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For a class of functions H : (0,∞)×R2+ →R, including discontinuous functions of Carathéo-
dory type, we establish that

∫
RN H(|x|,u(x),v(x))dx ≤

∫
RN H(|x|,u∗(x),v∗(x))dx, where

u∗(x) and v∗(x) denote the Schwarz symmetrizations of nonnegative functions u and v .

2000 Mathematics Subject Classification: 26D20, 42C20, 46E30.

1. Introduction. We build on the approach to symmetrization, which we presented

in [6], to establish the inequality

∫
RN
H
(|x|,u(x),v(x))dx ≤ ∫

RN
H
(|x|,u∗(x),v∗(x))dx, (1.1)

whereu∗(x) and v∗(x) denote the Schwarz symmetrizations of nonnegative functions

u and v , for a class of functions H : (0,∞)×R2+ → R which includes discontinuous

functions of Carathéodory type. Apart from its own role in the calculus of variations,

this inequality generalizes simultaneously the inequalities

∫
RN
F
(
u(x),v(x)

)
dx ≤

∫
RN
F
(
u∗(x),v∗(x)

)
dx, (1.2)∫

RN
G
(|x|,u(x))dx ≤ ∫

RN
G
(|x|,u∗(x))dx. (1.3)

Inequality (1.2) was first proved by Crowe et al. [2] for continuous functions F that

satisfy a condition which we call (CZR) below. In the special case, F(s,t) = st, this

condition is satisfied and we obtain the classical Hardy-Littlewood inequality. In this

paper, we establish (1.2) and its generalization (1.1) for functions F and H which need

not be continuous. Concerning extensions of (1.2), the paper [2] ends with the remark

that “any proof involving approximations of u and v by step functions or of F by

smooth functions is likely to require some additional hypothesis on F .” Note that our

Corollary 4.7 and Theorem 5.4 are based on approximation of u or v by simple func-

tions, yet they extend (1.2) to functions F that are not necessarily continuous without

introducing any additional hypotheses. Moreover, as Remark 5.2 after Corollary 4.7 and

Examples 5.7 and 5.8 show, Theorem 5.4 is optimal in the sense that if any of its hy-

potheses is not satisfied, then we can construct a triple (F,u,v) satisfying the remaining

conditions for which (1.2) is false.

http://dx.doi.org/10.1155/S0161171204402348
http://dx.doi.org/10.1155/S0161171204402348
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


3130 H. HAJAIEJ AND C. A. STUART

The first proof of the more general inequality (1.1) (for functions defined on a bound-

ed subset of RN rather than all of RN ) seems to be due to Tahraoui [8, 9] who requires

H to be of class C3 and who uses rather complicated approximations ofH to obtain the

result for nonnegative functions u and v in Lp under appropriate growth conditions on

H. More recently, Brock [1] and Draghici [3] have been able to establish (1.1) for contin-

uous functionsH which satisfy similar growth conditions without requiring any analog

of the condition ∂1∂2∂3H ≤ 0 that was needed by Tahraoui. Motivated by applications

in the calculus of variations, our main goal here is to extend (1.1) to cases where H is

not necessarily continuous but rather satisfies some conditions of Carathéodory type.

Our method requires the assumption that we call (CZR-3) and which corresponds to

∂1∂2∂3H ≤ 0 in the case when H is smooth. In this respect, we obtain a result that is

less general than the one due to Brock but it has the advantage of dispensing with his

assumption of continuity of H and, furthermore, it establishes (1.1) for a bigger class

of functions u and v and it does not require any growth conditions like his onH either.

Our main results are Proposition 4.1, which establishes inequality (1.1) for all sym-

metrizable functions provided that H satisfies appropriate conditions, and Theorem

4.4 which establishes it for a smaller class of symmetrizable functions under weaker

conditions onH.As an immediate consequence of Theorem 4.4, we obtain Corollary 4.7

which generalizes the result of [2] to functions F which need not be continuous on R2+.
In Theorem 5.4, we adapt our approach in order to extend (1.2) to an even bigger class

of functions F. Inequalities analogous to (1.1), (1.2), and (1.3) concerning functions de-

fined on a bounded subset of RN can easily be deduced from the case we deal with

here by the procedure we used in [6, Section 6]. Finally we point out that by following

closely the proofs of Proposition 4.1 and Theorem 4.4, we can easily find hypotheses

under which the inequality

∫
RN
H
(|x|,u1, . . . ,um

)
dx ≤

∫
RN
H
(|x|,u∗1 , . . . ,u∗m)dx (1.4)

is valid. Indeed, (1.4) is established in [5] using different techniques and some applica-

tions of this inequality can also be found there.

