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We will determine the number of powers of α that appear with nonzero coefficient in an
α-power linear differential resolvent of smallest possible order of a univariate polynomial
P(t) whose coefficients lie in an ordinary differential field and whose distinct roots are
differentially independent over constants. We will then give an upper bound on the weight
of an α-resolvent of smallest possible weight. We will then compute the indicial equation,
apparent singularities, and Wronskian of the Cockle α-resolvent of a trinomial and finish
with a related determinantal formula.
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1. Introduction. It is the purpose of this paper to prove two theorems giving, respec-

tively, a lower bound (Theorem 8.3) on the number of nonzero terms (more precisely

called coefficient-functions in Definition 6.2) which must appear in a linear differen-

tial resolvent and an upper bound (Theorem 9.1) on the smallest possible weight of

a resolvent for polynomials whose distinct roots are differentially independent over

constants. Such polynomials are called differentially transcendental polynomials. They

may be differentially specialized, meaning if z→φ(z), then Dz→φ(Dz), to any poly-

nomial whose roots have the same multiplicities. Therefore, it is reasonable to begin

the investigation of the bounds on the weight of and number of nonzero terms in re-

solvents for arbitrary polynomials with the investigation of these bounds on resolvents

of differentially transcendental polynomials.

A differential α-resolvent of a polynomial is itself a polynomial in α. The author

first recognized this fact by examining the partial differential equations of Mellin [16],

who chose the letter α. The author’s powersum formula [21] for computing resolvents

relies on the fact that an α-resolvent of a polynomial is itself a polynomial in α. The

author asserts in [19, Theorem 4.1] that the powersum formula for α-resolvents does

not vanish identically for differentially transcendental polynomials.

In Theorem 8.3 we will determine the number of nonzero coefficients of α in an nth-

order α-resolvent of a differentially transcendental polynomial with n distinct roots.

The author calls these coefficients of α the coefficient-functions of the resolvent to

suggest that they are not necessarily constant. In Theorem 9.1 we will determine an

upper bound on the weight, given by Definition 5.1, of these coefficient-functions for

any integral α-resolvent. It is important to determine the upper bound on the weight

of a particular resolvent in [17] in order to assess how much factoring must be done.

2. Definitions and notation. Let Z denote the integers, let N denote the positive

integers, let N0 denote the nonnegative integers, let Q denote the rational numbers.

For any ring R, let R# denote the nonzero elements of R.
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Definition 2.1. For each m∈N, define [m]≡ {k∈N� 1≤ k≤m}.
Definition 2.2. For each m∈N0, define [m]0 ≡ {k∈N0 � 0≤ k≤m}.
Definition 2.3. For any variable or differential operator v and any m ∈ N and

r ∈Q, define

(v)m,r ≡
m∏
k=1

(
v−(k−1)·r), (v)0,r ≡ 1, (v)m ≡ (v)m,1. (2.1)

Definition 2.3 will be used extensively in the proof of Theorem 11.9.

Definition 2.4. Define the function δi,j ≡ 1 if i = j and δi,j ≡ 0 if i �= j. Denote a

square matrix M whose entry in the ith row and jth column is some function M(i,j) of

i and j by [M(i,j)]i×j and its determinant by det[M(i,j)]i×j .

We will follow the notation in [13] for the adjunction of differential elements to dif-

ferential rings and fields. Let Θ denote an element or a set of elements in a differential

ring extension of a differential ring or field R. Brackets R[Θ] will denote the polynomial

ring generated by Θ over R. Braces R{Θ} will denote the differential ring generated by

Θ over R, which is just the polynomial ring generated by infinitely many derivatives of

Θ over R. Only when R is a field, parentheses R(Θ) will denote the field generated by Θ
over R. Only when R is a differential field, arrows R〈Θ〉 will denote the differential field

generated by Θ over R, which is just the field generated by infinitely many derivatives

of Θ over R. Finally, with a slight addition to Kolchin’s notation, for each m ∈ N0, let

R{Θ}m denote the ordinary (nondifferential) ring generated byR and the firstm deriva-

tives of Θ. Only when R is a field, let R〈Θ〉m denote the ordinary (nondifferential) field

generated by R and the first m derivatives of Θ. We remind the reader that differential

rings and fields must contain infinitely many derivatives of all their elements.

We always have the following four set-theoretic inclusions and two equalities:

R{Θ}m ⊂R{Θ}, R〈Θ〉m ⊂R〈Θ〉, R{Θ}m ⊂R〈Θ〉m, R{Θ} ⊂R〈Θ〉,
R{Θ}0 =R[Θ], R〈Θ〉0 =R(Θ). (2.2)

Definition 2.5. Let P(t) ≡∑N
i=0(−1)N−ieN−i ·ti =

∏n
i=1(t−zi)πi ∈ F[t] be a monic

univariate polynomial in t of degree N = ∑n
i=1πi with n distinct roots {zi}ni=1 whose

coefficients e≡ {ei}Ni=1 lie in an ordinary differential field F with derivation D.

Thus the e are the first N elementary symmetric functions of the roots of P count-

ing their multiplicities {πi}ni=1. Henceforth, we will consider only the various differen-

tial subfields of F = Q〈z1, . . . ,zn〉(α). Let {fi}ri=1 be the irreducible factors of P over

the base field Q(e), also called the coefficient field of P . Then P(t) =∏r
i=1f

τi
i , where

{τi}ri=1 ⊂ {πi}ni=1. We call Q〈e〉m the mth order coefficient field of P , Q〈e〉 the differen-

tial coefficient field of P , Z[e] the coefficient ring of P , Z{e}m the mth order coefficient

ring of P , and Z{e} the differential coefficient ring of P .

Definition 2.6. Define the monic univariate polynomial P̄ (t) ≡ ∏n
i=1(t − zi) =∑n

i=0(−1)n−iēn−i ·ti with the same roots as P but all simple.
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Thus the coefficients ē≡ {ēi}ni=1 of ti in P̄ in Definition 2.6 are the first n elementary

symmetric functions of the roots of P not counting their multiplicities. Since char(F)=0,

F is a perfect field, so P is a separable polynomial, so each of the irreducible factors

of P has simple roots, so P̄ (t) =∏r
i=1fi. Since there exist only finitely many nonzero

elementary symmetric functions of the roots of P , with or without multiplicities, it is

understood that adjunction of e and their derivatives means adjunction of the N ele-

ments e1, . . . ,eN , and adjunction of ē and their derivatives means adjunction of the n
elements ē1, . . . , ēn. Thus, the definitions of Q(ē), Q〈ē〉m, Q〈ē〉, Z[ē], Z{ē}m, and Z{ē}
are clear. In contrast, there are infinitely many nonzero powersums (see formulae (4.1)–

(4.4)) and Schur functions (see Definition 4.2). So, when we wish to adjoin finitely many

powersums to a field, we must specify which powersums we are adjoining.

Definition 2.7. Define ∆ ≡ ∏i<j (zi−zj)2 to be the discriminant of P̄ . Note that

∆ �= 0 and ∆ lies in Z[ē].

Lemma 2.8. Let e and ē be given by Definitions 2.5 and 2.6. Then the inclusion

Q〈ē〉m ⊂Q〈e〉m holds.

Proof. If P(t) = ∏r
i=1(fi(t))τi is the irreducible factorization of P(t) over Q(e),

then each fi(t) lies inQ(e)[t]. So P̄ (t)=∏r
i=1fi(t)∈Q(e)[t]. Since {ēi}ni=1 are defined

by P̄ (t)=∑n
i=0(−1)n−iēn−i ·ti, it follows that ē⊂Q(e). Hence Q〈ē〉m ⊂Q〈e〉m.

No immediate inclusion like the inclusion in Lemma 2.8 is possible between the rings

Z{ē}m and Z{e}m. However, Lemma 4.3 gives us a partial inclusion.

Definition 2.9. Let α be transcendental overQ〈e〉 withDα= 0. For each root z, let

y denote a nonzero solution of z ·Dy−α·y ·Dz = 0. Call y an α-power of the root z
of P and denote it by y = zα. Thus, y is unique up to a constant multiple, and a unique

z corresponds to each y .

Definition 2.10. Let a maximum of o of the α-powers of the roots be linearly inde-

pendent over constants. Order the roots such that {yi = zαi }oi=1 are linearly independent

over constants.

3. Partitions of integers. In this section we will use the definitions and some of the

notation as in [14, page 1]. We must use the letters i andm elsewhere in this paper, so,

in place of these letters in Macdonald’s definitions, we will use the letters k and r .

Definition 3.1. For our purposes, a partition λ is a finite decreasing sequence of

nonnegative integers λ1 ≥ λ2 ≥ ··· ≥ λ�, called the parts of λ.

Definition 3.2. The number of positive parts � is the length of λ. To emphasize

the particular partition, write �(λ) for the length of λ.

Definition 3.3. For each k ∈ [n], define rk ∈ N0 to be the number of parts of λ
equal to k. Call rk the multiplicity of k in λ.

It is convenient not to deal directly with the individual parts λv of a partition λ, but

rather with these multiplicities and write λ= (1r12r2 ···nrn). Hence � =∑n
k=1 rk.
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Definition 3.4. Define |λ| to be the sum of the parts of λ and call it the weight

of λ. Hence, |λ| =∑n
k=1k·rk. Call λ is a partition of the integer |λ|. Extend Macdonald’s

definitions slightly to allow zero parts and to define λ= (0) to be the unique partition

of zero.

