = 0. (2.6)

Applying Theorem 2.1 again to (2.6) yields f ′(N)C = 0 and

(
f ′′(N)

2!
+···+ f

(n)(N)
n!

Cn−2
)
C2 = 0. (2.7)

So we have (f ′′(N)/2!)C2 = 0, . . . ,(f (n)(N)/n!)Cn = 0.

If f has no multiple root, then it follows from f(N) = 0 that f ′(N) is invertible. As

f ′(N)C = 0, we know immediately that C = 0.
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Lemma 2.4. Let C,M ∈ B(H). If C is quasinilpotent, then the only solution X ∈ B(H)
of X = CXM is X = 0.

Proof. If X = CXM , we have, for n= 2,3, . . . , X = CnXMn, so

‖X‖ ≤ ∥∥Cn∥∥‖X‖∥∥Mn∥∥≤ ∥∥Cn∥∥‖X‖‖M‖n. (2.8)

But with C being quasinilpotent, it follows that

n
√∥∥Cn∥∥‖M‖n = n

√∥∥Cn∥∥‖M‖ �→ 0, n �→∞. (2.9)

Thus ‖Cn‖‖M‖n→ 0, so X = 0 by (2.8).

Lemma 2.5. Let N be a normal operator and let C , D be quasinilpotents such that N,

C , D mutually commute. IfM ∈ B(H), and (N+C)X(N+C)=MXD for some X ∈ B(H),
then NXN = 0.

Proof. Suppose that X ∈ B(H) such that (N +C)X(N +C) = MXD. If the kernel

Ker(N) ≠ {0}, then letting P be the project from H to Ker(N), we have NPXN = 0,

NXPN = 0. Therefore, to prove NXN = 0, it is sufficient to prove NP⊥XP⊥N = 0. Thus

we can assume that Ker(N)= {0}. Let

N =
∫
σ(N)

λdEλ (2.10)

be the spectral decomposition of N. Define ∆ε = {z | |z| ≤ ε}, ∆cε = C \∆ε, and Tε =
E(∆cε)T |E(∆cε)H for any T ∈ B(H), then we have

(
Nε+Cε

)
Xε
(
Nε+Cε

)=MεXεDε, (2.11)

but Nε is invertible, so

(
Nε+Cε

)−1 =N−1
ε +Coε , (2.12)

where Coε is also quasinilpotent, and

Xε =
(
Nε+Cε

)−1MεXεDε
(
Nε+Cε

)−1. (2.13)

Because Dε(Nε+Cε)−1 is quasinilpotent, by Lemma 2.4, we have Xε = 0. Letting ε→ 0,

we have X = 0, so NXN = 0. This completes the proof.

Lemma 2.6. Let N be a normal operator and let C be quasinilpotent such that NC =
CN. If (N+C)X(N+C)=X for some X ∈ B(H), then NXN =X.

Proof. If Ker(N)≠ {0}, then let P be the projectH � Ker(N). If (N+C)X(N+C)=X
for some X ∈ B(H), then P(N+C)X(N+C) = PX, so CPX(N+C) = PX, but since C
is quasinilpotent, by Lemma 2.4, we have PX = 0. The same way shows that XP = 0.

Therefore, we may assume Ker(N)= {0}.
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Let N = ∫σ(N) λdEλ be the spectral decomposition of N. Define ∆ε, ∆cε , and Tε to be

the same as in Lemma 2.5. Then

(
Nε+Cε

)
Xε
(
Nε+Cε

)=Xε (2.14)

or

(
Nε+Cε

)
Xε =Xε

(
Nε+Cε

)−1 =Xε
(
N−1
ε +Coε

)
, (2.15)

where Coε is quasinilpotent. So by Theorem 2.1, NεXε =XεN−1
ε , or Xε =NεXεNε. Letting

ε→ 0, we have NXN =X.

Using the same technique as in the proof of Lemma 2.6, we are able to obtain the

following theorem.

Theorem 2.7. LetN,M be normal operators and let C ,D be quasinilpotents such that

NC = CN and MD = DM . If (N+C)X(N+C) = (M+D)X(M+D) for some X ∈ B(H),
then NXN =MXM .

