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A four-dimensional SEIR epidemic model is considered. The stability of the equilibria is
established. Hopf bifurcation and center manifold theories are applied for a reduced three-
dimensional epidemic model. The boundedness, dissipativity, persistence, global stabil-
ity, and Hopf-Andronov-Poincaré bifurcation for the four-dimensional epidemic model are
studied.
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1. Introduction. Many infectious diseases in nature transmit through both horizon-

tal and vertical models. These include such human diseases as Rubella, Herpes Simplex,

Hepatitis B, Chagas, and the most notorious AIDS (see [8, 9]). For human and animal

diseases, horizontal transmission typically occurs through direct or indirect physical

contact with hosts, or through a disease vector such as mosquitos, ticks, or other bit-

ing insects. Vertical transmission can be accomplished through transplacental transfer

of disease agents. Li et al. [10] discussed vertical and horizontal models. In standard

SIR compartmental models the vertical transmission can be incorporated by assuming

that the fraction q of the offspring from the infectious I class is infectious at birth,

and hence birth flux, qbI, enters the I class and the remaining birth b−qbI enters the

susceptible S class.

In this paper we study an SEIR model in which vertical transmission is incorporated

based on the above assumption. The total host population is partitioned into suscep-

tible, exposed, infectious, and recovered with densities denoted, respectively, by S(t),
E(t), I(t), and R(t). The natural birth, and death rates are assumed to be identical

and denoted by b. The horizontal transmission is assumed to take the form of direct

contact between infectious and susceptible hosts. The incidence rate term H(I,S) is

assumed to be differentiable, ∂H/∂I and ∂H/∂S are nonnegative and finite for all I
and S. For special forms of the incidence rate H(I,S), see [3, 10, 11, 13, 14, 16]. Here,

b is the natural birth rate of the host population which is assumed to have a constant

density 1. For the vertical transmission, we assume that a fraction p and a fraction q
of the offspring from the exposed and infectious classes, respectively, are born into

the exposed class E. Consequently, the birth flux into the exposed class is given by

pbE+qbI and the birth flux into the susceptible class is given by b−pbE−qbI, natu-

rally 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. The above assumptions lead to the following system of
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differential equations:

S′ = b−IH(I,S)−pbE−qbI−bS,
E′ = IH(I,S)+pbE+qbI−(µ+b)E,

I′ = µE−(γ+b)I,
R′ = γI−bR,

(1.1)

where (S,E,I,R)∈R4+. The parameter µ ≥ 0 is the rate at which the exposed individuals

become infectious and γ ≥ 0 is the rate at which the infectious individuals become

recovered. Therefore 1/µ is the mean latent period and 1/γ is the mean infectious

period.

The model (1.1) is a more general and epidemiological model than those discussed

in [3, 12]. This paper is organized as follows. In Section 2, we discuss the stability prop-

erties of the reduced three-dimensional epidemic model, with a technique different

from the method of [10, 11, 12, 13]. Also, we discuss the bifurcation of periodic solu-

tions using Hopf bifurcation theory with a technique similar to that of [2, 6]. We also

use a technique similar to that of [2] to apply center manifold theorem. Our results

in Section 2 are consistent with those in [12], in the special case when the incidence

rate is H(I,S)= βS. In Section 3, we study the boundedness, dissipativity, persistence,

and global stability of solutions of the four-dimensional model (1.1). Our technique in

Section 3 is similar to the technique used in [15]. The paper ends with a brief discussion

in Section 4.

2. Three-dimensional reduced epidemic model. As in [10, 11, 12, 13] we suppose

that S(t)+E(t)+I(t)+R(t)= 1, and so we use the relation R(t)= 1−S(t)−E(t)−I(t)
and obtain the following three-dimensional system:

S′ = b−IH(I,S)−pbE−qbI−bS,
E′ = IH(I,S)+pbE+qbI−(µ+b)E,

I′ = µE−(γ+b)I
(2.1)

on the closed, positively invariant set

Γ = {(S,E,I)∈R3
+ : S+E+I ≤ 1

}
. (2.2)

The linearized problem corresponding to (2.1) is

Y ′ =MY, where Y =



y1

y2

y3


 ,

(
y1,y2,y3

)∈R3
+, (2.3)
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where M is the variational matrix

M =




−I ∂H
∂S

−b −pb −H−I ∂H
∂I
−qb

I
∂H
∂S

bp−(µ+b) H+I ∂H
∂I
+qb

0 µ −(γ+b)



. (2.4)

It is clear that (2.1) has P̄◦ = (1,0,0) as a trivial equilibrium (a disease-free equilib-

rium). The Jacobian matrix of (2.1) at P̄◦ is

MP̄◦ =



−b −pb −H(0,1)−qb
0 bp−(µ+b) H(0,1)+qb
0 µ −(γ+b)