We will use partitions of integers in two ways. In the first way in Section 4 and

Lemma 4.3 in particular the kth part λk of the partition λ is the power of zk. Thus

rk = 0 for all k > n since all parts of λ are less than or equal to n. So �(λ) ≤ n. The

weightw(s̄λ) of the Schur polynomial s̄λ, which is the common notion of isobaric weight

or total degree given by Definition 5.1, equals |λ|.
In the second way in Section 7 and formula (7.2) in particular the multiplicity rk is

the power of the kth derivative of zl, so |λ| =m, the total differential order of the Bell

polynomial Bm,k{zl}, and the length �(λ) of λ equals the weight of w(Bm,k{zl}) given

by Definition 5.1. Although we will need to consider only m ≤ n in Theorem 9.1, one

can differentiate infinitely many times, so in principle there is no upper bound on m,

and therefore no upper bound exists on |λ| and �(λ) in this application of partitions

of integers.

From Definitions 3.1, 3.2, 3.3, and 3.4, it follows that 1≤ �(λ)≤m for all partitions

λ of a positive integer m. Note the following two extreme cases on �(λ).

Assertion 3.5. There exists exactly one partition λ such that �(λ) = 1, namely,

λ= (m1). Thus rm = 1 and rk = 0 for all k �=m.

Assertion 3.6. There exists exactly one partition λ such that �(λ) =m, namely,

λ= (1m). Thus r1 =m and rk = 0 for all k �= 1.

4. Powersums

Definition 4.1. Define the qth powersum of the roots of P as pq ≡
∑n
j=1πj ·zqj , for

all q ∈ Z.

It is well-known thatpq∈Z[e1, . . . ,emin(q,N)], for all q∈N0, and eq∈Q[p1, . . . ,pmin(q,N)],
for all q ∈N0, with formulae given by [14, page 28]

pq = det




e1 1 0 0

2e2 e1
. . . 0

...
...

. . . 1

q ·eq eq−1 ··· e1




∀q ∈N, where eq ≡ 0, ∀q >N, (4.1)

eq = 1
q!

det




p1 1 0 0

p2 p1
. . . 0

...
...

. . . q−1

pq pq−1 ··· p1




∀q ∈N. (4.2)
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When q >N, formula (4.2) yields zero for eq. For reference, we note that

p̄q = det




ē1 1 0 0

2ē2 ē1
. . . 0

...
...

. . . 1

q · ēq ēq−1 ··· ē1




∀q ∈N, where ēq ≡ 0, ∀q >n, (4.3)

ēq = 1
q!

det




p̄1 1 0 0

p̄2 p̄1
. . . 0

...
...

. . . q−1

p̄q p̄q−1 ··· p̄1




∀q ∈N. (4.4)

When q > n, formula (4.4) yields zero for ēq. Formulae (4.1) through (4.4) immediately

imply the equalities and inclusions Q〈e〉m = Q〈p1, . . . ,pN〉m, Q〈e〉 = Q〈p1, . . . ,pN〉,
Z{p1, . . . ,pN}m ⊂ Z{e}m ⊂ Q{e}m = Q{p1, . . . ,pN}m, Z{p1, . . . ,pN} ⊂ Z{e} ⊂ Q{e} =
Q{p1, . . . ,pN} and the same with ē in place of e and p̄1, . . . , p̄n in place of p1, . . . ,pN .

For the proof of Theorem 9.1, we wish to find an element U ∈ Z[e], preferably of

lowest possible weight when weight is defined, such that U · P̄ ∈ Z[e,t]. Because it

is so easy to do so, we will prove something a little stronger. Let Sn denote the full

symmetric group on the n roots of P̄ . Let An denote the alternating subgroup con-

sisting of all even permutations in Sn. We say that a polynomial η ∈ Z[z1, . . . ,zn] is

antisymmetric in the roots if g(η) = η, for every g ∈ An, and h(η) = −η, for ev-

ery h ∈ Sn, h ∉ An. Let δ denote the partition δ ≡ (n − 1,n − 2, . . . ,1,0). For any

partition µ = (µ1, . . . ,µn) of length �(µ) ≤ n, define the antisymmetric polynomial

aµ ≡
∑
g∈An

∏n
i=1z

µi
g(i)−

∑
g∈Sn,g∉An

∏n
i=1z

µi
g(i). Then µ may be written as a determinant,

aµ = det[z
µj
i ]i,j∈[n]. Then the Vandermonde determinant form of the discriminant of

P̄ may be expressed as ∆= a2
δ.

Definition 4.2. Define the Schur function indexed by the partition λ to be s̄λ ≡
aλ+δ ÷ aδ. The Schur function s̄λ is a homogeneous symmetric polynomial in

Z[z1, . . . ,zn] whose weight w(s̄λ) equals |λ| by Definition 5.1. The bar reminds us that

s̄λ is symmetric in the roots of P̄ , not counting multiplicities.

Note that if any two parts of µ are equal, then aµ = 0, which is the only element both

symmetric and antisymmetric. Hence, we may assume µ has distinct parts and write it

as µ = λ+δ, where λ is the partition whose parts are defined by λi ≡ µi−n+i.

Lemma 4.3. Define U ≡ (∏n
j=1πj)·∆. Let e and ē be given by Definitions 2.5 and 2.6.

Then U ·Z[ē]⊂ Z[e] and U ∈ Z[e].
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Proof. We have

U · s̄λ =

 n∏
j=1

πj ·∆

· aλ+δ

aδ
=

 n∏
j=1

πj ·aδ

·aλ+δ

= det
[
πj ·zij

]
i×j ·det

[
zλk+n−kj

]
j×k

= det


 n∑
j=1

πj ·zi+λk+n−kj



i×k

= det
[
pi+λk+n−k

]
i×k ∈ Z[e].

(4.5)

By [14, formula (3.3), page 41], any h ∈ Z[ē] can be written as a finite sum of Schur

functions over Z, h = ∑λ bλ · s̄λ with bλ ∈ Z. So, U ·h = ∑λ bλ · (U · s̄λ) ∈ Z[e]. This

proves the first assertion.

If we let λ= (0), we get U = U ·1= U · s̄(0) ∈ Z[e]. This proves the second assertion.

Corollary 4.4. Let e and P̄ be given by Definitions 2.5 and 2.6. Then U · P̄ ∈ Z[e,t].
Since the qth powersum

∑n
j=1πj ·zqj is not fixed under action by Sn for arbitrary mul-

tiplicities πj , we cannot say anything about the action of Sn on the ringQ[p1, . . . ,pN]=
Q[e]. So we cannot use Sn directly, nor the Galois group of P , for the final symmetriza-

tion of the resolvent of P̄ to a resolvent of P in Theorems 8.3 and 9.1. Instead we will

apply Lemma 4.5.

Lemma 4.5. Let o ∈ [n]. Let η be a linear combination of antisymmetric polynomials

in Z[z1, . . . ,zn] over the ring Z{e}o[α]. Then U ·(η÷√∆)∈ Z{e}o[α].
Proof. By [14, page 40] we may write η = ∑

µ hµ ·aµ with hµ ∈ Z{e}o[α]. Thus

U ·(η/√∆)=∑µ hµ ·(U ·(aµ/
√
∆))=∑µ hµ ·(U · s̄µ−δ)∈ Z{e}o[α] since U · s̄µ−δ ∈ Z[ē]

by Lemma 4.3.

5. Weight of rational functions

Definition 5.1. Define the weight of a monomial h= s ·∏m≥0

∏n
j=1(Dmzj)

vj,m ·αi,
with s ∈ Z# in the ring Z{z1, . . . ,zn}[α], by w(h)≡∑m≥0

∑n
j=1vj,m.

Thus weight is defined so that w(zl) = 1, for all l ∈ [n], w(h) = 0, for all h ∈
(Z[α])#, derivation leaves weight unchanged, and the weight of a polynomial h ∈
Z{z1, . . . ,zn}[α] is defined such that each of the coefficients in Z{z1, . . . ,zn} of the sep-

arate powers of α has the same weight.

Definition 5.2. The weight of a monomial ĥ = s ·∏m≥0

∏q
ι=1 (Dmpι)vι,m ·αi, with

s ∈ Z# in the ring Z{p1, . . . ,pq}[α], is defined by w(ĥ)≡∑m≥0

∑q
ι=1 ι·vι,m.

Weight is well defined if any finite linear relation of these monomials can be decom-

posed as the sum of homogeneous finite linear relations of monomials. This means that
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if any monomial can be expressed as a linear combination over Z# of other monomials,

then that monomial can be expressed as a linear combination over Z# of monomials of

the same weight.

Let h be a sum of monomials in Z{z1, . . . ,zn}[α] all of the same weight. Then we call h
a homogeneous polynomial of that weight. The discriminant∆ of P̄ , for instance, is a ho-

mogeneous polynomial in Z[ē] of weight n2−n. Clearly any homogeneous polynomial

in Z{p1, . . . ,pq}[α] is a homogeneous polynomial in Z{z1, . . . ,zn}[α].
A ratio of two homogeneous polynomials, which need not have the same weight, is

called a homogeneous rational function. Let h,b ∈ Z{z1, . . . ,zn}[α] be homogeneous

polynomials of weights w(h) and w(b), respectively. Then the weight of the rational

function h/b ∈Q〈z1, . . . ,zn〉(α) is defined to bew(h)−w(b). It follows that if h and b
have the same weight, then either h−b is a nonzero homogeneous rational function of

weight w(h)=w(b), or h−b = 0. The sum or difference of two homogeneous rational

functions is not a homogeneous rational function if the weights of the summands are

different. We define w(0) ≡ ∞ so that Definitions 5.1 and 5.2 are consistent with the

property w(0)=w(0·h)=w(0)+w(h), for all h∈Q〈z1, . . . ,zn〉(α).
Definition 5.3. Call the distinct roots of P differentially independent over constants

if no finite sum of distinct nonzero monomials in Z{z1, . . . ,zn} equals 0. Then call P
a differentially transcendental polynomial. Therefore define a differentially transcen-

dental polynomial as one whose distinct roots satisfy the following: the field Q〈z1, . . . ,
zn〉m has transcendence degree n·(m+1) over Q for every m∈N0.