2. Notation. All statements about measurability refer to the Lebesgue measure µ
on RN or on [0,∞), except in Section 5 where we discuss the composition of a Borel

measurable function with a Lebesgue measurable function. For r ≥ 0, B(0,r ) = {x ∈
RN : |x|< r}. There is a constant VN > 0 such that µ(B(0,r ))= VNrN for all r > 0.

For a measurable subset A of RN with µ(A) <∞,

A∗ = B(0,r ), where VNrN = µ(A). (2.1)

Note that A∗ is open even though A may not be.

The characteristic function of a set A is denoted by χA.
LetMN denote the set of all extended real-valued functions which are measurable on

RN . For u∈MN and t ∈R, let

du(t)= µ
({
x ∈RN :u(x) > t

})
(2.2)
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be its distribution function and set

FN =
{
u∈MN : 0≤u<∞ a.e. on RN, du(t) <∞∀t > 0

}
, (2.3)

the set of Schwarz symmetrizable functions. Following the terminology of [6], we say

that an element u ∈ FN is Schwarz symmetric if there exists a nonincreasing function

h : (0,∞)→ [0,∞) such that u(x)= h(|x|) for a.e. x ∈RN . Its Schwarz symmetrization

is denoted by u∗. As shown in [6, Proposition 2.5], u,v ∈ FN with u ≤ v a.e. on RN

implies that u∗ ≤ v∗.

Simple functions can be symmetrized in a very explicit way. Let

EN =
{
u∈ FN :u is a simple function

}
. (2.4)

That is, EN is the set of all functions which can be written as

u=
k∑
i=0

aiχAi for some k∈N, (2.5)

where ai ∈ (0,∞) with ai > ai+1, Ai is a measurable subset of RN with µ(Ai) <∞ and

Ai∩Aj =∅ for i≠ j.
Setting

Si =∪ij=0Aj, S∗i = B
(
0,ri

)
, for 0≤ i≤ k, (2.6)

it follows that

u∗ =
k∑
i=0

aiχCi , (2.7)

where C0 = B(0,r0) and Ci = B(0,ri)\B(0,ri−1) for i= 1, . . . ,k.

To deal with functions defined on subsets of RN , we use the following conventions.

If ω is a measurable subset of RN , which has finite measure, let FN(ω) denote the set

of all extended real-valued functions u such that

(i) u is measurable on ω,

(ii) 0≤u<∞ a.e. on ω.
Clearly, f |ω ∈ FN(ω) for all f ∈ FN and, conversely, given any f ∈ FN(ω) we have that

f̃ ∈ FN where f̃ is defined by

f̃ =

f(x) if x ∈ω,

0 if x ∈RN\ω. (2.8)

The Schwarz symmetrization of an element u∈ FN(ω) is defined as

u∗ =
[(
ũ
)∗]|ω∗ , (2.9)

where ũ is the extension of u to all of RN defined in (2.8). By [6, Lemma 6.1(i)],

(̃
u∗
)= (ũ)∗. (2.10)
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In [6], we make frequent use of the following identity which we refer to again below:

k∑
i=0

piqi =
k∑
i=0

PiQi, (2.11)

where Pi = pi−pi+1 for i= 0,1, . . . ,k−1, Pk = pk, and Qi =
∑i
j=0qj .