 . (2.5)

One of the eigenvalues of MP̄◦ is λ1 = −b < 0, and the other two eigenvalues λ2,3

satisfy the following quadratic equation:

λ2−ξ1λ−ξ2 = 0, (2.6)

where ξ1 = (pb−(µ+γ+2b)) and ξ2 = ((γ+b)(pb−(µ+b))+µ(H(0,1)+qb)).
Therefore,

λ2+λ3 = ξ1 < 0,

λ2λ3 =−ξ2.
(2.7)

The following result gives sufficient conditions for asymptotic stability of the point

P̄◦.

Theorem 2.1. Assume that the following condition holds:

(A1) ξ2 < 0,

where ξ1 and ξ2 are as defined in (2.7). The disease-free equilibrium P̄◦ = (1,0,0) is

locally asymptotically stable.

Proof. The proof is by inspection of the eigenvalues of the Jacobian matrix for

P̄◦ = (1,0,0), and the qualitative theory of differential equations.

Remark 2.2. (i) Theorem 2.1 completely determines the local dynamics of (2.1) in

Γ when condition (A1) is satisfied. Its epidemiological implication is that the infected

population (the sum of the latent and the infectious population) vanishes in time, so

the disease dies out.

(ii) In the above theorem, our results are consistent with those in [12], in the special

case H(I,S)= βS. Also our technique is different from that of [12]. For our model, the

basic reproduction number is R◦(p,q) = µH(0,1)/((γ+b)(µ+b)−pb(γ+b)−µqb),
where R◦(p,q) > 0 for 0< p, q < 1. Here, condition (A1) reads R◦(p,q)≤ 1 in terms of

the notation of [12].

Now we consider the nontrivial equilibrium P = (S◦,E◦, I◦) of system (2.1), where

S◦ = 1−
(
H◦
b
+ p(γ+b)

µ
+q
)
I◦, E◦ = γ+bµ I◦. (2.8)
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The Jacobian matrix at P is

MP =



−I◦HS◦ −b −pb −H◦−I◦HI◦ −qb
I◦HS◦ pb−(µ+b) H◦+I◦HI◦ +qb

0 µ −(γ+b)


 , (2.9)

where

HS◦ =
∂H
∂S

∣∣∣∣
S=S◦

, HI◦ =
∂H
∂I

∣∣∣∣
I=I◦

, H◦ =H(I◦,S◦). (2.10)

We assume that HS◦ , HI◦ , and H◦ are positive. The characteristic equation of M at P
is

λ3+a1λ2+a2λ+a3 = 0, (2.11)

where

a1 =
(
µ+γ+I◦HS◦ +3b−pb),

a2 =
((
I◦HS◦ +b

)(
(b+µ−pb)+(γ+b))+(b+µ−pb)(γ+b)

+pbI◦HS◦ −µ
(
H◦+I◦HI◦ +qb

))
,

a3 =
((
I◦HS◦ +b

)
(b+µ−pb)(γ+b)+pbI◦HS◦(γ+b)

+µI◦HS◦
(
H◦+I◦HI◦ +qb

)−µ(I◦HS◦ +b)(H◦+I◦HI◦ +qb)).

(2.12)

Since the Routh-Hurwitz criterion says that P = (S◦,E◦, I◦) is asymptotically stable if

a1 > 0, a3 > 0, and a1a2−a3 > 0, then we have the following theorem.

Theorem 2.3. Let the following two conditions be satisfied:

(A2) (b+µ−pb)+(γ+b) > µ(H◦+I◦HI◦ +qb),
(A3) pb(I◦HS◦ +µ+2b−pb) > (H◦+I◦HI◦ +qb).

Then the equilibrium point P = (S◦,E◦, I◦) is locally asymptotically stable.

Proof. The proof is similar to the proof of Theorem 2.1, so it is omitted.

Now choose µ as a bifurcation parameter for system (2.1). Let µc be the value of µ
at which the characteristic equation (2.11) has two pure imaginary roots λ1,2. Thus we

have the following result.

Theorem 2.4. If the assumption (2.19) holds, then at µ = µc , there exists a one-

parameter family of periodic solutions bifurcating from the critical point P = (S◦,E◦, I◦)
with period T , where T → T◦ as µ → µc and where T◦ = 2π/ω◦ = 2π/

√
a2 and a2 is

given in (2.12).

