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1. Introduction. In order to discuss the numerical solution of the second-order

VIDEs we consider the following linear integrodifferential equation:

y(2)(t)= q(t)+
1∑
i=0

pi(t)y(i)(t)+
1∑
i=0

∫ t
0
ki(t,s)y(i)(s)ds, t ∈ I := [0,T ], (1.1)

with

y(0)=y0, y(1)(0)=y1, (1.2)

where q : I → R, pi : I → R, and ki : D → R (i = 0,1) (with D := {(t,s) : 0 ≤ s ≤ t ≤
T}) are given functions and are assumed to be (at least) continuous in the respective

domains. For more details of these equations, many other interesting methods for the

approximated solution and stability procedures are available in earlier literatures [1,

3, 4, 5, 6, 7, 8, 11]. The above equation is usually known as basis test equation and is

suggested by Brunner and Lambert [5]. Since then it has been widely used for analyzing

the solution and stability properties of various methods.

Second-order VIDEs of the above form (1.1) will be solved numerically using polyno-

mial spline spaces. In order to describe these approximating polynomial spline spaces,

let
∏
N : 0= t0 < t1 < ···< tN = T be the mesh for the interval I, and set

σn := [tn,tn+1
]
, hn := tn+1−tn, n= 0,1, . . . ,N−1,

h =max
{
hn : 0≤n≤N−1

}
(mesh diameter),

ZN := {tn :n= 1,2, . . . ,N−1
}
, ZN = ZN∪{T}.

(1.3)

Let πm+d be the set of (real) polynomials of degree not exceedingm+d, wherem≥ 1

and d ≥ −1 are given integers. The solution y to the initial-value problem (1.1), (1.2)
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will be approximated by an element u in the polynomial spline space,

S(d)m+d
(
ZN
)

:= {u :=u(t)|t∈σn :=un(t)∈πm+d, n= 0,1, . . . ,N−1,

u(j)n−1

(
tn
)=u(j)n (

tn
)

for j = 0,1, . . . ,d, tn ∈ ZN
}
,

(1.4)

that is, by a polynomial spline function of degree m+d which possesses the knots

ZN and is d times continuously differentiable on I. If d = −1, then the elements of

S(−1)
m−1(ZN) may have jump discontinuities at the knots ZN . Initial value problems, such

as (1.1) and (1.2), have often been solved by collocation method in polynomial spines

spaces S(0)m (ZN) and S(1)m (ZN).
According to M. Miculá and G. Micula [10], an elementu∈ S(d)m+d(ZN) has the following

form: for all n= 0,1, . . . ,N−1 and t ∈ σn,

u(t)=un(t)=
d∑
r=0

u(r)n−1

(
tn
)

r !

(
t−tn

)r + m∑
r=1

an,r
(
t−tn

)d+r , (1.5)

where

ur−1(0) :=
[
dr

dtr
u(t)

]
t=0

=y(r)(0), r = 0,1, . . . ,d. (1.6)

From (1.5), we see that the element u∈ S(d)m+d(ZN) is well defined provided the coef-

ficients {an,r}r=1,...,m are known. In order to determine these coefficients, we consider

a set of collocation parameters {cj}j=1,...,m, where 0< c1 < ···< cm ≤ 1, and define the

set of collocation points as

X(N) :=
N−1⋃
n=0

Xn, with Xn := {tn,j := tn+cjhn, j = 1,2, . . . ,m
}
. (1.7)

The approximate solution u∈ S(d)m+d(ZN) will be determined by imposing the condi-

tion that u satisfies the following initial-value problem on X(N):

u(2)(t)= q(t)+
1∑
i=0

pi(t)u(i)(t)+
1∑
i=0

∫ t
0
ki(t,s)u(i)(s)ds, ∀t ∈X(N), (1.8)

with

u(0)=y0, u(1)(0)=y1, (1.9)

with a uniform the mesh sequence {∏N}, hn = h, for all n= 0,1, . . . ,N−1, but for small

h, (1.8) has a unique solution {an,j}j=1,...,m, for all n= 0,1, . . . ,N−1.
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Therefore, the modified collocation equation (1.8) can be rewritten as

u′′n
(
tn,j

)= q(tn,j)+p0
(
tn,j

)
un
(
tn,j

)+p1
(
tn,j

)
u′n
(
tn,j

)

+hnφjn,n
[
un
]+n−1∑

i=0

hiφ
j
n,i
[
ui
]