6. Definition and existence of resolvents

Definition 6.1. Define a nonzero homogeneous linear ordinary differential equa-

tion of finite order �y ≡ ∑m∈N0

∑
i∈N0

ri,m ·αi ·Dmy = 0 to be an α-resolvent of P if

each α-power y ∈ {yi}ni=1 of the roots of P satisfies this equation, if � is polynomial

in α, and if each ri,m lies in the differential coefficient field Q〈e〉 of P .

Definition 6.2. Call ri,m the (i,m)th coefficient-function of �.

Definition 6.3. Call the coefficient Rm ≡
∑
i∈N0

ri,m ·αi of Dmy in� themth term

of �.

Definition 6.4. Call � homogeneous of weight w if every ri,m has weight w in the

field Q〈e〉 whenever the weight of elements in Q〈e〉 is well defined.

Definition 6.5. If the indeterminate power α is replaced with an integer power q,

then call � a q-resolvent. Technically, � could be called a resolvent if the terms Rm lie

in Q〈e〉(α). However, for purposes of computing � with the powersum formula [21],

define resolvents as being polynomials in α.

Definition 6.6. When the coefficient-functions ri,m lie in the differential coefficient

ring Z{e}, call the resolvent integral.

Since the differential coefficient field of P̄ lies in the differential coefficient field of

P by Lemma 2.8, and P and P̄ have the same roots modulo multiplicity, an α-resolvent
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of P̄ will be an α-resolvent for P . However, an integral α-resolvent of P̄ will not be an

integral α-resolvent of P .

Clearly, linear combinations of the derivatives of resolvents over the ring Q〈e〉[α]
are resolvents. We prefer that resolvents satisfy the following three conditions.

Condition 6.7. Resolvents should be of minimal order o.

Condition 6.8. Resolvents should have the fewest possible number of nonzero

coefficient-functions.

Condition 6.9. Resolvents should be integral and have minimal weight.

A slight modification of the basic theory of homogeneous linear ordinary differential

equations in [17, Theorem A2] guarantees the existence of resolvents, and not just linear

ordinary differential equations whose terms lie in an arbitrary field, of oth order, where

o is given by Definition 2.10. We will see that Condition 6.7 implies that the terms of

integral oth-order α-resolvents lie in the smallest possible ring Z{e}o[α]. The author

asserts in [20, Theorems 18 and 19] that if no root is a constant multiple of another,

then o =n for indeterminate α and all but finitely many integers α= q.

Among those resolvents which satisfy Condition 6.7, we will find those which sat-

isfy Condition 6.8 in Theorem 8.3 and prove their uniqueness up to Q〈e〉-multiples in

Theorem 10.1.

We may multiply a nonintegral resolvent which satisfies Conditions 6.7 and 6.8 by

an appropriate factor in Q〈e〉 to obtain an integral resolvent. We may also multiply

an integral resolvent by an appropriate factor in Q〈e〉 to obtain a possibly noninte-

gral resolvent but of zero weight, so as to make one of the coefficient-functions equal

to 1. Hence, minimizing the weight of resolvents in Condition 6.9 makes sense only for

integral resolvents.

Theorem 6.10. Define Ω ≡ o · (o−1)/2+1. There exists an α-resolvent of P of the

form
∑o
m=0

∑Ω−m
i=0 θi,m ·αi ·Dmyj = 0 for some nonzero θi,m ∈ Z{e}o except θ0,0 = 0.

Remark 6.11. Theorem 6.10 was originally proved as [18, Theorem 37, page 67]. It

has been published in [17, Theorem A.2].

Theorem 6.12. If � is a resolvent of P , then � may be expressed as a sum of homo-

geneous resolvents.

Remark 6.13. Theorem 6.12 was originally [18, Theorem 3, page 25].

Therefore, Theorems 6.10 and 6.12 imply the following theorem.

Theorem 6.14. There exists an integralα-resolvent of P of the form
∑o
m=0

∑Ω−m
i=0 θi,m·

αi ·Dmy = 0 for some nonzero θi,m ∈ Z{e}o of minimal weight except θ0,0 = 0.

Definition 6.15. Call the resolvent in Theorem 6.14 the Cohnian of P . Hence, the

Cohnian is the α- or q-resolvent which satisfies Conditions 6.7, 6.8, and 6.9 in that

order. Hereafter, the symbol θi,m will be used to represent the coefficient-functions of

the Cohnian of P .
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7. Bell polynomials. For this section, we follow the notation of [14, page 30].

Definition 7.1. The partial Bell polynomial Bm,k{zl} ∈ Z{zl}m of the derivatives of

a single root zl of P is defined for each m,k ∈ N0 to be the coefficient of z−kl in the

expansion of (Dmyl)/yl as a polynomial in α.

Let m ∈N. Then Dmyl = yl ·
∑m
k=1Bm,k{zl}·(α)k ·z−kl with (α)k given by Definition

2.3. Extend the definition of Bm,k{zl} to m = 0 and k = 0 to be consistent with yl =
D0yl. So

Dmyl =yl ·
m∑
k=0

Bm,k
{
zl
}·(α)k ·z−kl . (7.1)

One immediately sees that Bm,0{zl} = 0 for each m∈N, B0,k{zl} = 0 for each k∈N,

B0,0{zl} = 1, and Bm,k{zl} = 0 for all m,k∈N0 with k >m. When the choice of root zl
is understood, we will shorten Bm,k{zl} to Bm,k.

We have the following formula for Bm,k on [14, page 31]:

Bm,k =
∑
λ
cλ ·

m∏
j=1

(
Djzl

)rj , (7.2)

where the sum is over all partitions λ = (1r1 ···nrn) of m of length k, and cλ ≡m!÷∏n
j=1(rj !·(j!)rj )∈N. This implies zm ·(Dmy/y)∈ Z{z}m[α].
Formula (7.2) allows us to make the following two assertions about Bm,k. If the distinct

roots are differentially independent over constants, then any one root zl and its deriva-

tives are algebraically independent over constants. Therefore, monomials in the for-

mula for Bm,k indexed by distinct partitions λ �= λ′ cannot cancel. Therefore we have the

following.

Assertion 7.2. If we can prove the existence of a certain partition λ ofm of length

k, then we have proven that a certain monomial exists in the expansion of Dmy with

nonzero integer coefficient cλ.

The weight of Bm,k, by Definition 5.1, equals
∑m
j=1 rj = k, the length of the partitions λ

appearing in (7.2). Since k∈ [m] implies (m−k)∈ [m−1]0 and
∑m
j=2 (j−1)·rj =m−k,

we can find a partition λ of m of length k given by r1 = k−1 and rm−k+1 = 1 if k <m.

Therefore we have the following.

Assertion 7.3. The degree ofDzl in Bm,k{zl} equals k−1 and Bm,k{zl} �= 0 for each

k∈ [m−1]. For k=m, by Assertion 3.5, there exists only one partition ofm of length 1,

namely, the partition λ = (m1) = (m). For this partition of m, cλ =m!÷ ((r !)(1!)r ) =
m!÷((m!)(1)m)= 1. Therefore we have the following.

Assertion 7.4. For each m∈N0, we have Bm,m = (Dzl)m �= 0.

8. Form of resolvents of minimal order. The following quantities play a critical role

in the form of an α-resolvent of order o.

Definition 8.1. Define Ω ≡ (o2−o+2)/2 as in Theorem 6.10.
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Definition 8.2. Define Ψ ≡n·Ω =n·(o2−o+2)/2.

Theorem 8.3. Let P be a differentially transcendental polynomial given by Defini-

tions 2.5 and 5.3. Then there exists an integralα-resolvent
∑o
m=0

∑Ω−m
i=0 θi,m ·αi ·Dmyj =

0 of P of minimal order which has all nonzero coefficient-functions θi,m �= 0 except

θ00 = 0. The number Φ of nonzero coefficient-functions θi,m appearing in this equation

is (n3−n2+2n+2)/2.

Proof. Set up the Wronskian form of a differential equation

Wα(t)≡

∣∣∣∣∣∣∣∣∣
y1 ··· yo t
...

. . .
...

...

Doy1 ··· Doyo Dot

∣∣∣∣∣∣∣∣∣
, (8.1)

where Wα(y)= 0 when t is replaced with any y . We emphasize that the coefficients of

Dmt inWα(t) do not lie inQ〈e〉[α] because this definition ofWα(t) is not symmetric in

all of the roots of P counting their multiplicities. Hence Wα is not an α-resolvent for P .

We will multiply Wα by the appropriate factor later to make it a resolvent of P .

Definition 8.4. Define Am to be the coefficient of Dmt in Wα(t). Thus

Am ≡ (−1)mdet
[
Dm

′
yl
]

l×m′
m′ �=m,m′∈[o]0, l∈[o]

. (8.2)

We need to prove the following two conditions hold.

Condition 8.5. The coefficient of αi in Am is not zero for o−1+δm,0 ≤ i≤Ω−m+
(o−1) for m∈ [o]0.

Condition 8.6. The coefficient of αi in Am is zero for i ∈ [o−2+δm,0]0 for m ∈
[o]0.