3. Preliminaries. In an integral where no domain of integration is indicated, the inte-

gration extends over all ofRN . A measurable function f is said to be integrable provided

that
∫
f+(x)dx < ∞ and

∫
f−(x)dx < ∞, where f+(x) = max{0,f (x)} and f−(x) =

max{0,−f(x)}, so that f(x) = f+(x) − f−(x) and then
∫
f(x)dx = ∫

f+(x)dx −∫
f−(x)dx. However,

∫
f(x)dx makes sense even when f is not integrable provided

that either
∫
f+(x)dx < ∞ or

∫
f−(x)dx < ∞, in which case

∫
f(x)dx still stands for∫

f+(x)dx−
∫
f−(x)dx.

Lemma 3.1. Let f and g be measurable functions on RN such that
∫
f−(x)dx < ∞

and
∫
g−(x)dx <∞. Then

∫
[f +g]−(x)dx <∞ and

∫
(f +g)(x)dx =

∫
f(x)dx+

∫
g(x)dx. (3.1)

Proof. One easily verifies that [f +g]− ≤ f−+g−, from which it follows that

∫
[f +g]−(x)dx ≤

∫ (
f−+g−

)
(x)dx =

∫
f−(x)dx+

∫
g−(x)dx <∞. (3.2)

Furthermore, [f +g]+ ≤ f+ +g+ and so
∫
[f +g]+(x)dx ≤

∫
f+(x)dx+

∫
g+(x)dx. If∫

[f +g]+(x)dx =∞, then
∫
f+(x)dx+

∫
g+(x)dx =∞ and it follows that

∫
(f +g)(x)dx =

∫
f(x)dx+

∫
g(x)dx =∞ (3.3)

in this case.

To deal with the case where
∫
[f +g]+(x)dx <∞, we observe that

f+ = (f +g−g)+ ≤ [f +g]++(−g)+ = [f +g]++g−, (3.4)

and, similarly,

g+ ≤ [f +g]++f−. (3.5)

Thus,
∫
[f +g]+(x)dx < ∞ implies that

∫
f+(x)dx < ∞ and

∫
g+(x)dx < ∞. Hence f

and g are integrable in this case and the conclusion follows immediately.

The inequalities we deal with involve composite functions. In the calculus of varia-

tions, the following definition establishes the standard context for handling the mea-

surability of such compositions.
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Definition 3.2. A function G : (0,∞)×R+ → R is called a Carathéodory function

when

(1) G(·,s) : (0,∞)→R is measurable on (0,∞) for all s ≥ 0,

(2) G(r ,·) : R+ → R is continuous on R+ for all r ∈ (0,∞)\Γ , where Γ is a subset of

(0,∞) having one-dimensional measure zero.

An important property of such a function is that the composition x � G(|x|,u(x))
is measurable on RN for every function u ∈ FN. In the context of inequality (1.1), we

introduce the following extension of this notion.

Definition 3.3. A function H : (0,∞)×R2+ →R is called a 2-Carathéodory function

when

(1) H(·,s,t) is measurable on (0,∞) for all s,t ≥ 0,

(2) H(r ,·, t) and H(r ,s,·) are continuous on R+ for all s,t ≥ 0 and all r ∈ (0,∞)\Γ ,
where Γ is a subset of (0,∞) having one-dimensional measure zero.

It is easy to check that x � H(|x|,u(x),v(x)) is measurable on RN for all func-

tions u,v ∈ FN. Indeed, there is a sequence {uk} ⊂ EN such that u = limk→∞uk. Since

H(·,s,·) : (0,∞)×R+ → R is a Carathéodory function for all s ≥ 0, it follows that

H(|x|,uk(x),v(x)) is measurable and hence that H(|x|,u(x),v(x)) = limk→∞H(|x|,
uk(x),v(x)) is measurable.

The first part of the next definition gives the property introduced by Crowe et al. [2]

in their fundamental paper concerning inequality (1.2). In dealing with (1.1) and (1.3)

we require properties of a similar nature.

Definition 3.4. A function F :R2+ →R has the property (CZR) when

F(b,d)−F(b,c)−F(a,d)+F(a,c)≥ 0 (3.6)

for all b ≥ a≥ 0 and d≥ c ≥ 0.
A function G : (0,∞)×R+ →R has the property (CZR-2) when

G(b,d)−G(b,c)−G(a,d)+G(a,c)≤ 0 (3.7)

for all a,b ∈ (0,∞) with b ≥ a and d≥ c ≥ 0.
A functionH : (0,∞)×R2+ →R has the property (CZR-3) when the function H(·,·, t)−

H(·,·,s) has the property (CZR-2) for all t ≥ s ≥ 0.