+ψjn,n
[
u′n
]+n−1∑

i=0

ψjn,i
[
u′i
]
, j = 1, . . . ,m, n= 0,1, . . . ,N−1,

(1.10)

where

φjn,i
[
ui
]=




∫ cj
0
k0
(
tn,j,tn+vhn

)
un
(
tn+vhn

)
dv, if i=n,

∫ 1

0
k0
(
tn,j ,ti+vhi

)
ui
(
ti+vhi

)
dv, if i= 0,1, . . . ,n−1,

ψjn,i
[
ui
]=




∫ cj
0
k1
(
tn,j,tn+vhn

)
u′n
(
tn+vhn

)
dv, if i=n,

∫ 1

0
k1
(
tn,j ,ti+vhi

)
u′i
(
ti+vhi

)
dv, if i= 0,1, . . . ,n−1.

(1.11)

In most applications the integrals appearing in (1.11) cannot be evaluated analyti-

cally, so we seek suitable quadrature formulas as follows:

φ̂jn,i
[
ui
]=




µ1∑
l=1

wj,lk0
(
tn,j,tn+dj,lhn

)
un
(
tn+dj,lhn

)
, if i=n,

µ0∑
l=1

wlk0
(
tn,j ,ti+dlhi

)
ui
(
ti+dlhi

)
, if i= 0,1, . . . ,n−1,

(1.12)

ψ̂ j
n,i
[
u′i
]=




µ1∑
l=1

wj,lk1
(
tn,j,tn+dj,lhn

)
u′n
(
tn+dj,lhn

)
, if i=n,

µ0∑
l=1

wlk1
(
tn,j ,ti+dlhi

)
u′i
(
ti+dlhi

)
, if i= 0,1, . . . ,n−1,

(1.13)

where µ0 and µ1 are two given positive integers, {dl} and {dj,l} are two sets of param-

eters satisfying the following conditions:

0≤ d1 < ···<dµ0 ≤ 1, 0≤ dj,1 < ···<dj,µ1 ≤ cj, (j = 1, . . . ,m), (1.14)

and wl, wj,l denote the quadrature weights.

The corresponding quadrature error terms are defined as

Ejn,i
[
ui
]=φjn,i[ui]−φ̂jn,i[ui],

Éjn,i
[
u′i
]=ψjn,i[u′i]−ψ̂ j

n,i
[
u′i
]
,

j = 1,2, . . . ,m, i= 0,1, . . . ,n (n= 0,1, . . . ,N−1).

(1.15)
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By the above quadrature process (1.10) is a fully discretized collocation method

which defines an element û ∈ S(d)m+d(ZN) (which, in general, will be different from the

approximate solution u determined by the exact collocation equation (1.10)). The full

discretized version of the collocation equation (1.10) is

û ′′n
(
tn,j

)= q(tn,j)+p0
(
tn,j

)
ûn
(
tn,j

)+p1
(
tn,j

)
û ′n

(
tn,j

)

+hnφ̂jn,n
[
ûn

]+n−1∑
i=0

hiφ̂
j
n,i
[
û i
]

+ψ̂ j
n,n
[
û ′n

]+n−1∑
i=0

ψ̂ j
n,i
[
û ′i
]
, j = 1, . . . ,m, n= 0,1, . . . ,N−1.

(1.16)

Similarly, the approximate discretized solution û∈ S(d)m+d(ZN) has the following form:

û(t)= ûn(t)=
d∑
r=0

û (r)n−1

(
tn
)

r !

(
t−tn

)r + m∑
r=1

ân,r
(
t−tn

)d+r , (1.17)

with the assumption that

û−1
(r)(0) :=y(r)(0), r = 0,1, . . . ,d. (1.18)

The collocation equations (1.10) and (1.16) represent recursive systems, for each n=
0,1, . . . ,N−1, which yield the coefficients {an,r}r=1,...,m and {ân,r}r=1,...,m, respectively.

Once the coefficients are known, the values of u, û together with their derivatives are

determined on σn by (1.5) and (1.17), respectively.

On each of the N subintervals of I we have to solve an m×m system of linear

equations. On the first subinterval σ0, d+1 additional equations are furnished by the

d+1 initial conditions (1.6) and (1.18).