Proof. Since there exists at least one real root of the cubic equation (2.11), λ3, say,

we have the following factorization:

(
λ−λ3

)[
λ2+(λ3+a1

)
λ+(λ2

3+a1λ3+a2
)]= 0. (2.13)
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Since, by (2.11),

λ1+λ2+λ3 =−a1, (2.14)

also at µ = µc , we obtain

λ3 =−a1, λ1 = λ̄2,

λ1,2 =−1
2

{(
λ3+a1

)±
√(
λ3+a1

)2−4
(
λ2

3+a1λ3+a2
)}
.

(2.15)

Thus, at µ = µc , (2.11) can be written in the following form:

Dµ
(
a1
)= a1a2−a3. (2.16)

Hence, since a3 > 0 and a2 > 0 at µ = µc , we should have λ3 = −a1 < 0. Also, the

critical value µ = µc > 0 is the solution of (2.16) which can be seen by (2.12) to be the

quadratic equation in µ as follows:

−c1µ2−c2µ+c3 = 0, (2.17)

where

c1 =
(
H◦+I◦HI◦ +qb

)−(γ+I◦HS◦ +2b
)
,

c2 =
((
H◦+I◦HI◦ +qb

)(
γ+I◦HS◦ +2b−pb)

−(I◦HS◦ +4b−2pb
)(
γ+I◦HS◦ +2b

)−pbI◦HS◦),
c3 =

((
I◦HS◦ +2b−pb)(γ+I◦HS◦ +2b

)
(γ+2b−pb)+pbI◦HS◦

)
.

(2.18)

Conversely, knowing that a3 > 0, a1 > 0, and µ > 0, then we can solve (2.17) for

µc > 0, and we then know that a2 > 0, λ3 =−a1 < 0, and λ1,2 are conjugate imaginary.

Now, choosing both γ and HS◦ to be sufficiently small and H◦ sufficiently large, then

we get

(
H◦+I◦HI◦ +qb

)
>
(
γ+I◦HS◦ +2b

)
. (2.19)

But since by (2.17), (2.19), c1 > 0, c2 > 0, and c3 > 0,

D0
(
a1
)= c3 > 0, lim

µ→±∞Dµ
(
a1
)=∞. (2.20)

Thus µc is uniquely determined (Figure 2.1).

Now, since by (2.11), λ3 =−a1 < 0 and

Dµ
(
a1
)= a1a2−a3

= (a1+λ3
)(
λ1λ2−a1λ1

)
,

sgnDµ
(
a1
)= sgn

(
a1+λ3

)
,

(2.21)

consequently we have

Reλ1,2 = 1
2

(
a1+λ3

)
< 0 for µ > µc,

Reλ1,2 > 0 for µ < µc.
(2.22)
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Dµ(a1)

µ

µc

Figure 2.1. The uniqueness of the bifurcation parameter µc .

By the above discussion, we see that as µ is increased through µc , there exists a pair

of complex conjugate imaginary eigenvalues λ1,2 of the Jacobian matrix MP . Since at

µ = µc , λ3 = −a1, λ1,2 = ±i√a2 = ±iω◦, where it is clear that ω◦ > 0. Now, since for

λ1 = λ̄2,

Reλ2 = 1
2

(
λ2+ λ̄2

)= 0 at µ = µc, (2.23)

and by the above discussion we see that

Reλ2 > 0 for µ < µc,

Reλ2 < 0 for µ > µc,
(2.24)

thus

d
dµ
(
Reλ2

)∣∣
µ=µc =

−1
2

d
dµ
(
λ3+a1

)∣∣
µ=µc

= Re
(
d
dµ
λ2

)∣∣∣∣
µ=µc

< 0.
(2.25)

This completes the proof.

Remark 2.5. In a similar manner as in [2, page 449] the Jacobian matrix MP can be

diagonalized to be



y ′1
y ′2
y ′3


=



α11 α12 0

α21 α22 0

0 0 a2


 , (2.26)

where α12 =−α21 =−√a2.
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Thus, putting η= µ−µc , at η= 0, α11 =α22 = 0, we can write (2.1) in the form

y ′ =φ(y,θ),
θ′ = 0.

(2.27)

Then a center manifold C exists for this canonical suspended system at (y,θ) =
(0,0)∈R3×R1 (see [1, page 52]).

3. The four-dimensional epidemic model. In this section we will show that system

(1.1) is bounded, positively invariant, with respect to a region in R4+, and dissipative.

Definition 3.1 [7, page 394]. A differential equation X′ = f(X) is said to be dis-

sipative if there is a bounded subset B of R2 such that for any X◦ ∈ R2 there is a

time t◦, which depends on X◦ and B, so that the solution φ(t,X◦) through X◦ satisfies

φ(t,X◦)∈ B for t ≥ t◦.
Theorem 3.2. Let Γ be the region defined by

Γ = {(S,E,I,R)∈R4
+ : S+E+I+R = 1

}
. (3.1)

Then

(i) Γ is positively invariant,

(ii) all the solutions of system (1.1) are uniformly bounded,

(iii) system (1.1) is dissipative.