Proof. If Ker(N)≠ {0}, then let P be the project: H � Ker(N). If (N+C)X(N+C)=
(M +D)X(M +D) for some X ∈ B(H), then P(N +C)X(N +C) = P(M +D)X(M +D),
that is, CPX(N+C)= (M+D)PX(M+D). Since C is quasinilpotent, by Lemma 2.5, we

have MPXM = 0. The same method shows that MXPM = 0. Therefore, we can assume

that Ker(N)= {0}.
Let N = ∫σ(N) λdEλ be the spectral decomposition of N. Define ∆ε, ∆cε , and Tε to be

the same as in Lemma 2.5. Then

(
Nε+Cε

)
Xε
(
Nε+Cε

)= (Mε+Dε
)
Xε
(
Mε+Dε

)
. (2.16)

If we write (Nε+Cε)−1 =N−1
ε +Coε , where Coε is quasinilpotent, then the above equation

becomes

Xε =
(
N−1
ε +Coε

)(
Mε+Dε

)
Xε
(
Mε+Dε

)(
N−1
ε +Coε

)
(2.17)

or

Xε =
(
N−1
ε Mε+Fε

)
Xε
(
N−1
ε Mε+Fε

)
, (2.18)

where Fε is quasinilpotent. Applying Lemma 2.6 to the equation yields Xε =
N−1
ε MεXεN−1

ε Mε or NεXεNε =MεXεMε. Letting ε→ 0, we have NXN =MXM .

More generally, using Berberian’s trick, we obtain the PF theorem under perturbation

by quasinilpotents for the elementary operators.

Theorem 2.8. Let N1, N2, M1, M2 be normal operators and let C1, C2, D1, D2 be

quasinilpotents such thatNi,Mi, Ci,Di mutually commute for i= 1,2. If (N1+C1)X(N2+
C2)= (M1+D1)X(M2+D2) for some X ∈ B(H), then N1XN2 =M1XM2.



ON THE PUTNAM-FUGLEDE THEOREM 2825

Proof. Let

T̃ =
(
T1

T2

)
, X̃ =

(
0 X
0 0

)
, (2.19)

where T =N,M,C,D; then Ñ, M̃ are normal, and C̃ , D̃ are quasinilpotents in B(H⊕H). If

(N1+C1)X(N2+C2)= (M1+D1)X(M2+D2), then (Ñ+C̃)X̃(Ñ+C̃)= (M̃+D̃)X̃(M̃+D̃),
so ÑX̃Ñ = M̃X̃M̃ by Theorem 2.7, that is, N1XN2 =M1XM2.

3. Second-degree PF theorem. First we will extend Theorem 1.2 to the more general

case.

Theorem 3.1. Let N1, N2, M1, M2 be normal operators such that N1M1 = M1N1,

N2M2 = M2N2. If N1(N1XN2 −M1XM2)N2 = M1(N1XN2 −M1XM2)M2 for some X ∈
B(H), then N1XN2−M1XM2 = 0.

Proof. First we will prove that ifN,M are normal operators, thenN(NXN−MXM)N
=M(NXN−MXM)M implies NXN =MXM .

If Ker(N) ≠ {0}, then letting P be the project H � Ker(N), we have PN(NXN −
MXM)N = PM(NXN−MXM)M . That is, 0=−M2PXM2 orM(M(PXM2)−(PXM2)0)=
(M(PXM2)−(PXM2)0)0. By the SPF theorem (Theorem 1.2), MPXM2 = 0. By the same

way, we have MPXM = 0. Similarly, MXPM = 0. So we may assume that Ker(N)= {0}.
Let Tε be the same as in Lemma 2.5. If X ∈ B(H) such that

N(NXN−MXM)N =M(NXN−MXM)M, (3.1)

then

Nε
(
NεXεNε−MεXεMε

)
Nε =Mε

(
NεXεNε−MεXεMε

)
Mε (3.2)

or

Xε−N−1
ε MεXεN−1

ε Mε =N−1
ε Mε

(
Xε−N−1

ε MεXεN−1
ε Mε

)
N−1
ε Mε. (3.3)

Since N−1
ε Mε is normal, by [2], we have

Xε−N−1
ε MεXεN−1

ε Mε = 0 (3.4)

or

NεXεNε =MεXεMε. (3.5)

Letting ε→ 0, we have NXN =MXM .