2. Global convergence criteria. If the given functions q, pi, and ki (i = 0,1) are of

class m+d on their domain of definition, then the VIDE (1.1) has a unique solution

y , which is of class m+d+2. Let ϕn be the restriction of the function ϕ on I in the

subinterval σn, for n= 0,1, . . . ,N−1, and the norm is defined by

‖ϕ‖∞ = sup
{∣∣ϕn(t)∣∣ : t ∈ σn, n= 0,1, . . . ,N−1

}
. (2.1)

The following theorem describes the order of global convergence of u ∈ S(d)m+d(ZN),
d∈ {0,1,2}.

Theorem 2.1. Let q, pi, and ki be m+d times continuously differentiable in the

respective domains I and S. For d ∈ {0,1,2}, every choice of collocation parameters

{cj}j=1,m, with 0 < c1 < ··· < cm ≤ 1, and all quasiuniform mesh sequences {∏N} with

sufficiently small h> 0, the following hold:
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(i) the exact collocation equation (1.10) defines a unique approximationu∈S(d)m+d(ZN)
and the resulting error function e :=y−u satisfies

∥∥e(k)∥∥∞ ≤ Ckhm+d+1−k, ∀k= 0,1, . . . ,m+d, (2.2)

where Ck’s are finite constants independent of h;

(ii) if the quadrature formulas (1.12) and (1.13) satisfy that for i= 0,1, . . . ,n−1,

∫ 1

0
φ
(
ti+τhi

)
dτ−

µ1∑
l=1

wlφ
(
ti+dihi

)=O(hr1i ), (2.3)

∫ 1

0
ψ
(
ti+τhi

)
dτ−

µ1∑
l=1

wlψ
(
ti+dihi

)=O(hr1i ), (2.4)

and for j = 1, . . . ,m,

∫ cj
0
φ
(
tn+τhn

)
dτ−

µ0∑
l=1

wj,lφ
(
tn+dj,lhn

)=O(hr0n ), (2.5)

∫ cj
0
ψ
(
tn+τhn

)
dτ−

µ0∑
l=1

wj,lψ
(
tn+dj,lhn

)=O(hr0n ), (2.6)

whenever the integrand is sufficiently smooth, then for all the discretized ap-

proximation solution û∈ S(d)m+d(ZN) defined by (1.17), the following relationships

hold:

∥∥ε(k)∥∥∞ := ∥∥u(k)−û (k)∥∥∞ ≤Qkhs0−k, for k= 0,1, . . . ,s0, (2.7)∥∥ê (k)∥∥∞ := ∥∥y(k)−û (k)∥∥∞ ≤ Ĉkhs1−k, for k= 0,1, . . . ,s1, (2.8)

where s0 = min{r0 + 1,r1} + 1, s1 = min{s0,m+d+ 1}, and Qk, Ĉk are finite

constants independent of h.

Proof. We will prove the theorem by induction using the same technique as in

[2, 3, 9].

(i) For n = 0,1, . . . ,N−1 and for all t = tn+τhn ∈ σn (τ ∈ (0,1]), the exact solution

y can be obtained by Taylor series expansion:

y
(
tn+τhn

)=m+d∑
r=0

y(r)
(
tn
)
τr

r !
hrn+hm+d+1

n Rn(τ), (2.9)

where

Rn(τ)= 1
(m+d)!

∫ τ
0
y(m+d+1)(tn+ηhn)(τ−η)m+ddη. (2.10)

If the restriction of u ∈ S(d)m+d(ZN) to the subinterval σn is given by (1.5), then by

using (2.9), the error function on this subinterval has the form

en
(
tn+τhn

)= d∑
r=0

e(r)n−1

(
tn
)

r !
τrhrn+hpn

m∑
r=1

βn,rτd+r +hm+d+1
n Rn(τ), (2.11)
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where

hpnβn,r :=
(
y(d+r)

(
tn
)−an,r

(d+r)!