Slight variants of some of our results in [6] concerning inequality (1.3) are useful for

our treatment of (1.1) so we present them first.

Theorem 3.5. Let G : (0,∞)×[0,∞)→R be a Carathéodory function such that

(i) G−(|x|,0) is integrable on RN ,

(ii) G has the property (CZR-2),

(iii) there exists a continuous function g : [0,∞)→R such that g(0)= 0 and

lim
r→∞

{
G(r ,a)−G(r ,b)}≤ g(a)−g(b) (3.8)

for all a,b ∈ [0,∞) with b ≥ a.
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Then the inequalities

−∞<
∫
G
(|x|,u(x))dx ≤ ∫ G(|x|,u∗(x))dx (3.9)

hold for all u∈ FN such that g−(u) is integrable on RN .

Remark 3.6. By (ii), for fixed a,b ∈ [0,∞) with b ≥ a, {G(r ,a)−G(r ,b)} is a nonde-

creasing function of r . Thus the limit in (iii) exists and {G(r ,a) − G(r ,b)} ≤
limr→∞{G(r ,a)−G(r ,b)} for all r > 0.

Remark 3.7. If limr→∞G(r ,s) = G∞(s) exists for all s ≥ 0 and G∞ : [0,∞)→ R is a

continuous function, then condition (iii) is satisfied by setting g =G∞−G∞(0).
Remark 3.8. The integrals in the conclusion are well defined since

∫
G−(|x|,

u(x))dx <∞, and
∫
G−(|x|,u∗(x))dx <∞. Indeed, putting a= 0 in (iii), we find that

G(r ,0)−G(r ,b)≤ lim
r→∞

{
G(r ,0)−G(r ,b)}≤−g(b) (3.10)

and so

G−(r ,b)≤G−(r ,0)+g−(b) (3.11)

for all r > 0 and b ≥ 0 since G−(r ,b)= 0 whenever G+(r ,b) > 0. Hence, for any u∈ FN ,

G−
(|x|,u(x))≤G−(|x|,0)+g−(u(x)) for almost all x ∈RN,

0≤
∫
G−
(|x|,u(x))dx ≤ ∫ G−(|x|,0)dx+

∫
g−
(
u(x)

)
dx <∞

(3.12)

provided that
∫
g−(u(x))dx <∞. Similarly,

∫
G−(|x|,u∗(x))dx <∞.

Proof. By Remark 3.8, we have that
∫
G(|x|,u(x))dx > −∞, and, if

∫
G(|x|,

u∗(x))dx = ∞, the conclusion is trivial. Thus we may assume henceforth that

G(|·|,u∗(·)) is integrable.

We consider the function Φ : (0,∞)×[0,∞)→R defined by

Φ(r ,s)=G(r ,s)−G(r ,0)−g(s). (3.13)

This is a Carathéodory function which satisfies the hypotheses [6, Proposition 5.1(i)

and (ii)]. But, for r ∈ (0,∞)\Γ and a,b ∈ [0,∞) with b ≥ a,

Φ(r ,a)−Φ(r ,b)=G(r ,a)−G(r ,b)−{g(a)−g(b)}
≤ lim
r→∞

{
G(r ,a)−G(r ,b)}−{g(a)−g(b)}≤ 0,

(3.14)

by the monotonicity of G(r ,a)−G(r ,b) and assumption (iii). Thus we see that Φ satis-

fies all the conditions of [6, Proposition 5.1] and so

0≤
∫
Φ
(|x|,u(x))dx ≤ ∫ Φ(|x|,u∗(x))dx ∀u∈ FN, (3.15)
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that is,

0≤
∫
G
(|x|,u(x))−G(|x|,0)−g(u(x))dx (3.16)