Proof. Let S(t◦)= S̄◦ > 0. Since

S′ = b−IH(I,S)−pbE−qbI−bS
< b−bS−IH(I,S)
< b−bS−Smin

S∈Γ
H̃(I,S),

(3.2)

where IH(I,S)= SH̃(I,S), letting δ=−(b+minS∈Γ H̃(I,S)), thus

S′ < b+δS, δ < 0. (3.3)

Then

S ≤ −b
δ
+ S̄◦eδt (3.4)

so that

S ≤max
(−b
δ
+ S̄◦

)
, (3.5)

thus

lim
t→∞

supS ≤ −b
δ
, δ < 0, S̄◦ ≥ 0. (3.6)
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Hence S(t) is uniformly bounded. Since S(t) = 1−E(t)− I(t)−R(t) and S(t) is uni-

formly bounded, the solutions of (1.1) are uniformly bounded. Dissipativity of system

(1.1) follows by Definition 3.1. Thus the proof is completed.

Now, we discuss the existence and global stability of the equilibria of (1.1). The equi-

libria points of (1.1) are obtained by solving the system of isocline equations

b−IH(I,S)−pbE−qbI−bS = 0,

IH(I,S)+pbE+qbI−(µ+b)E = 0,

µE−(γ+b)I = 0,

γI−bR = 0.

(3.7)

The possible equilibria points of (1.1) are P◦ = (1,0,0,0) and P = (S∗,E∗, I∗,R∗). The

Jacobian matrix due to linearization of (1.1) at the equilibrium point P◦ = (1,0,0,0) is

JP◦=(1,0,0,0) =




−b −pb −H(0,1)−qb 0

0 pb−(µ+b) H(0,1)+qb 0

0 µ −(γ+b) 0

0 0 γ −b


 . (3.8)

The eigenvalues of P◦ = (1,0,0,0) are given by λ1 = λ2 = −b < 0, and the other tow

eigenvalues λ2,3 satisfy the following quadratic equation:

λ2−(pb−(µ+γ+2b)
)
λ−((γ+b)(pb−(µ+b))+µ(H(0,1)+qb))= 0. (3.9)

Thus

λ3+λ4 =
(
pb−(µ+γ+2b)

)
< 0,

λ3λ4 =
(
(γ+b)(pb−(µ+b))−µ(H(0,1)+qb)). (3.10)

The above discussion leads to the following results.

Theorem 3.3. (i) If (γ+b)(µ+b−pb) > µ(H(1,0)+qb) holds, then P◦(1,0,0,0) is

locally asymptotically stable.

(ii) If (γ + b)(µ+ b−pb) < µ(H(1,0)+ qb) holds, then the equilibrium point P◦ =
(1,0,0,0) is a hyperbolic saddle and is repelling in both directions of I and R. In par-

ticular, the dimensions of the stable manifold W+ and unstable manifold W− are given

by

DimW+(P◦ = (1,0,0,0))= 1, DimW−(P◦ = (1,0,0,0))= 3, (3.11)

respectively.
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Proof. The proof of (i) is similar to the proof of Theorem 2.1, so it is omitted. The

proof of (ii) follows directly from inspection of the eigenvalues of the Jacobian matrix

at P◦ = (1,0,0,0) and examples by Freedman and Mathsen [4].

Now, to give sufficient conditions for the existence of a positive interior equilibrium

P = (S∗,E∗, I∗,R∗), we discuss the uniform persistence of (1.1). To show a uniform

persistence in the set

R+SEIR =
{
(S,E,I,R) : S > 0, E > 0, I > 0, R > 0

}
, (3.12)

we assume the following hypotheses for system (1.1).

(h1) All dynamics are trivial on ∂R+SEIR (the boundary of the set R+SEIR).

(h2) All invariant sets (equilibrium points) are hyperbolic and isolated.

(h3) No invariant sets on ∂R+SEIR are asymptotically stable.

(h4) If an equilibrium point exists in the interior of any three-dimensional subspace

of R+SEIR, it must be globally asymptotically stable with respect to orbits initiating

in that interior.

(h5) If M is an invariant set on ∂R+SEIR and W+(M) and it is a strong stable manifold,

then W+(M)∩∂R+SEIR =φ.

(h6) All invariant sets are cyclic.

Here, we drive criteria for the global stability hypothesis (h4) to be valid.