)
hd+rn . (2.12)

Subtracting the collocation equation (1.8) from the integrodifferential equation (1.1),

replacing t by tn,j , using (1.6) for n= 0, and utilizing the expression (2.11) for en yields

hp−2
0 D0β0 = hm+d−1

0 r0, for n= 0, (2.13)

hp−2
n Dnβn = FnEn+hm+d−1

n rn+
n−1∑
i=1

(
hiqn,i+pn,i

)
, for n> 0, (2.14)

where Dn is an m×m matrix, Fn is an m× (d+1) matrix, En is a (d+1) vector, and

βn, rn, qn,i, pn,i are m vectors whose elements are given by

(
Dn
)
j,r = cd+r−2

j
[
(d+r)(d+r −1)−h2

np0
(
tn+djhn

)
c2
j −(d+r)cjhnp1

(
tn+cjhn

)]
−h3

n

∫ cj
0
k0
(
tn,j,tn+τhn

)
τd+rdτ

−(d+r)h2
n

∫ cj
0
k1
(
tn,j ,tn+τhn

)
τd+r−1dτ,

(
Fn
)
j,r =




p0
(
tn,j

)+hn
∫ cj

0
k0
(
tn,j ,tn+τhn

)
dτ, if r = 0,

hncjp0
(
tn,j

)
hn+p1

(
tn,j

)+h2
n

∫ cj
0
k0
(
tn,j,tn+τhn

)
τdτ

+hn
∫ cj

0
k1
(
tn,j ,tn+τhn

)
dτ, if r = 1,

hr−2
n
r !

[−r(r −1)cr−2
j +h2

nc
r
j p0

(
tn,j

)+rhncr−1
j p1

(
tn,j

)]

+h3
n

∫ cj
0
k0
(
tn,j ,tn+τhn

)
τrdτ

+rh2
n

∫ cj
0
k1
(
tn,j ,tn+τhn

)
τr−1dτ, if r ≥ 2,

(
En
)
r = e(r)n−1

(
tn
)
,(

βn
)
r = βn,r as defined in (2.12),(

rn
)
j =−R′′n

(
cj
)+h2

np0
(
tn,j

)
Rn
(
cj
)+hnp1

(
tn,j

)
R′n
(
cj
)

+h3
n

∫ cj
0
k0
(
tn,j,tn+τhn

)
Rn(τ)dτ

+h2
n

∫ cj
0
k1
(
tn,j,tn+τhn

)
R′n(τ)dτ,

(
qn,i

)
j =

∫ cj
0
k0
(
tn,j ,ti+τhi

)
ei
(
ti+τhi

)
dτ,

(
pn,i

)
j =

∫ cj
0
k1
(
tn,j ,ti+τhi

)
e′i
(
ti+τhi

)
dτ.

(2.15)
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Note that the matrix Dn defined by the coefficient of {βn,j} on the left-hand side of

(2.13) and (2.14) is invertible whenever hn is sufficiently small. This follows from the

assumptions of the theorem and the fact that for hn = 0 the determinant of this matrix

is essentially a Vandermonde determinant. Therefore, for sufficiently small hn > 0, the

matrix Dn possesses a uniformly bounded inverse.

By the hypothesis on pi and ki, the 
1-norm of the vector r0 is uniformly bounded.

Hence, for p =m+d+1, (2.13) leads to

∥∥β0

∥∥
1 :=

m∑
l=1

∣∣β0,l
∣∣≤ ∥∥D−1

0

∥∥∥∥r0

∥∥=:M0. (2.16)

From (2.11) we have the following result:

∣∣e0
(
t0+τh0

)∣∣≤ hm+d+1(M0+
∣∣R0(τ)

∣∣)
≤ C0hm+d+1, for τ ∈ (0,1]. (2.17)

By differentiating (2.11) k times (k= 1,2, . . . ,m+d) and using (2.16), we obtain

∣∣ek0(t0+τh0
)∣∣≤ Ck0hm+d+1−k, for τ ∈ (0,1]. (2.18)

Suppose, for j = 0,1, . . . ,n−1,

∣∣ekj (tj+τhj)∣∣≤ Ckj hm+d+1−k, for τ ∈ (0,1], k= 0,1, . . . ,m+d; (2.19)

we prove that (2.19) holds for j = n. By the assumption of the theorem on q, pi,
and ki and (2.19), it follows that for sufficiently small h, ‖En‖1 = O(hm+1), ‖qn,i‖1 =
O(hm+d+1), ‖pn,i‖1 = O(hm+d) (i = 0,1, . . . ,n− 1), and ‖rn‖1 is bounded. Thus, for

p =m+d+1 and d∈ {0,1,2}, (2.14) leads to

∥∥βn∥∥1 :=
m∑
l=1

∣∣βn,l∣∣≤Mn+M′
nh. (2.20)

Then, from (2.20) and (2.11), it follows that

∣∣ekn(tn+τhn)∣∣≤ Cknhm+d+1−k, for τ ∈ (0,1], k= 0,1, . . . ,m+d. (2.21)

This completes the first assertion of the theorem.