We first prove Condition 8.5 holds. For each k∈N, by formula (7.1), we haveDm′yl =
yl ·z−m′

l ·∑m′
k=1Bm′,k{zl}·(α)kzm′−k

l for each m′ ∈ [o]0. So

Dm
′
yl =yl ·z−m′

l ·
(
(α)m′ ·(Dzl)m′ +

m′−1∑
k=1

Bm,k
{
zl
}·(α)kzm′−k

l

)
, (8.3)

where Bm′,k{zl} · (α)kzm′−k
l ∈ Z[α]{zl} for k ∈ [m′ − 1] is a polynomial in α of de-

gree k, which is less than or equal to m′ − 1, and a polynomial in Dzl of degree

k−1 by Assertion 7.3. Note that Bm′,k{zl} · (α)kzm′−k
l is a homogeneous polynomial

in Z{zl}m′[α] of weight m′. Since no monomial in Bm′,k{zl} · (α)kzm′−k
l for k < m′

contains (Dzl)m
′
, each monomial of Bm′,k · (α)kzm′−k

l for k < m′ must contain one

of the derivatives of zl higher than one. Therefore, by (8.2) and (8.3), terms in Am
involving only the zeroth and first derivatives of the roots come only from the term

det[yl ·z−m′
l ·(α)m′ ·(Dzl)m′]l×m′ . Therefore, to prove Condition 8.5 holds for Am, it

is sufficient to prove Condition 8.5 holds for det[(α)m′ ·um′
l ] l×m′

l∈[o],m′∈[o]0,m′ �=m
where

the ul are defined by ul ≡Dzl/zl.
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We have

det
[
(α)m′ ·um′

l
]

l×m′
l∈[o],m′∈[o]0,m′ �=m

=
o∏
i=0
i�=m

(α)i ·det
[
um

′
l
]

l×m′
l∈[o],m′∈[o]0,m′ �=m

. (8.4)

Since the zl are differentially independent over Q, the ul are algebraically independent

over Q. Since the powers on the ul in each row of [um
′

l ] l×m′
l∈[o],m′∈[o]0,m′ �=m

are distinct,

it follows that det[um
′

l ] l×m′
l∈[o],m′∈[o]0,m′ �=m

�= 0.

For each m ∈ [o]0, we have
∏o

m′=0
m′ �=m

(α)m′ =∏o−1
j=0 (α−j)ηj,m , where ηj,m = o−1−j

for j <m and ηj,m = o−j for j ≥m. Therefore the degree of α in
∏o

m′=0
m′ �=m

(α)m′ equals

o−1∑
j=0

ηj,m =
∑
j<m

(o−1−j)+
∑
j≥m

(o−j)

=
o−1∑
j=0

(o−j)−#
{
j ∈ [m−1]0

}= o·(o+1)
2

−m.
(8.5)

For each m ∈ [o], we may factor αη0,m = αo−1 from
∏o

m′=0
m′ �=m

(α)m′ . For m = 0, we may

factor αη0,0 = αo from
∏o
m′=1 (α)m′ . Note that o · (o+1)/2−m− (o−1+δm,0) = Ω−

m−δm,0. So,
∏o−1
j=0 (α−j)ηj,m = αo−1+δm,0 ·∑Ω−m−δm,0

i=0 (−1)Ω−m−δm,0−iρi ·αi, where ρi
is the (Ω−m− δm,0 − i)th elementary symmetric function of the positive integers,

j ∈ [o−1], where j has multiplicity ηj,m. Therefore, ρi > 0 for all i ∈ [Ω−m−δm,0]0,

for all m ∈ [o]0. Therefore, Condition 8.5 holds for det[(α)m′ ·um′
l ]l∈[o],m′∈[o]0,m′ �=m

l×m′
.

By earlier remarks Condition 8.5 holds for Am.

We next prove Condition 8.6 holds. Ifm′ ∈ [o], then the lowest power ofα inDm′yl =
yl ·

∑m′
k=1Bm′,k{zl}·(α)k ·z−kl is 1 with coefficient yl ·ςm′,l, where

ςl,m′ ≡
m′∑
k=1

Bm′,k
{
zl
}·z−kl ·(−1)k−1(k−1)!∈ Z{zl}[z−1

l
]
. (8.6)

By Assertion 7.2, since the roots are differentially independent over constants, we

need to find only one k∈ [m′] and one partition of m′ of length k in formula (8.6) for

ςl,m′ to prove that ςl,m′ �= 0. By Assertion 7.4, the partition λ = (m′)1 corresponding

to Bm′,m′ {zl} �= 0 will suffice. If m′ = 0, then Dm′yl = yl �= 0. Therefore, we may write

Dm′yl =yl ·(α1−δm′ ,0 ·ςl,m′ +Ol,m′(α2)), where Ol,m′(α2) are terms in Z{zl}[z−1
l ,α] of

degree in α strictly greater than 1.

Therefore, for m ∈ [o]0, we may pull out one power of α from the m′th column

of Am = det[Dm′yl] l×m′
m′ �=m

= det[yl ·(α1−δm′ ,0 ·ςl,m′ +Ol,m′(α2))] l×m′
m′ �=m

except the 0th

column, unless m = 0, in which case we may pull out one power of α from each of
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the o columns. Thus

Am =
( o∏
l=1

yl

)
·
( ∏
m′∈[o]0,m′ �=m

α1−δm′ ,0
)
·
(

det
[
ςl,m′

]
l×m′
m′ �=m

+O(α)
)

=
( o∏
l=1

yl

)
·αo−1+δm,0 ·

(
det

[
ςl,m′

]
l×m′
m′ �=m

+O(α)
)
,

(8.7)

where O(α) are terms in Z{z1, . . . ,zo}[z−1
1 , . . . ,z−1

o ,α] of degree in α strictly greater than

zero.

We must now prove that det[ςl,m′] l×m′
m′ �=m

�= 0 in (8.7). The highest-order derivative of

zl which appears with nonzero coefficient in ςl,m′ ism′ when k= 1 by formula (8.6) and

Assertion 3.6. It is therefore easy to see that det[ςl,m′] l×m′
m′ �=m

= det[Dm′zl/zl] l×m′
m′ �=m

+X

in (8.7), where X ∈ Z{z1, . . . ,zo}[z−1
1 , . . . ,z−1

o ] has differential order strictly less than

the differential order of det[Dm′zl/zl] l×m′
m′ �=m

. Therefore X cannot possibly cancel with

det[Dm′zl/zl] l×m′
m′ �=m

in (8.7) since the roots are differentially independent over con-

stants. So, det[ςl,m′] l×m′
m′ �=m

�= 0. Therefore, by (8.7), the lowest power of α with nonzero

coefficient in Am is o−1+δm,0. Therefore the lowest power of α with nonzero coeffi-

cient in Am÷αo−1 is δm,0.

We must now symmetrize Am with respect to all N roots of P including their multi-

plicities. First we specialize o→n (see Remarks 9.2) so that Ω→n·(n−1)/2+1, then

multiply Am by enough powers of ēn and the square root of ∆ until we get a differential

equation whose coefficient-functions lie in Z{e}n. Specifically, if we define Rm by (9.9)

(see the proof of Theorem 9.1), then
∑n
m=0Rm ·Dmy = 0 will be an integral resolvent

of P . After factoring out any other possible factors in Z{e}n, the resulting resolvent

will be the Cohnian. The Cohnian will be aQ〈ē,e〉(√∆)-multiple ofWα(t) and therefore

have the same number of nonzero coefficient-functions for the same powers of α as

Wα(t) does. This number equals −1+∑n
m=0 (Ω+1−m), where the leading −1 accounts

for the fact that θ0,0 = 0 and Ω+1−m equals the number of elements in [Ω−m]0,

representing the distinct powers of α in the mth term of the resolvent. Thus

Φ =−1+
n∑

m=0

(Ω+1−m)=−1+(Ω+1)·(n+1)−
n∑

m=0

m

=n·Ω+Ω+n− n·(n+1)
2

=n·Ω+Ω− n·(n−1)
2

=n·Ω+1= Ψ+1.

(8.8)

Remark 8.7. Theorem 8.3 was originally [18, Theorem 40, page 71].

Definition 8.8. Define Γ ≡ {(i,m) � i+m ∈ [Ω], m ∈ [n]0, i ≥ 0} to be the set

of pairs (i,m), which index the nonzero coefficients θi,m of α in the Cohnian of a

differentially transcendental polynomial. By Theorem 8.3 and Definition 8.1, the size

of Γ equals Φ.
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9. Upper bound on the weight of the Cohnian

Theorem 9.1. Let theα-powers {yi}ni=1 of then distinct roots of P given by Definition

2.5 be linearly independent over constants (so o = n). Then there exists an α-resolvent∑n
m=0Rm ·Dmy = 0 of P with terms Rm ∈ Z{e}n[α] of weight w(Rm) = n · (4n2 −

5n+3)/2 if n=N and w(Rm)=n·(8n2−9n+3)/2 if n<N.