In general, let

Ñ =
(
N1

N2

)
, M̃ =

(
M1

M2

)
, X̃ =

(
0 X
0 0

)
. (3.6)
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If

N1
(
N1XN2−M1XM2

)
N2 =M1

(
N1XN2−M1XM2

)
M2, (3.7)

then

Ñ
(
ÑX̃Ñ−M̃X̃M̃)Ñ = M̃(ÑX̃Ñ−M̃X̃M̃)M̃ ; (3.8)

so ÑX̃Ñ = M̃X̃M̃ , that is, N1XN2 =M1XM2.

Let A = (N1,N2), B = (M1,M2) be tuples of commuting operators in B(H). We say

that (A,B) has the SPF theorem if for any X ∈ B(H) and for some n ≥ 2 such that

∆(n)(A,B)(X)= 0, we have ∆(A,B)(X)= 0.

Theorem 3.2. Let N,M,D ∈ B(H) such that N commutes with D and M . If N is

invertible and D is quasinilpotent, then ((N,N),(M,D)) has the SPF theorem.

Proof. If

N(NXN−MXD)N =M(NXN−MXD)D, (3.9)

then

X−N−1MXN−1D =N−1M
(
X−N−1MXN−1D

)
N−1D. (3.10)

Note that N−1D is quasinilpotent; so by applying Lemma 2.4 to X−N−1MXN−1D, we

have X−N−1MXN−1D = 0, that is, NXN−MXD = 0.

Theorem 3.3. Let N,M ∈ B(H) such that N commutes with M . If M is invertible and

‖N‖‖M−1‖ ≤ 1, then ((N,N),(M,M)) has the SPF theorem.

Proof. If (3.1) holds for some X ∈ B(H), then

NM−1XNM−1−X =NM−1(NM−1XNM−1−X)NM−1. (3.11)

Since ‖N‖‖M−1‖ ≤ 1, by [2], we have NM−1XNM−1−X = 0, that is, NXN =MXM .

The next theorem establishes the relationship between the SPF theorem and the PF

theorem under perturbation by nilpotents.

Theorem 3.4. Let Ni,Mi ∈ B(H) and let Ci, Di be nilpotents such that Ci, Di, Ni, Mi

mutually commute for i = 1,2. If ((N1,N2),(M1,M2)) has the SPF theorem, then (N1+
C1)X(N2+C2)= (M1+D1)X(M2+D2) implies that N1XN2 =M1XM2.

Proof. If

(
N1+C1

)
X
(
N2+C2

)= (M1+D1
)
X
(
M2+D2

)
, (3.12)
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then by expanding both sides of the equation and movingM1XM2 to the left-hand side

and moving all the terms in the left-hand side to the right-hand side except N1XN2,

we have

N1XN2−M1XM2 = S(X), (3.13)

where S is a linear operator on B(H) defined by

S(X)=−N1XC2−C1XN2−C1XC2+M1XD2+D1XM2+D1XD2. (3.14)

It is clear that S(2)(X)= S(S(X)) consists of 62 terms like

(−1)lNm1
1 Mn1

1 Cs11 D
t1
1 XN

m2
2 Mn2

2 Cs22 D
t2
2 , where s1+t1+s2+t2 ≥ 2, . . . , (3.15)

S(n)(X) consists of 6n terms like (−1)lNm1
1 Mn1

1 Cs11 D
t1
1 XN

m2
2 Mn2

2 Cs22 D
t2
2 , where s1+t1+

s2+t2 ≥n.

SinceC1,C2,D1,D2 are all nilpotents, we haven0 such thatCn0
1 =Dn0

1 =Cn0
2 =Dn0

2 = 0.

Thus for each term of S(4n0+1)(X), as s1+ t1+ s2+ t2 ≥ 4n0+1, we have at least one

integer among s1, s2, t1, t2 greater than n0, so every term of S(4n0+1)(X) is 0. Therefore,

S(4n0+1)(X)= 0. But

∆((N1,N2),(M1,M2))
(4n0+1)(X)= S(4n0+1)(X)= 0, (3.16)

and ((N1,N2),(M1,M2)) has the SPF theorem; so it follows that

∆((N1,N2),(M1,M2))(X)= 0, (3.17)

or N1XN2 =M1XM2.

By Theorems 3.3 and 3.4, it is easy to see the following.