≤
∫
G
(|x|,u∗(x))−G(|x|,0)−g(u∗(x))dx (3.17)

for all u∈ FN. But, by [6, Proposition 4.3(ii)],

∫
g−
(
u(x)

)
dx =

∫
g−
(
u∗(x)

)
dx (3.18)

for all u∈ FN such that g−(u) is integrable and, by hypothesis,

−∞<
∫
G−
(|x|,0)dx <∞. (3.19)

Setting p(x)=G(|x|,u∗(x)) and q(x)=G(|x|,0)+g(u∗(x)), it follows that p is inte-

grable and
∫
q−(x)dx <∞. Hence, by (3.17) and Lemma 3.1,

0≥
∫
q(x)−p(x)dx =

∫
q(x)dx+

∫
(−p)(x)dx

=
∫
q+(x)dx−

∫
q−(x)dx−

∫
p(x)dx,

(3.20)

from which it follows that
∫
q+(x)dx <∞ and, consequently, that q is integrable. But

now Lemma 3.1 enables us to conclude that

∫
G
(|x|,u(x))−q(x)dx = ∫ G(|x|,u(x))dx−∫ q(x)dx (3.21)

since we know that
∫
G−(|x|,u(x))dx < ∞. This means that (3.16) and (3.17) can be

written as

0≤
∫
G
(|x|,u(x))dx−∫ q(x)dx ≤ ∫ p(x)dx−∫ q(x)dx (3.22)

and the conclusion follows.

A variant of (1.3) deals with functions defined on subsets of RN.

Theorem 3.9. Let G : (0,∞)×R+ → R+ be a Carathéodory function and let ω be a

measurable subset of RN with finite measure. Suppose that

(i) G(r ,·) is nondecreasing on R+ for all r ∈ (0,∞)\Γ ,
(ii) G has the property (CZR-2),

(iii)

∫
ω
G
(|x|,0)dx ≤ ∫

ω∗
G
(|x|,0)dx. (3.23)
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Then

∫
ω
G
(|x|,u(x))dx ≤ ∫

ω∗
G
(|x|,u∗(x))dx (3.24)

for all u∈ FN(ω).
Proof. Consider u∈ FN(ω). We may suppose that

∫
ω∗
G
(|x|,u∗(x))dx <∞ (3.25)

since otherwise the conclusion is trivial. Using (i) and (iii), it follows that

0≤
∫
ω
G
(|x|,0)dx ≤ ∫

ω∗
G
(|x|,0)dx <∞. (3.26)

Setting Φ(r ,s) = G(r ,s)−G(r ,0), we find that Φ satisfies the hypotheses of [6, Propo-

sition 5.1] and so

0≤
∫
Φ
(|x|, ũ(x))dx ≤ ∫ Φ(|x|,(ũ)∗(x))dx, (3.27)

using notation (2.8). Thus

0≤
∫
ω
G
(|x|,u(x))−G(|x|,0)dx ≤ ∫

ω∗
G
(|x|,u∗(x))−G(|x|,0)dx (3.28)

by (2.10) since Φ(r ,0)= 0. Using (3.26), it follows that

0≤
∫
ω
G
(|x|,0)dx ≤ ∫

ω
G
(|x|,u(x))dx

≤
∫
ω∗
G
(|x|,u∗(x))−G(|x|,0)dx+∫

ω
G
(|x|,0)dx

≤
∫
ω∗
G
(|x|,u∗(x))dx,

(3.29)

completing the proof.

A corollary to the next lemma provides a simple way of ensuring that Theorem 3.9(iii)

is satisfied.

Lemma 3.10. Let h : (0,∞)→R+ be a right-continuous function. Then

(i) h is nonincreasing on (0,∞)
if and only if

(ii)

∫
ω
h
(|x|)dx ≤ ∫

ω∗
h
(|x|)dx (3.30)

for all measurable subsets ω of RN with finite measure.
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Proof. Suppose that (i) is true and set L = limr→∞h(r). Let u(x) = h(|x|)−L and

v(x) = χω(x) for x ∈ RN . Clearly, u ∈ FN and v ∈ EN and so by the Hardy-Littlewood

inequality (see, e.g., [6, Proposition 2.3]),

∫
u(x)v(x)dx ≤

∫
u∗(x)v∗(x)dx, (3.31)

where ∫
u(x)v(x)dx =

∫
ω
h
(|x|)dx−Lµ(ω),∫

u∗(x)v∗(x)dx =
∫
u(x)χω∗(x)dx =

∫
ω∗
h
(|x|)dx−Lµ(ω∗) (3.32)

since u = u∗ on RN by [6, Proposition 2.4(iii)] and (χω)∗ = χω∗ by (2.7). But µ(ω) =
µ(ω∗) so it follows that (ii) is satisfied.