Proof. If n < N, then, by Corollary 4.4, we have U ≡ (∏n
i=1πi) ·∆ such that U ∈

Z[e], U · P̄ (t) ∈ Z[e,t], and w(U) = n2−n. If n = N, then we know P̄ (t) = P(t). We

may combine these two cases as U1−δn,N · P̄ (t)∈ Z[e,t], where w(U1−δn,N )= (n2−n)·
(1−δn,N). Define S̄(t) ≡ ∂P̄/∂t to be the separant of P̄ . Then U1−δn,N · S̄(t) ∈ Z[e,t].
Since S̄(zj) �= 0, the formulae in [12, pages 203-204] can be used to find polynomials

Tm(t)∈ Z{e}m[t] such that

Dmzj = Tm
(
zj
)

(
U1−δn,N S̄

(
zj
))2m−1 ∀j ∈ [n], (9.1)

with weight w(Tm(zj)) = 1+ (2m−1) · (n−1) · (n+1−δn,N) since w(S̄(zj)) = n−1

and w(U)=n·(n−1). Then

Dmyj =Dmzαj =yj ·
m∑
k=0

Bm,k{zj}·(α)k ·z−kj

=yj ·
m∑
k=0

∑
λ
cλ ·

m∏
l=0

(
Dlzj

)rl ·(α)k ·z−kj

=yj ·
m∑
k=0

∑
λ
cλ ·

m∏
l=0


 Tl

(
zj
)

(
U1−δn,N · S̄(zj))2l−1



rl

·(α)k ·z−kj

=yj ·
m∑
k=0

1(
U1−δn,N · S̄(zj))∑ml=1 (2l−1)·rl

∑
λ
cλ ·

m∏
l=0

(
Tl
(
zj
))rl ·(α)k ·z−kj

=yj ·
m∑
k=0

1(
U1−δn,N · S̄(zj))2m−k

∑
λ
cλ ·

m∏
l=0

(
Tl
(
zj
))rl ·(α)k ·z−kj ,

(9.2)

where λ= (1r1 ···nrn), ∑m
l=1 rl = k, and

∑m
l=1 l·rl =m.

We defined Am in Definition 8.4 and gave a determinantal formula for it in (8.2).

Combining formula (8.2) with formula (9.2) yields

Am=det

[
yj ·

m′∑
k=0

1(
U1−δn,N · S̄(zj))2m′−k

∑
λ
cλ·

m′∏
l=0

(
Tl
(
zj
))rl ·(α)k ·z−kj

]
j×m′

m′ �=m,m′∈[o]0,j∈[o]
.

(9.3)

The greatest negative power of U1−δn,N · S̄(zj) appearing in the jth column of the

determinantal formula (9.3) for Am is 2o− 1 and occurs when m′ = o and k = 0 if

m �= o, and is 2o− 3 and occurs when m′ = o− 1 and k = 0 if m = o. The greatest
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negative power of zj appearing in the jth column of the determinantal formula (9.3)

for Am is o and occurs when k = m′ = o if m �= o, and is o− 1 and occurs when

k=m′ = o−1 if m= o. Therefore we will multiply formula (9.3) for Am by

U(2o−1)·(1−δn,N) ·

 o∏
j=1

zoj


·

 o∏
j=1

(
S̄
(
zj
))2o−1


÷


 o∏
j=1

zαj


 (9.4)

so that the product will lie in the ring Z{z1, . . . ,zn}[α].
So we define

Hm ≡U(2o−1)·(1−δn,N) ·

 o∏
j=1

zoj


·

 o∏
j=1

(
S̄
(
zj
))2o−1


·Am÷


 o∏
j=1

zαj




= det
[
Hm′,j

]
j×m′

m′ �=m,m′∈[o]0,j∈[o]
,

(9.5)

where we define

Hm′,j ≡
m′∑
k=0

(
U1−δn,N · S̄(zj))2o−1−2m′+k∑

λ
cλ ·

m′∏
l=0

(
Tl
(
zj
))rl ·(α)k ·zo−kj . (9.6)

It is important to note that Hm′,j belongs to Z{e}m′
[
α,zj

]
.

Let ε ≡ ∏n
k=1πk so that U = ε ·∆. See Remarks 9.2 to explain why we must now

specialize o→n. Then

Hm =U(2n−1)(1−δn,N) ·

 n∏
j=1

znj


·

 n∏
j=1

(
S̄
(
zj
))2n−1


·Am÷


 n∏
j=1

zαj




= ε(2n−1)·(1−δn,N)∆(2n−1)·(1−δn,N) · ēnn ·∆2n−1 ·Am÷

 n∏
j=1

zαj




= ε(2n−1)·(1−δn,N)∆(2n−1)(2−δn,N) · ēnn ·Am÷

 n∏
j=1

zαj


.

(9.7)

The weight of Hm equals the weight of ∆(2n−1)(2−δn,N) · ēnn ·Am÷(
∏n
j=1z

α
j ) which equals

w(Hm)= (2n−1)·n·(n−1)·(2−δn,N)+n2+w(Am)−α·n
= 4n3−5n2+2n−δn,N ·(2n−1)·n·(n−1).

(9.8)

Then Hm, being a Vandermonde-type determinant by formula (9.2), becomes a linear

combination over Z{e}n[α] of antisymmetric polynomials in Z[z1, . . . ,zn]. Ifn=N, then

we may symmetrize Hm by dividing by
√
∆. If n < N, then we must apply Lemma 4.5

which guarantees that Hm ·(U÷
√
∆) lies in Z{e}n[α]. We may combine these two cases
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by defining

Rm ≡ (−1)m ·Hm · U
1−δn,N

αn−1
√
∆

= (−1)m ·ε2n·(1−δn,N)∆4n−1−2n·δn,N · ēnn ·
Am

αn−1
√
∆
÷

 n∏
j=1

zαj


,

(9.9)

where Condition 8.6 (after specializing o → n) guarantees that we may divide Am by

αn−1 and still leave a polynomial in α. We grouped the terms in (9.9) as we did in order

to emphasize that Am÷(αn−1
√
∆
∏n
j=1z

α
j ) belongs to Z{z1, . . . ,zn}[z−1

1 , . . . ,z−1
n ,α] and

is symmetrical in the roots not counting multiplicities. Thus
∑n
m=0Rm ·Dmy = 0 is an

integral α-resolvent of P and

w
(
Rm

)=w(Hm)+(1−δn,N)·w(U)−w(∆)
2

= 4n3−5n2+2n−δn,N ·(2n−1)·n·(n−1)

+(1−δn,N)·n·(n−1)− n·(n−1)
2

=n·
(

8n2−9n+3
2

)
−2n2(n−1)·δn,N

=n·
(

8n2−9n+3
2

)
if n<N,

=n·
(

4n2−5n+3
2

)
if n=N.

(9.10)

Remarks 9.2. Theorem 9.1 was originally [18, Theorem 46, page 95]. At the point

in the proof just before we specialized o→ n, we would normally apply each element

g of the Galois group G of P to Hm and then add up the g(Hm) over G in order to

make the coefficient-functions of the differential equation symmetrical with respect to

the roots of P including their multiplicities. However, there is no guarantee the result

Ĥm ≡
∑
g∈Gg(Hm)will not be identically zero for eachm∈ [o]0. We can only guarantee

that if Ĥo = 0, then Ĥm = 0, for all m ∈ [o]0, by the linear independence of {yi}oi=1,

since
∑o
m=0 Ĥm ·(−1)mDmy = 0.

The upper bound ϕ(n) ≡ n · (4n2−5n+3)/2 in Theorem 9.1 is not sharp on the

weight of the Cohnian for a quadratic and a cubic with distinct roots. The Cohnian of

the quadratic, given in [17] and [18, page 131], has weight 7, yetϕ(2)= 9. The Cohnian

of the cubic has weight 24, as demonstrated by indirect computer calculations in [18],

yet ϕ(3)= 36.

The proof of Theorem 9.1 suggests that exactly one power of the discriminant ∆ of

P divides the leading term of the Cohnian in the ring Z{e}[α] and none of the other

terms. The discriminant in the leading term and not in the others has been observed in

every resolvent of every polynomial the author has tested. This pattern seems to have

been missed by Belardinelli in [1], Cayley in [2], and Cockle in [3, 4, 5, 6, 7]. It is consis-

tent with the fact that the singularities of the resolvent occur at values of the implicit
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independent variable x which make two or more of the roots of the polynomial equal.

A purely algebraic proof that exactly one more power of ∆ divides Ho rather than Hm
for m< o would require more than the Wronskian-type formulae used in the proof of

Theorem 9.1.

10. Uniqueness of resolvents up to a multiple. For Theorem 10.1, we may assume

Ω =n·(n−1)/2+1, Ψ =n·Ω, and Φ = Ψ+1.

Theorem 10.1. Let P be a differentially transcendental polynomial given by Defini-

tions 2.5 and 5.3 with n distinct roots. Let �y ≡∑n
m=0

∑Ω−m
i=0 ri,m ·αi ·Dmy = 0 be any

nth-order α-resolvent of P whosemth term has degree in α less than or equal to Ω−m.

Then all ri,m �= 0 except r0,0 = 0.

Proof. If we specialize the α-resolvent � to a q-resolvent by α → q, then, sum-

ming over the roots counting multiplicities, we get
∑n
m=0

∑Ω−m
i=0 ri,m ·qi ·Dmpq = 0 for

each q ∈ [Ψ]. The rank of the Ψ ×Φ matrix [qi ·Dmpq] q×(i,m)
q∈[Ψ],(i,m)∈Γ

is Ψ because F1,0 ≡
(−1)sgn(1,0)[qi ·Dmpq] q×(i,m)

q∈[Ψ],(i,m)�=(1,0)
�= 0 by [19, Theorem 4.1]. Also the Φ coefficient-

functions θi,m satisfy the same system of Ψ linear equations
∑n
m=0

∑Ω−m
i=0 θi,m · qi ·

Dmpq = 0 for each q ∈ [Ψ]. Therefore, ri,m = r1,0 · (Fi,m ÷ F1,0) = r1,0 · (θi,m ÷ θ1,0),
for all (i,m) ∈ Γ , by Definition 8.8. By Theorem 8.3, (θi,m÷θ1,0) �= 0, for all (i,m) ∈ Γ .
Thus, either ri,m �= 0, for all (i,m)∈ Γ , or ri,m = 0, for all (i,m)∈ Γ . But the latter case

violates the definition of a resolvent. Therefore ri,m �= 0, for all (i,m)∈ Γ .
Remarks 10.2. Theorem 10.1 implies that any nth-order α-resolvent of P with

coefficient-functions indexed by Γ is a Q〈e〉-multiple of the Cohnian. The author made

this claim in [19, Theorem 4.1] by referring to [18, Theorem 40, page 71]. However,

the author has not presented the argument in Theorem 10.1 in a published form.