Now, we discuss the global stability of P̄◦ = (1,0,0). In R4+ consider the Lyapunov

function

V = µE+(µ+b−pb)I. (3.13)

Thus

V · = [µH(I,S)−((γ+b)(µ+b−pb)−qb)]I

= [((γ+b)(µ+b−pb)−qb)]

 µH(I,S)(
(γ+b)(µ+b−pb)−qb) −1


I

≤ 0.

(3.14)

Now we give the following result.

Theorem 3.4. If

µH(I,S)(
(γ+b)(µ+b−pb)−qb) ≤ 1, (3.15)

then the equilibrium point P̄◦ = (1,0,0) is globally asymptotically stable with respect to

solution trajectories initiating from intR+S (the interior of the set R+S ).
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Proof. The proof is similar to the proof of [10, Theorem 3.1, page 197], so it is

omitted.

Also, we discuss the global stability of the point P = (S◦,E◦, I◦). In R+SEI we choose the

Lyapunov function

V = 1
2
k1
(
S−S◦

)2+ 1
2
k2
(
E−E◦

)2+I−I◦−I◦ ln
I
I◦
, (3.16)

where ki ∈R+, i= 1,2.

The derivative of V along the solutions curve in R+SEI is given by the expression

V · = k1
(
S−S◦

)(
b−IH(I,S)−pbE−qbI−bS)

+k2
(
E−E◦

)(
IH(I,S)+pbE+qbI−(µ+b)E)

+
(

1− I◦
I

)(
µE−(γ+b)I).

(3.17)

But since

b = I◦H
(
I◦,S◦

)+pbE◦+qbI◦+bS◦, (3.18)

then

V · = k1
(
S−S◦

)(
I◦H

(
I◦,S◦

)+pbE◦+qbI◦+bS◦)
−k1

(
S−S◦

)(
IH(I,S)+pbE+qbI+bS)

+k2
(
E−E◦

)(
IH(I,S)+pbE+qbI)−k2

(
E−E◦

)
(µ+b)E

+
(
I−I◦

)
I

(
µE−(γ+b)I).

(3.19)

Now, putting

a11 = k1

(
I◦H(I◦,S◦)+pbE◦+qbI◦+bS◦

)
(
S−S◦

) ,

a12 = k2

(
IH(I,S)+pbE+qbI)(

E−E◦
) −k1

(
IH(I,S)+pbE+qbI+bS)(

S−S◦
) ,

a13 = a23 = 0,

a22 =−k2
(µ+b)E(
E−E◦

) , a33 =
(
µE−(γ+b)I)
I
(
I−I◦

) ,

(3.20)

let

X =



v1

v2

v3


 (3.21)
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such that

v1 =
(
S−S◦

)
,

v2 =
(
E−E◦

)
,

v3 =
(
I−I◦

)
.

(3.22)

Thus we can write the derivative V · as

V · = a11v2
1 +a12v1v2+a22v2

2 +a33v2
3

= a11v2
1 +

1
2
a12v1v2+ 1

2
a13v1v3+ 1

2
a12v1v2+ 1

2
a23v2v3

+a22v2
2 +

1
2
a23v2v3+ 1

2
a13v1v3+a33v2

3 ,

(3.23)

where aij = aji with a13 = a23 = 0, i,j = 1,2,3.

But V · =XTAX =XAXT = 〈AX,X〉 (quadratic form), whereA is a 3×3 real symmetric

matrix, such that A= (1/2)(A+AT), and is given by

A=




a11
1
2
a12

1
2
a13

1
2
a12 a22

1
2
a23

1
2
a13

1
2
a23 a33



. (3.24)

Let aij , i,j = 1,2,3, be such that the following hold:

(i) aij ∈ C1(R+×R+×R+,R),
(ii) limx→x◦ aij exists as a finite number, where x◦ is the equilibrium point,

(iii) aij are bounded for all i,j = 1,2,3.

The characteristic roots of the matrix A are given by

ρ(λ,A)= det
(
A−λI3×3

)
= λ3+m1λ2+m2λ+m3 = 0,

(3.25)

where

m1 =−traceA=−(a11+a22+a33
)
,

m2 = det

∣∣∣∣∣∣∣∣
a11

1
2
a12

1
2
a12 a22

∣∣∣∣∣∣∣∣
+det

∣∣∣∣∣∣∣∣
a11

1
2
a13

1
2
a13 a33

∣∣∣∣∣∣∣∣
+det

∣∣∣∣∣∣∣∣
a22

1
2
a23

1
2
a23 a33

∣∣∣∣∣∣∣∣
,

m3 =−detA.

(3.26)

But since we have a13 = a23 = 0,

m1 =−
(
a11+a22+a33

)
,

m2 = a11
(
a22+a33

)− 1
4
a2

12,

m3 = a33

(
1
4
a2

12−a11a22

)
.