Theorem 3.5. Let N,M ∈ B(H) and let C , D be nilpotents such that N, M , C , D
mutually commute. If M is invertible and ‖N‖‖M−1‖ ≤ 1, then (N+C)X(N+C)= (M+
D)X(M+D) implies NXN =MXM .

Moreover, if the strict inequality in Theorem 3.5 holds, then Theorem 3.5 is true even

for the quasinilpotent operators.

Theorem 3.6. Let N,M ∈ B(H) and let C , D be quasinilpotents such that N, M , C ,

D mutually commute. If M is invertible and ‖N‖‖M−1‖ < 1, then (N +C)X(N +C) =
(M+D)X(M+D) implies X = 0.

Proof. If D is quasinilpotent and M is invertible, then M+D is invertible. If (N+
C)X(N+C)= (M+D)X(M+D) for some X ∈ B(H), then

(N+C)(M+D)−1X(N+C)(M+D)−1 =X (3.18)

or

(
NM−1+F)X(NM−1+F)=X, (3.19)
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where F is quasinilpotent. By [3],

σ
(
∆((NM−1+F,NM−1+F),(I,I))

)= σ(NM−1)σ(NM−1)−1. (3.20)

Since ‖N‖‖M−1‖< 1, 0 is not in

σ
(
∆((NM−1+F,NM−1+F),(I,I))

)
, (3.21)

and therefore ∆((NM−1+F,NM−1+F),(I,I)) is invertible. It follows from the equation

∆((NM−1+F,NM−1+F),(I,I))(X)= 0 (3.22)

that X = 0.

The following results show that even if ((A,A),(B,B)) has the SPF theorem, we still

do not know if ((A2,A2),(B2,B2)) has the SPF theorem.

Theorem 3.7. Let A,B ∈ B(H). Letω be an nth root of 1, butωk ≠ 1 for k such that

1≤ k≤n−1. If for any k such that 0≤ k≤n−1, ((A,A),(B,ωkB)) has the SPF theorem,

then ((An, An),(Bn, Bn)) has the SPF theorem too.

Proof. By induction, we can prove that

∆((An,An),(Bn,Bn))(X)

=∆((A,A),(B,B))
(
∆((A,A),(B,ωB))

(···(∆((A,A),(B,ω(n−1)B))(X)
)···)). (3.23)

Now if

∆(2)((An,An),(Bn,Bn))(X)= 0, (3.24)

then

∆(2)((A,A),(B,B))
(
∆(2)((A,A),(B,ωB))

(···(∆(2)((A,A),(B,ω(n−1)B))(X)
)···))= 0. (3.25)

Since ((A,A),(B,B)) has the SPF theorem, it follows that

∆((A,A),(B,B))
(
∆(2)((A,A),(B,ωB))

(···(∆(2)((A,A),(B,ω(n−1)B))(X)
)···))= 0. (3.26)

or

∆(2)((A,A),(B,ωB))
(
∆((A,A),(B,B))

(···(∆(2)((A,A),(B,ω(n−1)B))(X)
)···))= 0, (3.27)

and therefore

∆((A,A),(B,ωB))
(
∆((A,A),(B,B))

(···(∆(2)((A,A),(B,ω(n−1)B))(X)
)···))= 0. (3.28)

Proceeding in this way, we have finally

∆((A,A),(B,B))
(
∆((A,A),(B,ωB))

(···(∆((A,A),(B,ω(n−1)B))(X)
)···))= 0, (3.29)



ON THE PUTNAM-FUGLEDE THEOREM 2829

that is, by (3.23),

∆((An,An),(Bn,Bn))(X)= 0. (3.30)

The following result says that the converse of Theorem 3.8 is also true.

Theorem 3.8. Let A,B ∈ B(H). Letω be an nth root of 1, butωk ≠ 1 for k such that

1 ≤ k ≤ n−1. If A or B is invertible and ((An,An),(Bn,Bn)) has the SPF theorem, then

for any k such that 0≤ k≤n−1, ((A,A),(B,ωkB)) has the SPF theorem too.