Therefore, Theorem 10.1 has been presented here to fill this gap. The reader may be

interested to know why the proof of Theorem 10.1 had to use the powersums, im-

plying the use of the powersum formula, instead of just using the system of Ψ lin-

ear q-resolvents
∑
(i,m)∈Γ ri,m ·qi ·Dmzqj = 0 for j ∈ [n], q ∈ [Ω]. The reason is that

rank[qi ·Dmzqj ] (i,m)×(j,q)
(i,m)∈Γ ,(j,q)∈[n]×[Ω]

< Ψ , and therefore this matrix could not be used to

determine uniqueness of the coefficient-functions up to a common multiple.

11. Indicial equation of the trinomial resolvent. Cockle in [4] and Belardinelli in [1]

used the Lagrange inversion formula

zα = 1+ α
n

∞∑
k=1

(−1)k

k



p ·k+α
n

−1

k−1


·xk (11.1)

to compute a particular α-resolvent of P(t) ≡ tn+x ·tp−1. Egorychev in [9] provides

an easily accessible reference for the Lagrange inversion formula. We will now show

how their resolvent also follows from the toric partial differential equations (11.4) of
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Mayr [15] and Sturmfels [23] and the Euler homogeneity partial differential equations

(11.2) and (11.3), which are special cases of the A-hypergeometric partial differential

equations of Gel’fand in [10, page 404].

Definition 11.1. Let (mj ) denote the binomial coefficient m!/((m−j)!·j!).
Definition 11.2. Define the shift operator τ as in [22, formula (3), page 2] to be

τf(t)≡ f(t+1)−f(t) on any polynomial f(t) of t.

Definition 11.3. Similar to Definition 2.3, for any variable or operator v , any m∈
N, and any r ∈Q, define 〈v〉m,r ≡

∏m
k=1 (v+(k−1)·r) as in [8]. Define 〈v〉0,q ≡ 1.

Definition 11.4. Define τmf(t)|t→0 to be f(t) operated on by the shift operator

τ , m times, then evaluated at t = 0. Define τ0f(t)|t→0 ≡ f(0).
Definition 11.5. Given a set of n+1 indeterminates {ak}nk=0 for each k∈ [n]0, the

operator ∂k denotes the partial derivative ∂/∂ak with respect to ak holding all other

ai�=k fixed.

The α-power zα of any root z of the polynomial P̂ (t)≡∑n
i=0ai ·ti satisfies the partial

differential equations defined by (11.2), (11.3), and (11.4).

Definition 11.6. The first Euler homogeneity partial differential equation is given

by

n∑
k=0

ak ·∂kzα = 0. (11.2)

It is easy to prove (11.2) by applying the operator
∑n
k=0ak ·∂k to

∑n
i=0ai ·zi = 0.

Definition 11.7. The second Euler homogeneity partial differential equation is

given by

n∑
k=0

k·ak ·∂kzα+α·zα = 0. (11.3)

It is easy to prove (11.3) by applying
∑n
k=0k·ak ·∂k to

∑n
i=0ai ·zi = 0.

Definition 11.8. The toric partial differential equation homogeneous in weight and

total order of partial derivatives is given for each p ∈ [n]0 by

∂npzα = ∂pn∂q0zα. (11.4)

Theorem 11.9. Let P(t)≡ tn+x·tp−1 be a trinomial with roots {zk}nk=1. Let q ≡n−
p, α∈ Z,Dx ≡ 1, and y = zα. Then Cockle’s [6, formula (vi), page 186] and Belardinelli’s

[1, formula (8), page 467] α-resolvent Dny = (−p)pqq/nn · 〈x ·D+α/p〉p,n/p〈x ·D−
α/q〉q,n/qy of P follows from (11.2), (11.3), and (11.4) by differential specialization.
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Proof. Let ai → 0 for i ∉ {0,p,n} and ap → x in the polynomial P(t)≡∑n
i=0ai ·ti.

Then (11.3) specializes to

(
p ·x ·∂p+n·an ·∂n

)
y+α·y = 0. (11.5)

Therefore

(
n·an ·∂n

)
y = (−p ·x ·∂p−α)y. (11.6)

Therefore

(
n·an ·∂n

)
p,ny =

(−p ·x ·∂p−α)p,ny. (11.7)

By the identity (−v)m,r = (−1)m〈v〉m,r with v = p ·x ·∂p +α, m = p, and r = n, we

have

(
n·an ·∂n

)
p,ny = (−1)p

〈
p ·x ·∂p+α

〉
p,ny. (11.8)

By the identity (r ·v)m,r = rm〈v〉m,1 with v = an ·∂n, m= p, and r =n, we have

np ·(an ·∂n)p,1y = (−1)p
〈
p ·x ·∂p+α

〉
p,ny. (11.9)

By the differential identity (an ·∂n)p,1 = apn ·∂pn , we have

apn ·∂pny = (−n)−p ·
〈
p ·x ·∂p+α

〉
p,ny. (11.10)

Similarly, the identity (11.2) specializes to (a0 ·∂0+x ·∂p+an ·∂n)y = 0. Therefore

(
n·a0 ·∂0

)
y = (−n·x ·∂p−n·an ·∂n)y. (11.11)

Therefore

(
n·a0 ·∂0

)
q,ny =

(−n·x ·∂p−n·an ·∂n)q,ny. (11.12)

By (11.5), we have

(
n·a0 ·∂0

)
q,ny =

(−n·x ·∂p+p ·x ·∂p+α)q,ny. (11.13)

Therefore

(
n·a0 ·∂0

)
q,ny =

(−q ·x ·∂p+α)q,ny. (11.14)

By the identity (−v)m,r = (−1)m〈v〉m,r with v = q ·x · ∂p −α, m = q, and r = n, we

have

(
n·a0 ·∂0

)
q,ny = (−1)q

〈
q ·x ·∂p−α

〉
q,ny. (11.15)

By the identity (r ·v)m,r = rm〈v〉m,1 with v = a0 ·∂0, m= q, and r =n, we have

nq ·(a0 ·∂0
)
q,1y = (−1)q

〈
q ·x ·∂p−α

〉
q,ny. (11.16)
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By the differential identity (a0 ·∂0)p,1 = aq0 ·∂q0 , we have

(
aq0 ·∂q0

)
y = (−n)−q〈q ·x ·∂p−α〉q,ny. (11.17)

We now choose the particular toric identity ∂npy = ∂pn∂q0y in (11.4) and multiply it on

the left by apn ·aq0 to get the identity

apn ·aq0 ·∂npy = apn ·aq0 ·∂pn∂q0y =
(
apn ·∂pn

)(
aq0 ·∂q0

)
y. (11.18)

Note that aq0 and ∂pn commute in (11.18) because the partial derivative ∂n has no

effect on a0. By (11.10) and (11.17), the identity (11.18) becomes

apn ·aq0 ·∂npy = (−n)−p ·(−n)−q
〈
p ·x ·∂p+α

〉
p,n
〈
q ·x ·∂p−α

〉
q,ny. (11.19)

Since ∂p is the only partial derivation operator in (11.19), we may replace it with the

ordinary derivation operator D. Specializing an→ 1 and a0 →−1 in (11.19) gives us

(−1)p ·Dny =n−n ·〈p ·x ·D+α〉p,n〈q ·x ·D−α〉q,ny. (11.20)

Dividing both sides by (−1)p ·pp ·qq yields the resolvent in the form given in [1]

Dny = (−p)
pqq

nn
·
〈
x ·D+ α

p

!
p,n/p

〈
x ·D− α

q

!
q,n/p

y. (11.21)

How do we know that there does not exist a resolvent for zn+x ·zp−1= 0 of order

less than n? Let d ≡ gcd(n,p) denote the greatest common divisor of n and p. The

discriminant ∆ of this trinomial is given by [10, page 406] as

∆(x)= (−1)(n+2)·(n−1)/2 ·(nn/d−(−p)p/dqq/dxn/d)d. (11.22)

Theorem 11.10. The indicial equation for Cockle’s resolvent of the trinomial zn+
x ·zp−1= 0 is I(ξ)= (ξ)n which has roots [n−1]0.

Proof. First we will express Cockle’s resolvent in the form
∑n
i=0xi ·Ci(x)·Diy = 0,

where Ci(x) ∈ Q(x). To do this, we use Cockle’s resolvent as expressed in the form

(11.21). By the Gregory-Newton series [22, formula (44), page 9], we have

〈
v+ α

p

!
p,n/p

〈
v− α

q

!
q,n/q

=
n∑
i=0

ci,f ·(v)i, (11.23)

where

f = f(v)≡
〈
v+ α

p

!
p,n/q

〈
v− α

q

!
q,n/q

,

ci,f ≡ 1
i!
τif (v)|v→0 ∈Q[α].