(ii) By (1.5) and (1.17) for every n= 0,1, . . . ,N−1, the error function ε :=u−û can be

written as

εn
(
tn+τhn

)= d∑
r=0

ε(r)n−1

(
tn
)

r !
τrhrn+hs0n

m∑
r=1

ηn,rτd+r , (2.22)

where

hs0n ηn,r := (an,r − ân,r )hd+rn . (2.23)
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By subtracting the discretized equation (1.16) from the exact collocation equation

(1.10) and using (1.15) and (2.22), we have the following systems:

hs0−2
0 D̂0η0 = h0r0,0+ r̄0,0, for n= 0, (2.24)

hs0−2
n D̂nηn = F̂nξn+hnrn,n+

n−1∑
i=1

hirn,i+ r̄n,n+
n−1∑
i=1

r̄n,i, for n> 0, (2.25)

where rn,i := (E1
n,i[ui], . . . ,E

m
n,i[ui])T and r̄n,i := (É1

n,i[u
′
i], . . . , É

m
n,i[u

′
i])T . The matrices

D̂n, F̂n, ξn have the same orders as Dn, Fn, En from (2.13) and (2.14). The difference

between them is that the integrals are replaced with quadrature formulas (1.12) and

(1.13).

The expressions (2.24) and (2.25) have the same structure as (2.13) and (2.14), respec-

tively. The smoothness hypothesis and the assumption on the order of the quadrature

formulas (2.3), (2.4), (2.5), and (2.6) imply ‖rn,n‖1 = ‖r̄n,n‖1 = O(hr0n ) and ‖rn,i‖1 =
‖r̄n,i‖1 = O(hr1n ). Therefore, by the same reasoning in the proof of assertion (i), in-

equality (2.7) is true.

From (2.2) and (2.7),

∥∥ê (k)∥∥∞ := ∥∥y(k)−û (k)∥∥∞ ≤ ∥∥e(k)∥∥∞+∥∥ε(k)∥∥∞ ≤ Ĉkhs1−k, (2.26)

for all k= 0,1, . . . ,s1, with s1 =min{s0,m+d+1}.
Corollary 2.2. Let the assumptions of Theorem 2.1 hold. If the quadrature formu-

las (1.12) and (1.13) are of interpolatory type, with µ0 = µ1 =m+d, then the approxi-

mation û ∈ S(d)m+d(Zn) defined by the discretized collocation equation (1.16) leads to an

error ê(t) satisfying

∥∥ê (k)∥∥∞ :=O(hm+d+1−k), (2.27)

for k = 0, . . . ,m+d, every choice of collocation parameters {cj}j=1,...,m, with 0 < c1 <
··· < cm ≤ 1, and all quasiuniform mesh sequences {∏N} with sufficiently small h > 0,

and d∈ {0,1,2}.
If we use µ0 = µ1 =m, dj = cj , and dj,l = cjcl (j,l = 1,2, . . . ,m) in the quadrature

formulas, then our method leads to some simplifications. These simplifications are

useful when they do not affect the convergence order given by Theorem 2.1, namely,

s1 =m+d+1.

Corollary 2.3. If in the VIDE (1.1), q ∈ Cm+d(I), pi ∈ Cm+d(I), ki ∈ Cm+d(S), and

m≥ d, then there exists the set of collocation parameters {cj}j=1,...,m such that for the ap-

proximation û∈ S(d)m+d(Zn) defined by the discretized collocation equation (1.16), where

µ0 = µ1 =m, dl = cl, and dj,l = cjcl,
∥∥ê (k)∥∥∞ :=O(hm+d+1−k), (2.28)

for k= 0, . . . ,m+d, d∈ {0,1,2}.
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Proof. If µ0 = µ1 =m, m ≥ d, then we can choose the collocation parameters to

be the zeros of the shifted Legendre polynomial Pm(2s−1) (i.e., the Gauss points for

(0,1), as the collocation parameters {cj}j=1,...,m). Then in the quadrature formulas (2.3),

(2.4), (2.5), and (2.6), r0 = r1 = 2m. Therefore, s0 = 2m+1 and s1 =m+d+1 in (2.7)

and (2.8), respectively, which proves the corollary.