Conversely, we suppose that h is not nonincreasing on (0,∞).We complete the proof

by constructing a subset ω with finite measure such that

∫
ω
h
(|x|)dx > ∫

ω∗
h
(|x|)dx. (3.33)

By our assumption, there exist P,Q ∈ (0,∞) with P < Q such that h(P) < h(Q). Using

the right-continuity of h, there exist ε > 0 and s,t ∈ (h(P),h(Q)) such that

h(r)≤ s < t ≤ h(R) ∀r ∈ [P,P+ε], R ∈ [Q,Q+ε]. (3.34)

For any a∈ (P,P+ε], set

Ω(a)= B(0,P)∪{x ∈RN : a≤ |x|<Q+ε}. (3.35)

Clearly Ω(a) is a bounded measurable subset of RN and

Ω(a)∗ = B(0,P)∪{x ∈RN : P ≤ |x|< b(a)}, (3.36)

where b(a)N = PN + (Q+ ε)N −aN. By choosing a close to P , it follows that b(a) ∈
[Q,Q+ε] and we consider ω=Ω(a) for such a choice of a. Then

∫
Ω(a)∗

h
(|x|)dx−∫

Ω(a)
h
(|x|)dx

=
∫
P≤|x|<b(a)

h
(|x|)dx−∫

a≤|x|<Q+ε
h
(|x|)dx

=
∫
P≤|x|<a

h
(|x|)dx−∫

b(a)≤|x|<Q+ε
h
(|x|)dx

≤ sVN
{
aN−PN}−tVN{(Q+ε)N−b(a)N}

= (s−t)VN
{
aN−PN}< 0,

(3.37)

as required.
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Observing that the proof that (i) implies (ii) makes no use of the right-continuity of h,

we obtain the following result.

Corollary 3.11. If the function h is nonincreasing on (0,∞), then Lemma 3.10(ii) is

satisfied.

4. Main results. We now come to our first result concerning inequality (1.1).

Proposition 4.1. Let H : (0,∞)×R2+ → R be a 2-Carathéodory function having the

following properties:

(i) H(r ,0, t)= 0 for all r > 0 and t ≥ 0,

(ii) H(r ,·,0) is nondecreasing on R+ for all r > 0,

(iii) H(r ,·,·) has the property (CZR) for all r > 0,

(iv) H(·,·,0) has the property (CZR-2),

(v) H has the property (CZR-3).

Then

0≤
∫
H
(|x|,u(x),v(x))dx ≤ ∫ H(|x|,u∗(x),v∗(x))dx (4.1)

for all u,v ∈ FN .

Before giving the proof of this result, we make some comments about the hypotheses.

Remark 4.2. IfH ∈ C3((0,∞)×R2+), properties (ii)–(v) are equivalent to the following

inequalities:

(ii) ∂2H(r ,·,0)≥ 0 for all r > 0,

(iii) ∂2∂3H(r ,·,·)≥ 0 for all r > 0,

(iv) ∂1∂2H(·,·,0)≤ 0,

(v) ∂1∂2∂3H ≤ 0.