(11.24)
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Replacing v with x ·D, using the fact that (x ·D)i = xi ·Di, and multiplying (11.21) by

(−1)(n+2)·(n−1)/2 ·nn gives us

0= (−1)(n+2)·(n−1)/2 ·
(
nnDny−(−p)pqq

n∑
i=0

ci,f ·xi ·Diy
)

(11.25)

which has the leading term ∆1(x)≡ (−1)(n+2)·(n−1)/2 ·(nn−(−p)pqqcn,f ·xn).
By [22, Example 1.41, page 25], it is easy to compute cn,f = τnf(v)|v→0÷n! = n!÷

n!= 1. Therefore, by (11.22), the leading term equals∆(x) if dwere 1. Hence we denote

it by ∆1(x). So ∆1(x)= (−1)(n+2)·(n−1)/2 ·(nn−(−p)pqqxn). Therefore

0=∆1(x)·Dny−(−1)(n+2)·(n−1)/2 ·(−p)pqq
n−1∑
i=0

ci,f ·xi ·Diy. (11.26)

Multiplying (11.26) by xn÷∆1(x) and defining

Ci(x)≡− (−1)(n+2)·(n−1)/2 ·ppqq ·xn
∆1(x)

·ci,f , (11.27)

for i ∈ [n−1]0 and Cn(x) ≡ 1, yields a resolvent of the form
∑n
i=0xi ·Ci(x)·Diy = 0.

These rational functions are clearly all analytic at x = 0. According to [11, page 397], the

indicial equation of this ordinary differential equation is I(ξ)=∑n
i=0 (ξ)i ·Ci(0)= (ξ)n

which has roots [n−1]0.

12. Apparent singularities. We will now prove that linear relations of {zαi }ni=1 for a

trinomial hold only for a finite set of integers α, and we will find this set.

Definition 12.1. Define σ ≡ e2π·√−1/(n/d).

Definition 12.2. Define ω≡ e2π·√−1/n.

Definition 12.3. Define ωl ≡ωl for each l∈ [n].
Theorem 12.4. Let n≥ 3, p ∈ [n−1], and d≡ gcd(n,p). Then Cockle’s α-resolvent

(11.26) 0 = ∆1(x) · Dny − (−1)(n+2)·(n−1)/2 · (−p)pqq∑n−1
i=0 ci,f ·xi ·Diy of P(t) ≡

tn−x · tp −1 has the set {zαi }ni=1 as a fundamental system of n solutions, that is, the

{zαi }ni=1 are linearly independent overQ if and only if d= 1 andα ∉ {0}∪⋃n−1
m=2

⋃m−1
k=1 (k·

n−m·p). The Cockle resolvent has actual singularities at the points x ∈ {n·(−p)−p/n ·
q−q/n · σj}j=n/dj=1 and apparent singularities at the points x ∈ {n · (−p)−p/n · q−q/n ·
ωj}j=nj=1 , where j is not divisible by d.

Proof. By a standard result in the theory of ordinary differential equations, found in

[11, page 119] for example, there exist n solutions {ui}ni=1 of (11.26) which are linearly

independent over the subfield of constants Q. The α-powers of the roots zα of P(t)≡
tn−x ·tp−1 are certain linear combinations of {ui}ni=1 and hence may not be linearly

independent over Q.
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The discriminant ∆(x) has roots x ∈ {n·(−p)−p/n ·q−q/n ·σj}j=n/dj=1 by inspection of

(11.22). These are the actual singularities of the trinomial. The leading term ∆1(x) of

the resolvent (11.26) has singularities x ∈ {n·(−p)−p/n·q−q/n·ωj}j=nj=1 by inspection of

(11.22) with d = 1. Pulling out those singularities which are actual singularities leaves

the apparent singularities.

Let W(x) denote the Wronskian of the Cockle resolvent of P(t). We will now prove

that W(0) �= 0 under the conditions on d and α stated in the theorem. This will be

sufficient to prove that W(x) is not identically zero for these d and α, and thus the

theorem will be proved. Let Lα(x) be the series given by the Lagrange inversion formula

(11.1). Then y = Lα(x) is a solution for zα, where zn−x ·zp−1 = 0. As Mellin noted

in [16], ωl ·L1(ω
p
l ·x) generates all the n distinct roots of zn−x ·zp−1= 0 as we let l

range over [n]. Since L1(0)= Lα(0)= 1 for all α∈ Z by (11.1), it follows that L1(x) and

Lα(x) represent different powers of the same root z1(x). Therefore, Lα(x)= (L1(x))α.

Therefore zα = (ω·L1(ωpx))α =ωα ·(L1(ωpx))α =ωα ·Lα(ωpx).
Suppress the subscript l on ωl in formula (12.1) and (12.2). For m∈ [n−1],

dmωαLα
(
ωpx

)
dxm

∣∣∣∣
x→0

=ωα+p·mα
n
m!· (−1)m

m



p ·m+α

n
−1

m−1




=ωα+p·mα
n
·((m−1)!

)·
(
(p ·m+α−n)/n)m−1

(m−1)!

=ωp·m+α α
n

(
p ·m+α−n

n

)
m−1

.

(12.1)

For m= 0, we have

dmωα ·Lα
(
ωpx

)
dxm

∣∣∣∣x→0
m→0

=ωα ·Lα(0)=ωα �= 0 ∀α∈ Z. (12.2)

Therefore

W(0)= det

[
dmωα

l Lα
(
ωp
l x
)

dxm

∣∣∣∣∣
x→0

]
l×m

= det
[
ωp·m
l

]
l×m ·

n∏
l=1

ωα
l ·

n−1∏
m=1

(
α
n
·
(
p ·m+α−n

n

)
m−1

)
,

(12.3)

wherem runs over [n−1]0 and l runs over [n] in the determinant on the left in (12.3).

If p and n are relatively prime, n ≥ 3, and p ∈ [n− 1], then det[ωp·m
l ]l×m = ±

det[ωm
l ]l×m =±

√χ, whereχ ≡ (−1)n−1nn is the discriminant ofxn−1. Also,
∏n
l=1ω

α
l =

(−1)α·(n−1). Furthermore, the product on the right in (12.3) equals

n−1∏
m=1

(
p ·m+α−n

n

)
m−1

=
n−1∏
m=2

(
p ·m+α−n

n

)
m−1

=
n−1∏
m=2

m−2∏
k=0

p ·m+α−n−k·n
n

(12.4)
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or

n−1∏
m=2

m−1∏
k=1

p ·m+α−k·n
n

=n−(n−1
2 ) ·

n−1∏
m=2

m−1∏
k=1

(p ·m+α−k·n). (12.5)

Note that the first equality in (12.4) holds because ((p ·m+α−n)/n)m−1 = ((p+α−
n)/n)0 = 1 when m= 1 in the first product on the left in (12.4).

Finally, multiply (12.5) by±√χ·(−1)α·(n−1)·∏n−1
m=1 (α/n)=±(−1)(n−1)/2nn/2(−1)α·(n−1)·

αn−1n−(n−1) to get

W(0)=±(−1)(n−1)/2nn/2(−1)α·(n−1) ·αn−1n−(n−1)n−(
n−1

2 )
n−1∏
m=2

m−1∏
k=1

(p ·m+α−k·n)
(12.6)

or

W(0)=±(−1)(2α+1)(n−1)/2 ·αn−1n−n(n−2)/2 ·
n−1∏
m=2

m−1∏
k=1

(p ·m+α−k·n). (12.7)

Therefore, when gcd(p,n) = 1, W(0) = 0 if and only if α ∈ {0, k ·n−m ·p � k ∈
[m−1], 2 ≤m ≤ n−1}, a set of at most (n2−3n+4)/2 distinct integers. If p and n
are not relatively prime, then det[ωp·m

l ]l×m = 0 implies W(0)= 0, so the Wronskian is

identically zero.

13. Computation of the Wronskian of the trinomial resolvent. If one wants the

Wronskian at other points x of the Cockle resolvent of tn +x · tp − 1, and p and α
satisfy the conditions of Theorem 12.4, one can use the Abel formula

W(x)=W(0)·exp

(
−
∫ x

0

Cn−1(ζ)
ζ ·Cn(ζ)dζ

)
(13.1)

as noted in [11, page 119] to get W(x).

Example 13.1. For completeness, we compute the Wronskian W(x) of Cockle’s re-

solvent of the trinomial zn+x ·zp−1 = 0 using Abel’s formula when d = 1. It is easy

to deduce that Cn(x) ≡ 1 from (11.3), (11.4), and (11.5) since the degree of v in f(v)
isn. To compute Cn−1(x), we need to compute cn−1,f = (τn−1f(v))|v→0÷(n−1)!. Since

τmvk = 0 = τm(v)k for any k ∈ [m−1]0, we may ignore all powers of v lower than

n−1 when we apply the difference operator τ to any polynomial in v .

The coefficient of vn−1 in f(v) is just the negative of the first elementary symmetric

function of the roots of f(v)

{
− α
p
−i· n

p

}p−1

i=0
∪
{
α
q
−i· n

q

}q−1

j=0
(13.2)
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which is just the negative of their sum

p−1∑
i=0

(
α
p
+i· n

p

)
+
q−1∑
j=0

(
−α
q
+i· n

q

)

=α+ n
p
· p(p−1)

2
−α+ n

q
· q(q−1)

2
= n·(p+q)

2
= n

2

2
.

(13.3)

The coefficient ofvn in f(v) is just 1. Therefore, cn−1,f=(τn−1(vn+n2 ·vn−1/2))|v→0

÷ (n− 1)!. Now (τn−1(vn−1))|v→0 ÷ (n− 1)! = 1 by [22, Problem 1.41, page 25], and

(τn−1.(vn))|v→0÷(n−1)! is the Stirling number of the second kind Snn−1 in the notation

in [22, formula (31), page 7] which equals n·(n−1)/2. One can determine this by [14,

Example 11b, page 31], which says that Snn−1 equals the first complete symmetric func-

tion of the integers [n−1], which is just their sum. So, cn−1,f = n·(n−1)/2+n2/2 =
n·(2n−1)/2. Notice that cn−1,f > 0 for all n∈N.