(3.27)



2982 M. M. A. EL-SHEIKH AND S. A. A. EL-MAROUF

Hence, by the Routh-Hurwitz criterion and [15, Lemma 6.1, page 177], it follows that

A is negative definite if

m1 < 0, m3 < 0, m1m2 >m3, (3.28)

and we have the following result.

Theorem 3.5. If the following two conditions hold, then the equilibrium point P =
(S◦,E◦, I◦) ∈ R+SEI is globally asymptotically stable with respect to solution trajectories

initiating from intR+SEI :

(i) aii < 0, i= 1,2,3,

(ii) a11a22−(1/4)a2
12 < 0.

Proof. The proof follows from [15, Lemma 6.1] and Frobenius’ theorem (1876).

We will need the following lemma due to Butler-McGehee to obtain our results.

Lemma 3.6 [5, page 227]. Let P be an isolated hyperbolic equilibrium in the omega

limit set Ω(X) of an orbit ϑ(X). Then either Ω(X) = P or there exist points Q+, Q− in

Ω(X) with Q+ ∈M+(P) and Q− ∈M−(P).

Now, we present results on persistence, uniform persistence, and then we give suf-

ficient conditions for the existence of a positive interior equilibrium point P = (S∗,E∗,
I∗,R∗).

Theorem 3.7. Assume that

(i) P◦ = (1,0,0,0) is a hyperbolic saddle point and is repelling in both I- and R-

directions (see Theorem 3.4);

(ii) system (1.1) is dissipative and the solutions initiating in intR+SEIR are eventually

uniformly bounded;

(iii) the equilibrium points P̄◦ = (1,0,0) and P = (S◦,E◦, I◦) are globally asymptotically

stable.

Then system (1.1) is uniformly persistent.

Proof. The proof will depend on Lemma 3.6. Let Γ = {(S,E,I,R) ∈ R4
SEIR : S +E+

I + R = 1} ⊂ R4+. We have shown in Theorem 3.2 that Γ is positively invariant and

any solution of system (1.1) initiating at a point in Γ ∈ R4 is eventually uniformly

bounded. However P̄◦ = (1,0,0) are the only compact invariant sets on ∂R4+. LetM = P =
(S∗,E∗, I∗,R∗) be such that M ∈ int∂R4+. The proof will be completed by showing that

no points Qi ∈ ∂R4+ belong to Ω(M). Suppose, on the contrary, that P◦ ∉ Ω(M). Sup-

pose P◦ ∈Ω(M). Since P◦ is hyperbolic, P◦ ∉Ω(M). By Lemma 3.6, there exists a point

Q+
0 ∈ W+((P◦)\{P◦}) such that Q+

0 ∈ Ω(M). But since W+(P◦)∩ (R4+\{P◦}) = φ, this

contradicts the positive invariance property of Γ . Thus P◦ ∉ Ω(M). We also show that

P1 = (S◦,E◦, I◦,0) ∉ Ω(M). If P1 = (S◦,E◦, I◦,0) ∈ Ω(M), then there exists a point Q+
1 ∈

W+((P1)\{P1}) such that Q+
1 ∈ Ω(M). But W+(P1)∩ (R4+) = φ and P1 = (S◦,E◦, I◦,0) is

globally asymptotically stable with respect to R+SEI. This implies that the closure of the

orbit ϑ(Q+
1 ) through Q+

1 either contains P◦ or is unbounded. This is a contradiction.
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Hence P1 = (S◦,E◦, I◦,0) ∉Ω(M). Thus we see that if P◦ is unstable, then

W+(P◦)∩(R4
+\
{
P◦
})=φ. (3.29)

Also, we deduce that if P1 is unstable, then

W+(P1
)∩(intR4

+
)=φ,

W−(P1
)∩(R4\R4

+
)=φ. (3.30)

Now, we show that ∂R4+∩Ω(M) =φ. Let Q ∈ ∂R4+ and Q ∈ Ω(M). Then the closure of

the orbit through Q, ϑ(Q), must either contain P◦ and P1 or be unbounded, and the

uniform persistence result follows since Ω(M) must be in intR4+. This completes the

proof.

Now, we discuss the Hopf-Andronov-Poincaré bifurcation for system (1.1) with bifur-

cation parameter η. System (1.1) can be recast into the form

X′ = F(X,η), (3.31)

where

X ∈R4 =




S
E
I
R


 (3.32)

and η is the bifurcation parameter. F(X,η) is a Cr (r ≤ 5) function on an open set in

R4×R1.