Proof. It is sufficient to prove that if (An,Bn) has the SPF theorem and B is invert-

ible, then ((A,A),(B,B)) has the SPF theorem. Now if

A(AXA−BXB)A= B(AXA−BXB)B, (3.31)

then

An(AXA−BXB)An = Bn(AXA−BXB)Bn (3.32)

or

An
(
AnXAn−BnXBn)An = Bn(AnXAn−BnXBn)Bn; (3.33)

so (3.24) holds. Since ((An,An),(Bn,Bn)) has the SPF theorem, we have (3.30). It follows

from (3.23) that (3.29) holds. From (3.31), we see that

∆(2)((A,A),(B,B))
(
∆((A,A),(B,ω2B))

(···(∆((A,A),(B,ω(n−1)B))(X)
)···))= 0. (3.34)

Note that

∆((A,A),(B,B))(Y)−∆((A,A),(B,ωB))(Y)= (ω−1)BYB. (3.35)

Since B is invertible, (3.29) and (3.34) will give

∆((A,A),(B,B))
(
∆((A,A),(B,ω2B))

(···(∆((A,A),(B,ω(n−1)B))(X)
)···))= 0. (3.36)

From (3.31), we see also that

∆(2)((A,A),(B,B))
(
∆((A,A),(B,ω3B))

(···(∆((A,A),(B,ω(n−1)B))(X)
)···))= 0; (3.37)

then (3.36) and (3.37) yields

∆((A,A),(B,B))
(
∆((A,A),(B,ω3B))

(···(∆((A,A),(B,ω(n−1)B))(X)
)···))= 0. (3.38)

Proceeding in this way, we have finally

∆((A,A),(B,B))
(
∆((A,A),(B,ω(n−1)B))(X)

)= 0. (3.39)

Now (3.31) and (3.39) will give the desired equation: AXA−BXB = 0.



2830 YIN CHEN

Theorem 3.9. If C , D are nilpotents such that CD = DC but C2 ≠ D2, then ((C,C),
(D,D)) does not have the SPF theorem.

Proof. It is not difficult to see that

∆(n)((C,C),(D,D))(I)=
n∑
k=0

(−1)kCknC2n−2kD2k, (3.40)

where I is the identity operator.

If C , D are nilpotents, then there exists an n0 such that Cn0 = 0, Dn0 = 0. For any

k such that 1 ≤ k ≤ n0, at least one of 2n0+2−2k and 2k is greater than n0. So by

(3.40), we have

∆(n0+1)
((C,C),(D,D))(I)= 0. (3.41)

But ∆((C,C),(D,D))(I)= C2−B2 ≠ 0. This completes the proof.

4. Asymptotic PF theorem and compact operators. We now give a theorem about

the compact operators, which generalizes the relative result in [2].

Theorem 4.1. Let A = (N1,N2) and B = (M1,M2) be tuples of commuting normal

operators in B(H). If X ∈ B(H) such that ∆(n)(A,B)(X) is compact for some n ≥ 2, then

∆(A,B)(X) is compact too.

Proof. Let K(H) be the ideal of B(H) consisting of all compact operators on H,

let B(H)/K(H) be the Calkin algebra, and let π be the Calkin map from B(H) to

B(H)/K(H). It is clear that

π
(
∆(n)((N1,N2),(M1,M2))(X)

)=∆(n)((π(N1),π(N2)),(π(M1),π(M2)))
(
π(X)

)
. (4.1)

If ∆(n)((N1,N2),(M1,M2))(X) is compact, then π(∆(n)((N1,N2),(M1,M2))(X))= 0. It follows that

∆(n)((π(N1),π(N2)),(π(M1),π(M2)))
(
π(X)

)= 0. (4.2)

Since π(Ni), π(Mi) are normal, for i= 1,2, applying Theorem 3.1, we have

∆((π(N1),π(N2)),(π(M1),π(M2)))
(
π(X)

)= 0. (4.3)

Therefore, ∆((N1,N2),(M1,M2))(X) is compact.

The following theorem is an asymptotic version of the SPF theorem. It generalizes

the corresponding result in [10].

Theorem 4.2. Let A= (N1,N2) and B= (M1,M2) be tuples of commuting normal op-

erators in B(H). Let K be any positive real number and letn be an integer greater than 1.

Then for every neighborhood U of 0 in B(H) (under uniform, strong or weak topology),

a neighborhood V of 0 under the same topology is obtained such that if ∆(n)(A,B)(X) ∈ V
and ‖X‖ ≤K, then ∆(A,B)(X)∈U .
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Proof. We first consider the following particular case: N1 =N2 =N, M1 =M2 =M .