Substituting these expressions for Cn−1(ζ) and Cn(ζ) into Abel’s formula (13.1)

yields

W(x)=W(0)·exp

(
(−1)p+1ppqq

n·(2n−1)
2

∫ x
0

1(
(−p)pqqζn−nn)ζn−1dζ

)
(13.4)

which can be integrated to

W(x)=W(0)·exp

(
− (2n−1)

2
ln

(
(−p)pqqxn−nn

−nn
))
. (13.5)

So

W(x)=W(0)·
(√

1−(−p)pqqn−nxn
)−(2n−1)

=W(0)·κ ·(√∆)−(2n−1), (13.6)

where κ ≡ (
√
(−1)(

n(n+1)
2

) ·n−n)−(2n−1), W(0) is given by (12.6), and ∆(x) is given by

(11.22).

14. Determinantal formula. Finally, we prove that the only algebraic condition

among the roots {z1, . . . ,zn} of a polynomial P which implies that there exists lin-

ear relations among the n! n!-tuples of the form (1,z1,z2
1, . . . ,z

n−1
1 ,z2,z1 ·z2, . . . ,zn−1

1 ·
z2, . . . ,zn−1

1 ·zn−2
2 ···z1

n−1) over Q is that two of the roots are equal.

Lemma 14.1. Let {z1, . . . ,zn} be a set of n algebraically independent indeterminates

over Z. Let G ≈ Sn be the full symmetric group on {z1, . . . ,zn}. Let I = (i1, . . . , in) ∈ Nn0
be an n-tuple with ik ∈ [n−k]0, for all k ∈ [n]. Let E be the set of n! monomials in the

polynomial ring Z[z1, . . . ,zn] of the form {zI ≡∏n
k=1z

ik
k }. Let Mn be the n!×n! matrix

[g(tI)](g∈G)×I . Let dn ≡ det(Mn). Let ∆≡∏i<j (zi−zj)2. Then dn =±(
√
∆)n!/2.

Proof. The term dn is a polynomial in {z1, . . . ,zn} over Z of homogeneous degree.

Therefore, either dn = 0 or the total degree in {z1, . . . ,zn} of dn is just the sum of the

degrees in {z1, . . . ,zn} of zI over all zI ∈ E. We will next compute this degree. We will

prove later that dn �= 0.
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Since i1 takes on each value of [n−1]0 exactly n!÷n times among all the monomials

in E, and i2 takes on each value of [n−2]0 exactly n!÷ (n−1) times among all the

monomials in E, . . . , and in takes on the value of 0 exactly n!÷1 times among all the

monomials in E, the total degree in {z1, . . . ,zn} of dn is the sum

n!
n
·
n−1∑
i1=0

i1+ n!
n−1

·
n−2∑
i2=0

i2+···+ n!
1
·

0∑
in=0

in

=n!·
(

1
n
n(n−1)

2
+ 1
n−1

(n−1)(n−2)
2

+···+ 1
1

1·0
2

)

= n!
2
·
n−1∑
k=0

k= n!
2
· n(n−1)

2
.

(14.1)

The total degree in {z1, . . . ,zn} of
√
∆ is n·(n−1)/2, so the total degree in {z1, . . . ,zn}

of (
√
∆)n!/2 is (n!/2)·(n·(n−1)/2).

Now we will prove that (
√
∆)n!/2 divides dn in the polynomial ring Z[z1, . . . ,zn]. Pick

any u,v ∈ {z1, . . . ,zn}with u �= v . Express Sn as the disjoint union of the n!/2 cosets Ck
in Sn of the subgroup {1,(uv)}. So, Sn =

∐n!/2
k=1 Ck. Perform the following elementary row

operations on Mn. Let Ck = {θk,σk}, where σk = (uv)◦θk for each k∈ [n!/2]. Let Rθk
be the row {θk(zI)}I∈E in Mn. Let Rσk be the row {σk(zI)}I∈E = {((uv)◦θk)(zI)}I∈E =
{(uv)◦(θk(zI))}I∈E in Mn. Replace row Rθk with Rθk−Rσk. Since (u−v) factors out

of every entry in the row Rθk−Rσk, and there are n!/2 such rows, we conclude that

(u− v)n!/2 factors out of dn = det(Mn). Since the choice of u,v ∈ {z1, . . . ,zn} was

arbitrary, we conclude that
∏
i<j(zi−zj)n!/2 divides dn in Z[z1, . . . ,zn].

We will now prove that dn �= 0 by induction on n. Assume the same definitions for

Mn−1 and dn−1 ≡ detMn−1 as for Mn and dn with n−1 replacing n and {z1, . . . ,zn−1}
replacing {z1, . . . ,zn} in the statement of Lemma 14.1. Assume that dn−1 �= 0. It will be

sufficient to show that the coefficient of the monomial π ≡∏n
k=1z

(k−1)·n!/2
k in dn is not

zero. The matrix Mn has the following form. Exactly (n−1)! rows and (n−1)! columns

have (n−1) as the maximal power of zn among all their entries. Furthermore, the entries

in these rows and columns possessing zn−1
n form an (n−1)!×(n−1)! submatrix Vn−1

ofMn which is simply the matrix formed fromMn−1 by multiplying every entry inMn−1

by zn−1
n .

Repeat this procedure on the submatrix ofMn formed by blocking out the submatrix

Vn−1. Exactly (n−1)! rows and (n−1)! columns have (n−2) as the maximal power of

zn among all their entries. They form an (n−1)!×(n−1)! submatrix Vn−2 of Mn which

is simply the matrix formed from Mn−1 by multiplying every entry in Mn−1 by zn−2
n .

Repeating this procedure, we create a finite sequence of (n−1)!×(n−1)! submatrices

{Vk}n−1
k=0 of Mn with vk ≡ det(Vk) = (zkn)(n−1)! ·det(Mn−1) = (zn)k·(n−1)! ·dn−1 �= 0. The

monomial π , possessing the highest degree in zn among all the monomials in dn, can

come only from

n−1∏
k=0

vk = dnn−1 ·z
(n−1)!·∑n−1

k=0 k
n = dnn−1 ·z(n−1)!·n((n−1)/2)

n = dnn−1 ·zn!·((n−1)/2)
n �= 0. (14.2)

Therefore, the monomial π appears with nonzero coefficient in dn. So dn �= 0.
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Example 14.2. Let {u,v,w} be algebraically independent over Z. Let E = {1,u,
u2,v,uv,u2v}, where u= z3, v = z2, andw = z1 as in Lemma 14.1. IfM3 = [g(zI)]g×I ,
then

M3 =




1 u u2 v uv u2v
1 v v2 w vw v2w
1 w w2 u wu w2u
1 v v2 u vu v2u
1 w w2 v wv w2v
1 u u2 w uw u2w



. (14.3)

Rows 1 and 6, respectively columns 3 and 6, have 2 as the maximal power of u in

their entries. Among the entries in the 4×4 submatrix formed by deleting rows 1 and

6 and columns 3 and 6, keeping the original numbering of rows and columns of the

original 6 × 6 matrix M3, rows 3 and 4 and columns 4 and 5 have 1 as the maximal

power of u in their entries. The 2×2 submatrix formed by deleting rows 1, 3, 4, 6 and

columns 3, 4, 5, 6 has 0 as the maximal power of u among its entries. We form the

(n−1)!×(n−1)! = 2×2 submatrices {Vk}2
k=0 in the following manner. Let ai,j denote

the (i,j) entry of M3. Then

V2 =
[
a1,3 a1,6

a6,3 a6,6

]
=
[
u2 u2v
u2 u2w

]
,

V1 =
[
a3,4 a3,5

a4,4 a4,5

]
=
[
u wu
u vu

]
,

V0 =
[
a2,1 a2,2

a5,1 a5,2

]
=
[

1 v
1 w

]
.

(14.4)

Then det(V2) = ±u4 · d2, det(V1) = ±u2 · d2, and det(V0) = ±u0 · d2, where d2 =
det(M2)=±(v−w) �= 0 like the induction hypothesis used in the proof of Lemma 14.1.

The only place that u6 appears in d3 is in the polynomial det(V0)·det(V1)·det(V2) =
±u6(v−w)3 �= 0. Therefore, d3 �= 0.

To help visualize the fact that (v−w)3 divides d3 in the polynomial ring Z[u,v,w],
perform the following elementary row operations on M3. Replace R1 with R1−R6, re-

place R2 with R2−R5, and R3 with R3−R4. Then the top three rows of M3 become




0 0 0 (v−w) u·(v−w) u2 ·(v−w)
0 (v−w) (v+w)·(v−w) −(v−w) 0 vw ·(v−w)
0 −(v−w) −(v+w)·(v−w) 0 −u·(v−w) −u·(v+w)·(v−w)




(14.5)

each of which has (v−w) as a factor.

15. Conclusions. Much work must be done to find formulae for the Cohnian of arbi-

trary, not just differentially transcendental, univariate polynomials over a differential

field, in addition to determining their weight. The author’s powersum formula [21] for
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a resolvent is guaranteed to yield a nonzero resolvent only for polynomials whose dis-

tinct roots are differentially independent by [19]. But the powersum formula has always

worked for any polynomial the author has tested. Unfortunately, for differentially tran-

scendental polynomials, the powersum formula yields a resolvent whose weight equals

Ψ ·(Ψ−1)/2, which is sextic in the numbern of distinct roots of the polynomial. Clearly,

a huge amount of factoring must be done on this formula to recover the Cohnian. The

author has made some progress in factoring some of the terms of an α-resolvent of a

differentially transcendental polynomial in [17].
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