Let Bη = {P◦ = (1,0,0,0), P = (S∗,E∗, I∗,R∗)} be the set of equilibrium points of (1.1)

such that F(Bη)= 0, for some η∈R1, on a sufficiently large open set G containing each

member of Bη. The linearized problem corresponding to (1.1) about any η is given by

y· = Jη
(
F
(
Bη
))
y, y ∈R4. (3.33)

Here, we are interested in studying how the orbit structure near Bη changes as η varies.

Theorem 3.8. Let condition (ii) of Theorem 3.3 be satisfied. Then the Hopf bifurcation

cannot occur at P◦ = (1,0,0,0).
Proof. By the same manner as in [15, page 185], the proof follows from the fact

that when Theorem 3.3 holds, then P◦ = (1,0,0,0) is a hyperbolic saddle point and its

stable manifold lies on an axis.

Now, we consider the equilibrium point P = (S∗,E∗, I∗,R∗). The Jacobian matrix

corresponding to Bη = P = (S∗,E∗, I∗,R∗) is given by

Jη
(
Bη
)=




a∗11 a∗12 a∗13 0

a∗21 a∗22 a∗23 0

0 a∗32 a∗33 0

0 0 a∗43 a∗44


 , (3.34)
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where a∗11 = −I(∂H/∂S)−b, a∗12 = −pb, a∗13 = −H − I(∂H/∂I)−qb, a∗21 = I(∂H/∂S),
a∗22 = pb−(µ+b), a∗23 =H+I(∂H/∂I)+qb, a∗32 = µ, a∗33 =−(γ+b), a∗43 = γ, a∗44 =−b,

and a∗14 = a∗24 = a∗31 = a∗34 = a∗41 = a∗42 = 0.

The characteristic equation corresponding to Jη(Bη) is

λ4+σ1λ3+σ2λ2+σ3λ+σ4 = 0, (3.35)

where

σ1 =−traceJη
(
Bη)=−

(
a∗11+a∗22+a∗33+a∗44

)
,

σ2 =
(
a∗11a

∗
22+a∗22a

∗
33+a∗22a

∗
44+a∗11a

∗
33+a∗11a

∗
44−a∗32a

∗
23−a∗12a

∗
21

)
,

σ3 =
(−a∗11a

∗
22a

∗
33−a∗11a

∗
22a

∗
44+a∗11a

∗
32a

∗
23−a∗22a

∗
33a

∗
44−a∗11a

∗
33a

∗
44

+a∗21a
∗
12a

∗
33+a∗21a

∗
12a

∗
44+a∗32a

∗
23a

∗
44−a∗21a

∗
32a

∗
13

)
,

σ4 = detJη
(
Bη
)= (a∗11a

∗
22a

∗
33a

∗
44+a∗21a

∗
32a

∗
13a

∗
44−a∗11a

∗
32a

∗
23a

∗
44−a∗21a

∗
12a

∗
33a

∗
44

)
.

(3.36)

Going through the Routh-Hurwitz criterion as in [15], and sufficient conditions for the

roots of (3.35) to have negative real parts are

(
l1
)
σ1 > 0, σ3 > 0, σ4 > 0,

(
l2
)
σ1σ2σ3 >

(
σ3
)2+(σ1

)2σ4. (3.37)

Now, in order to have Hopf bifurcation, we must violate either (l1) or (l2). Suppose

each σi > 0, i= 1,2,3,4, such that

(i) σ2σ3−σ4 > 0,

(ii) (l2) is violated such that

σ1σ2σ3 =
(
σ3
)2+(σ1

)2σ4 (3.38)

which implies that

σ2σ3 =
(
σ3
)2

σ1
+σ1σ4 >σ4. (3.39)

Lemma 3.9. Assume that the following conditions are satisfied:

(i) σi > 0, i= 1,2,3,4,

(ii) σ2σ3− σ4 > 0,

(iii) σ1σ2σ3 ≤ (σ3)2+(σ1)2σ4.

Then the characteristic equation (3.35) can be factorized into the form

(
λ2+n1

)(
λ+n2

)(
λ+n3

)= 0, ni > 0, i= 1,2,3, (3.40)

where σ1 =n2+n3, σ2 =n2n3+n1, σ3 =n1(n2+n3), and σ4 =n1n2n3, which implies

that n1 = σ3/σ1 and n2,n3 are satisfied by the quadratic equation

x2−σ1x+
(
σ1− σ3

σ1

)
= 0. (3.41)
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In particular, the eigenvalues of (3.35) are given by {i√n1,−i√n1,−n2,−n3}. Thus,

under the conditions of the above Lemma, the eigenvalues of the Jacobian matrix Jη(Bη)
have two pure imaginary roots for some value of η, say, η= η∗. For η∈ (η∗−ε,η∗+ε),
the characteristic equation (3.35) cannot have real positive roots. But for η ∈ (η∗ −
ε,η∗+ε), the roots are in the general form

λ1(η)=α(η)+iβ(η),
λ2(η)=α(η)−iβ(η),
λ3(η)=−n2 ≠ 0,

λ4(η)=−n3 ≠ 0.