Assume that ‖N‖ and ‖M‖ are not greater than 1 (if not, we can replace N and M by

N/(‖N‖+‖M‖) and M/(‖N‖+‖M‖), resp.).

Let K > 0 and let U be any neighborhood of 0 in B(H) under uniform (or strong or

weak) topology. Let Uij , i,j = 1,2,3,4, be neighborhoods of 0 in B(H) under the same

topology such that

4∑
i=1

4∑
j=1

Uij ⊂U. (4.4)

Suppose that N, M have the following spectral decomposition:

N =
∫
σ(N)

λdEλ, M =
∫
σ(M)

λdFλ. (4.5)

For any ε > 0, define ∆ε = {z | |z| ≤ ε}, ∆cε = C\∆ε, and

H1(ε)= E
(
∆ε
)
F
(
∆ε
)
H,

H2(ε)= E
(
∆ε
)
F
(
∆cε
)
H,

H3(ε)= E
(
∆cε
)
F
(
∆ε
)
H,

H4(ε)= E
(
∆cε
)
F
(
∆cε
)
H.

(4.6)

ThenH can be written as H =H1(ε)⊕H2(ε)⊕H3(ε)⊕H4(ε). Under this decomposition,

we have

N =



N1(ε)

N2(ε)
N3(ε)

N4(ε)


 ,

M =



M1(ε)

M2(ε)
M3(ε)

M4(ε)


 ,

(4.7)

where ‖N1(ε)‖, ‖N2(ε)‖, ‖M1(ε)‖, ‖M3(ε)‖ are not greater than ε, and N3(ε), N4(ε),
M2(ε), and M4(ε) are invertible.

Let X = ((Xij(ε)))i,j=1,2,3,4 and let Z denote the set

Z = {(1,1),(1,2),(1,3),(1,4),(2,1),(2,3),(3,1),(3,2),(4,1)}. (4.8)

If (k,l)∈ Z , then at least one operator in each pair of (Nk,Nl), (Mk,Ml) has norm less
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than ε. Hence

∥∥Nk(ε)Xkl(ε)Nl(ε)−Mk(ε)Xkl(ε)Ml(ε)
∥∥ �→ 0 as ε �→ 0. (4.9)

Therefore, we are able to choose a fixed number ε0 > 0 such that for each pair

(k,l)∈ Z ,

(
δij(k,l)∆((Ni(ε0),Nj(ε0)),(Mi(ε0),Mj(ε0)))

(
Xij

(
ε0
)))

4×4 ∈Ukl, (4.10)

where δij(k,l) equals 1 if i= k, j = l and 0 otherwise. Set Vkl =Ukl.
For the sake of simplicity, we will omit ε0 in the notations of each component in the

decompositions of H, N, M , X.

It is easy to see that ∆(n)(A,B)(X) has the following decomposition:

∆(n)((N,N),(M,M))(X)=
(
∆(n)((Ni,Nj),(Mi,Mj))

(
Xij

))
4×4
. (4.11)

If (k,l) is not in Z , then at least one pair of (Nk,Nl) and (Mk,Ml) has two invertible

operators. We assume that Nk and Nl are invertible (we can follow the same way if Mk,

Ml are invertible).

Let

Okl =
{
okl :

(
δij(k,l)oij

)
4×4 ∈Uij

}
. (4.12)

Then Okl is a neighborhood of 0 in B(Hl,Hk).
Since Nk, Nl are invertible, we can see that

∆(n)((Nk,Nl),(Mk,Ml))
(
Xkl

)=Nnk ∆(n)((Ik,Il),(N−1
k Mk,N−1

l Ml))

(
Xkl

)
Nnl , (4.13)

where Ik, Il are identities on Hk, Hl. It follows from the asymptotic PF theorem in [2]

that there is the neighborhood Pkl of 0 in B(Hl,Hk) such that for ‖Xkl‖ ≤K, if

∆(n)
((Ik,Il),(N−1

k Mk,N−1
l Ml))

(
Xkl

)∈ Pkl, (4.14)

then

∆((Ik,Il),(N−1
k Mk,N

−1
l Ml))

(
Xkl

)∈N−1
k OklN

−1
l . (4.15)

Set Vkl =Nnk PklNnl . If

∆(n)((Nk,Nl),(Mk,Ml))
(
Xkl

)∈ Vkl, (4.16)

then

∆((Nk,Nl),(Mk,Ml))
(
Xkl

)∈Okl. (4.17)