3. Local superconvergence on ZN . In many applications one is especially interested

in obtaining higher-order approximations at the mesh points ZN . There arises the ques-

tion as to whether there exist particular sets of collocation parameters leading to a

discrete convergence order (on ZN ) that is higher than the global order.

In the subsequent analysis, the integrals

Jk :=
∫ 1

0
sk

m∏
j=1

(
s−cj

)
ds, k∈N, (3.1)

play a critical role.

Theorem 3.1. Suppose that the given functions q, pi, and ki (i = 0,1) in the VIDE

(1.1) are m+p times continuously differentiable on their respective domains I and S
(d+1<p ≤m and d∈ {0,1,2}), and assume that the collocation parameters {cj}j=1,...,m

are chosen so that Jk = 0 for k = 0,1, . . . ,p−1, and Jp ≠ 0. Then, for all quasiuniform

mesh sequences {∏N} with sufficiently small h> 0, the following hold:

(i) ifu∈ S(d)m+d(ZN) is the approximate solution defined by the exact collocation equa-

tion (1.8) and y is the exact solution of (1.1), then

max
tn∈ZN

∣∣y(tn)−u(tn)∣∣=O(hm+p), as h �→ 0, Nh≤ γT , (3.2)

(ii) if the quadrature formulas (1.12) satisfy (2.3) and (2.4), the quadrature formu-

las (1.13) satisfy (2.5) and (2.6), and û ∈ S(d)m+d(ZN) is the approximate solution

defined by the discretized collocation equation (1.16), then

max
tn∈ZN

∣∣y(tn)−û(tn)∣∣=O(hα), as h �→ 0, Nh≤ γT , (3.3)

where α=min{m+p,s0} and s0 =min{r0+1,r1}+1.

Proof. (i) The exact collocation equation (1.8) can be written in the form

u′′(t)= q(t)+p0(t)u(t)+p1(t)u′(t)−δ(t)

+
∫ t

0
k0(t,s)u(s)ds+

∫ t
0
k1(t,s)u′(s)ds,

(3.4)

where δ(t) (the residual) is (at least) continuous on each of the subintervals σn and

vanishes at the collocation pointsX(N), t ∈ I. Then, by (3.4) and (1.1), the error function
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satisfies

e′′(t)= p0(t)e(t)+p1(t)e′(t)+δ(t)

+
∫ t

0
k0(t,s)e(s)ds+

∫ t
0
k1(t,s)e′(s)ds,

(3.5)

with initial conditions e(0)= 0, e′(0)= 0.

The solution of (3.5) for t = tn ∈ ZN can be expressed in the form (see [4, pages

130–131])

e
(
tn
)= hn−1∑

i=0

En,i, (3.6)

where En,i is the quadrature error which, by (3.1), has an order m+p.

Hence,

e
(
tn
)= ∣∣y(tn)−u(tn)∣∣=O(hm+p), (3.7)

which proves the first assertion of the theorem.

(ii) The second assertion of Theorem 3.1 now follows from (2.7) and (3.2).

It is well known that the orthogonality conditions Jk = 0 (k= 0, . . . ,p−1) imply that

the degree of precision of them-point interpolatory quadrature formula on [0,1] based

on the abscissas {cj}j=1,...,m is m+p−1. Since this degree of precision cannot exceed

the value 2m−1, we always have p ≤m. Moreover, since the local order is required to

be greater than or equal to the global order (m+d+1), it is necessary that d+2 ≤ p.

The following corollary deals with some important special cases and its proof relies on

the above theorem.

Corollary 3.2. Let the assumptions of Theorem 3.1 hold, then

(i) if the collocation parameters {cj}j=1,...,m are the Gauss(-Legendre) points for

(0,1), that is, the zeros of the shifted Legendre polynomial Pm(2s−1), then Jk = 0

for k= 0, . . . ,m−1, with Jm ≠ 0, and hence

max
tn∈ZN

∣∣y(tn)−u(tn)∣∣=O(h2m), as h �→ 0, Nh≤ γT , (3.8)

(ii) if the collocation parameters {cj}j=1,...,m are the Radau II points for (0,1], that

is, the zeros of the polynomial Pm−1(2s − 1)− Pm(2s − 1), then Jk = 0 for k =
0, . . . ,m−2, with Jm−1 ≠ 0, and hence

max
tn∈ZN

∣∣y(tn)−u(tn)∣∣=O(h2m−1), as h �→ 0, Nh≤ γT . (3.9)

4. Numerical example. The convergence results derived in the preceding sections

will be illustrated by applying various collocation methods to the following problem.