(3.42)

We now apply Hopf’s transversality criterion to (3.35) in order to obtain the required

condition for Hopf bifurcation to occur for this system. Hopf’s transversality criterion

is given by

Re
[dλj
dη

]
η=η∗

≠ 0, j = 1,2. (3.43)

Substituting λj(η)=α(η)+iβ(η) into (3.35), we obtain

4(α+iβ)3(α′ +iβ′)+σ ′1(α+iβ)3+3σ1(α+iβ)2(α′ +iβ′)+σ ′2(α+iβ)2
+2σ2(α+iβ)(α′ +iβ′)+σ ′3(α+iβ)+σ ′3(α′ +iβ′)+σ ′4 = 0.

(3.44)

Comparing the real and imaginary parts in both sides of the above equation, we get

A(η)α′(η)−B(η)β′(η)+C(η)= 0,

B(η)α′(η)+A(η)β′(η)+D(η)= 0,
(3.45)

where

A(η)= (4α3−12αβ2)+3σ1
(
α2−β2)+2σ2α+σ3,

B(η)= (12α2β−4β3)+6σ1β+2σ2β,

C(η)= σ ′1
(
α3−3αβ2)+σ ′2(α2−β2)+σ ′2α+σ ′4,

D(η)= σ ′1
(
3αβ−β3)+2σ ′2αβ+σ ′3β.

(3.46)

Thus, from (3.45), we have

Re
[dλj
dη

]
η=η∗

= det
∣∣−C(η) −B(η)−D(η) A(η)

∣∣
det

∣∣A(η) −B(η)
B(η) A(η)

∣∣
= −(AC+BD)

A2+B2
.

(3.47)

Since (AC+BD)≠ 0, then Re[dλj/dη]η=η∗ ≠ 0.

The above discussion proves the following result.
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Theorem 3.10. Suppose the equilibrium point P = (S∗,E∗, I∗,R∗) exists, σi > 0, i=
1,2,3,4, and σ1σ2σ3 ≤ (σ3)2 + (σ1)2σ4; then system (1.1) exhibits a Hopf-Andronov-

Poincaré bifurcation in the first orthant, leading to a family of periodic solutions that

bifurcate from P for suitable values of η in the neighborhood of η= η∗.

4. Discussion. In this paper, we studied a general SEIR model with vertical trans-

mission for the dynamics of an infectious disease. We assumed that a fraction p and a

fraction q of the offspring from the exposed and the infectious classes, respectively, are

assumed to be infected at birth. The incidence termH(I,S) is of nonlinear form and the

immunity is assumed to be permanent. We established the local asymptotic stability of

the disease-free equilibrium points P̄◦ = (1,0,0) and P◦ = (1,0,0,0) for systems (2.1) and

(1.1), respectively. Our results are consistent with those obtained by Li et al. [12], where

our condition (A1) of Theorem 2.1 are equivalent to the condition R◦(p,q)≤ 1 in terms

of the notation of Li et al. [12]. We have shown that if condition (A1) of Theorem 2.1 is

satisfied, then the disease-free equilibrium point P̄◦ = (1,0,0) is locally asymptotically

stable in the interior of the feasible region and the disease always dies out. Also we

have shown that if the two conditions (A2) and (A3) of Theorem 2.3 hold, then a unique

endemic equilibrium point P = (S◦,E◦, I◦) exists and is locally asymptotically stable in

the interior of the feasible region; moreover, once the disease appears, it eventually

persists at the unique endemic equilibrium level. The local stability of P̄◦ = (1,0,0),
P = (1,0,0,0), and P = (S◦,E◦, I◦) was proved using the Routh-Hurwitz criterion that

have been widely used in the Literature, see [2, 15]. The global stability of P̄◦ = (1,0,0)
and P = (S◦,E◦, I◦) in Theorems 3.4 and 3.5 was established using Lyapunov functions

similar to those discussed by Li and Wang [13] and Nani and Freedman [15], respec-

tively. We applied the Hopf bifurcation and center manifold theories for system (2.1)

using an approach similar to those due to [3]. We employed the mathematical tools

of differential analysis, persistence theory, Hopf-Andronov-Poincaré bifurcation, and

linear system theory to deduce the existence of a family of periodic solutions that bi-

furcate from P = (S∗,E∗, I∗,R∗). We used a technique similar to that used by Nani

and Freedman [15]. Our results obtained here improve and partially generalize those

obtained in [3, 10, 12, 13].
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