Let

V = {(vij)4×4 : vij ∈ Vij
}
. (4.18)
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Then V is a neighborhood of 0. If ‖X‖ ≤ K and ∆(n)(A,B)(X)∈ V , then for each pair (k,l),
‖Xkl‖ ≤K and (4.16) holds; so it follows that (4.17) holds, that is,

(
δij(k,l)∆((Nk,Nl),(Mk,Ml))

(
Xkl

))
4×4 ∈Ukl, (4.19)

but

∆(A,B)(X)=
4∑
k=1

4∑
l=1

(
δij(k,l)∆((Nk,Nl),(Mk,Ml))

(
Xkl

))
4×4, (4.20)

which is in U by (4.4).

In general, let

Ñ =
(
N1

N2

)
, M̃ =

(
M1

M2

)
. (4.21)

Then Ñ, M̃ are normal in B(H⊕H). Let

Ũ =
{(

u1 u2

u3 u4

)
:ui ∈U, i= 1,2,3,4

}
. (4.22)

Ũ is a neighborhood of 0 in B(H⊕H). So there is a neighborhood Ṽ of 0 in B(H⊕H)
such that if ‖X̃‖ ≤K, ∆(n)(Ã,B̃)(X̃)∈ Ṽ , then ∆(Ã,B̃)(X̃)∈ Ũ . Let

X̃ =
(

0 X
0 0

)
, V =

{
v :

(
0 v
0 0

)
∈ Ṽ

}
. (4.23)

V is a neighborhood of 0 in B(H). If ‖X‖ ≤ K, ∆(n)(A,B)(X) ∈ V , then ‖X̃‖ ≤ K and

∆(n)(Ã,B̃)(X̃)∈ Ṽ ; so ∆(Ã,B̃)(X̃)∈ Ũ , which means that

(
0 ∆(A,B)(X)
0 0

)
∈ Ũ (4.24)

or ∆(A,B)(X)∈U .

Using the same technique, we are able to generalize the asymptotic PF theorems

obtained by Moore [6] and Rogers [8].

Theorem 4.3. Let N1, N2, M1, M2, k be the same as in Theorem 4.2. Then for any

neighborhood U of 0 in B(H) (under uniform, strong or weak topology), a neighborhood

V of 0 under the same topology is obtained such that if N∗1 XN
∗
2 −M∗

1 XM
∗
2 ∈ V and

‖X‖ ≤K, then NXN−MXM ∈U .
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[1] J. Anderson and C. Foiaş, Properties which normal operators share with normal derivations
and related operators, Pacific J. Math. 61 (1975), no. 2, 313–325.

[2] Y. Chen, Kernels of generalized derivation operators, Chinese Ann. Math. Ser. A 13 (1992),
no. 5, 580–588.

[3] L. A. Fialkow, Essential spectra of elementary operators, Trans. Amer. Math. Soc. 267 (1981),
no. 1, 157–174.

[4] T. Furuta, Generalized Fuglede-Putnam theorem and Hilbert-Schmidt norm inequality, Proc.
Japan Acad. Ser. A Math. Sci. 58 (1982), no. 2, 55–57.

[5] , A Hilbert-Schmidt norm inequality associated with the Fuglede-Putnam theorem,
Ark. Mat. 20 (1982), no. 1, 157–163.

[6] R. L. Moore, An asymptotic Fuglede theorem, Proc. Amer. Math. Soc. 50 (1975), 138–142.
[7] C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Ergeb-

nisse der Mathematik und ihrer Grenzgebiete, vol. 36, Springer-Verlag, New York,
1967.

[8] D. D. Rogers, On Fuglede’s theorem and operator topologies, Proc. Amer. Math. Soc. 75
(1979), no. 1, 32–36.

[9] K. Takahashi, On the converse of the Fuglede-Putnam theorem, Acta Sci. Math. (Szeged) 43
(1981), no. 1-2, 123–125.

[10] Y. S. Tong, Higher-order generalized derivations, Chinese Ann. Math. Ser. A 6 (1985), no. 5,
565–572.

Yin Chen: Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON,
Canada P7B 5E1

E-mail address: yin.chen@lakeheadu.ca

mailto:yin.chen@lakeheadu.ca