Example 4.1. Consider the following integrodifferential equation of second order:

y ′′(t)= q(t)+y(t)+
∫ t

0
tsy(s)ds, y(0)= 1, y ′(0)= 1, t ∈ [0,1], (4.1)
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Table 4.1. Approximate error when m = 2 and ({c1 = 1/2, c2 = 1}) (uni-
formly distributed collocation parameters).

d e1 eN/2 eN
0 1.68×10−7 0.593657978 1.089198840

1 0 0.000304350 0.012944677

2 0 0.000303703 0.012941467

3 0 0.000303661 0.012940922

Table 4.2. Approximate error whenm= 3 and ({c1 = 1/3, c2 = 2/3, c3 = 1})
(uniformly distributed collocation parameters).

d e1 eN/2 eN
0 2.45×10−5 0.015164638 0.172113704

1 0 0.000303699 0.012941460

2 0 0.000303701 0.012941459

3 0 0.000303688 0.012941212

Table 4.3. Approximate error when m = 2 and (Radau II parameters) ({c1 =
1/3, c2 = 1}).

d e1 eN/2 eN
0 1.68×10−7 0.593423722 1.089594757

1 0 0.000304350 0.012944677

2 0 0.000303704 0.012941470

3 0 17489.97760 1.97×1019

Table 4.4. Approximate error when m = 3 and (Radau II parameters) ({c1 =
(4−√6)/10, c2 = (4+

√
6)/10, c3 = 1}).

d e1 eN/2 eN
0 0.000027239 0.57170808 0.126648551

1 0 0.0003033700 0.012941460

2 0 0.000303703 0.012941464

3 0 1.89×1010 1.36×1034

with q(t) chosen in such a way that it has the following exact solution:

y(t)= t2+et. (4.2)

Following Tables 4.1, 4.2, 4.3, and 4.4 illustrate the error approximations as

e1 := ∣∣y(0.01)−u(0.01)
∣∣,

eN/2 := ∣∣y(0.5)−u(0.5)∣∣,
eN := ∣∣y(1)−u(1)∣∣,

(4.3)
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where u ∈ Sdm+d(ZN) is the approximate solution if ti := ih ∈ ZN with h = 0.01 when

m∈ {2,3} and d∈ {0,1,2,3}.
As we can see from the above tables, the collocation spline method yields very good

approximations when d = 1,2. However, for d = 0, the method performs poorly. But

for the case d = 3, the method converges if the collocation parameters are uniformly

distributed and diverges if the collocation parameters are Radau II points, which can

be seen from Tables 4.1, 4.2, 4.3, and 4.4.

References

[1] H. Brunner, A survey of recent advances in the numerical treatment of Volterra integral
and integro-differential equations, J. Comput. Appl. Math. 8 (1982), no. 3, 213–229.

[2] , Implicit Runge-Kutta methods of optimal order for Volterra integro-differential
equations, Math. Comp. 42 (1984), no. 165, 95–109.

[3] , Polynomial spline collocation methods for Volterra integrodifferential equations with
weakly singular kernels, IMA J. Numer. Anal. 6 (1986), no. 2, 221–239.

[4] , The approximate solution of initial-value problems for general Volterra integro-
differential equations, Computing 40 (1988), no. 2, 125–137.

[5] H. Brunner and J. D. Lambert, Stability of numerical methods for Volterra integro-
differential equations, Computing 12 (1974), no. 1, 75–89.

[6] H. Brunner, A. Pedas, and G. Vainikko, Piecewise polynomial collocation methods for linear
Volterra integro-differential equations with weakly singular kernels, SIAM J. Numer.
Anal. 39 (2001), no. 3, 957–982.

[7] H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations, CWI
Monographs, vol. 3, North-Holland Publishing, Amsterdam, 1986.

[8] T. A. Burton, Volterra Integral and Differential Equations, Mathematics in Science and En-
gineering, vol. 167, Academic Press, Florida, 1983.

[9] I. Danciu, Polynomial spline collocation methods for Volterra integro-differential equations,
Rev. Anal. Numér. Théor. Approx. 25 (1996), no. 1-2, 77–91.

[10] M. Miculá and G. Micula, Sur la résolution numérique des équations intégrales du type de
Volterra de seconde espèce à l’aide des fonctions splines, Studia Univ. Babeş-Bolyai
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