Furthermore, using (ii) and (iii), we see that

∂2H(r ,·, t)≥ ∂2H(r ,·,0)≥ 0 ∀r > 0, t ≥ 0, (4.2)

and, by (iv) and (v), that

(vi)

∂1∂2H(·,·, t)≤ ∂1∂2H(·,·,0)≤ 0 ∀t ≥ 0. (4.3)

Using (i), we also have that

∂1H(·,0,·)= ∂3H(·,0,·)= ∂1∂3H(·,0,·)≡ 0. (4.4)

Now using (vi), (iii), and (v), respectively, we find that

∂1H ≤ 0, ∂3H ≥ 0, ∂1∂3H ≤ 0 on (0,∞)×R2
+, (4.5)

and H ≥ 0 since we have already noted that ∂2H ≥ 0.
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Thus, for smooth functions satisfying (i), the hypotheses (ii)–(v) of Proposition 4.1

are equivalent to

(A) ∂1H ≤ 0, ∂2H ≥ 0, and ∂3H ≥ 0,

(B) ∂1∂2H ≤ 0, ∂1∂3H ≤ 0, and ∂2∂3H ≥ 0,

(C) ∂1∂2∂3H ≤ 0.

Remark 4.3. As we showed at the beginning of the proof, the hypotheses of

Proposition 4.1 imply that H ≥ 0. Furthermore, the hypotheses of Proposition 4.1 also

imply that H has the following properties:

(ii)′ H(r ,·, t) is nondecreasing on R+ for all r > 0 and all t ≥ 0,

(iv)′ H(·,·, t) has the property (CZR-2) for all t ≥ 0,

and, in fact, all the other monotonicity properties analogous to the conditions (A), (B),

and (C) that we have formulated for smooth functions.

Proof. We show first that H ≥ 0. From (i) and (ii), it follows that H(r ,s,0) ≥ 0 for

all r > 0 and s ≥ 0. Then, using (iii), we find that, for all r > 0 and s,t ≥ 0,

0≤H(r ,s,t)−H(r ,s,0)−H(r ,0, t)+H(r ,0,0)=H(r ,s,t)−H(r ,s,0), (4.6)

so that H ≥ 0 on (0,∞)×R2+.

Consider now u∈ EN and v ∈ FN , where in the notation (2.5)–(2.7),

u=
k∑
i=0

aiχAi , u∗ =
k∑
i=0

aiχCi . (4.7)

Then, using (i) and (2.11),

∫
H
(|x|,u(x),v(x))dx = k∑

i=0

∫
H
(|x|,ai,v(x))χAi(x)dx

=
k∑
i=0

∫
Gi
(|x|,v(x))χSi(x)dx,

(4.8)

where Gi(|x|, t)=H(|x|,ai,t)−H(|x|,ai+1, t) with ak+1 = 0 and Si =∪ij=0Aj.
We claim that the functions Gi : (0,∞) × R2+ → R satisfy the hypotheses of

Theorem 3.9. In fact, by (ii), Gi(r ,0) ≥ 0 for all r > 0 and, by (iii), Gi(r ,·) is nonde-

creasing on R+, from which it follows that Gi ≥ 0. Furthermore, Gi has the property

(CZR-2) by hypothesis (v). Finally, we note that Gi(·,0) is nonincreasing on (0,∞) by the

hypothesis (iv), so Corollary 3.11 ensures that Theorem 3.9(iii) is satisfied for ω = Si.
Hence

0≤
∫
Si
Gi
(|x|,v(x))dx ≤ ∫

Bi
Gi
(|x|,(v|Si)∗(x))dx (4.9)

since (Si)∗ = Bi with Bi = B(0,ri) in the notation (2.6). Recalling (2.8), (̃v|Si)= vχSi ≤ v
on RN and so [(̃v|Si)]∗ ≤ v∗ by [6, Proposition 2.4(iv)]. Hence, by (2.10),(v|Si)∗ ≤ v∗ on
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Bi and, since we have already observed that Gi(r ,·) is nondecreasing on R+, it follows

that ∫
Bi
Gi
(|x|,(v|Si)∗(x))dx ≤

∫
Gi
(|x|,v∗(x))χBi(x)dx. (4.10)

On the other hand, again using (i) and (2.11),

∫
H
(|x|,u∗(x),v∗(x))dx = k∑

i=0

∫
H
(|x|,ai,v∗(x))χCi(x)dx

=
k∑
i=0

∫
Gi
(|x|,v∗(x))χBi(x)dx.

(4.11)

Hence, combining (4.8) to (4.11), we see that (1.1) is satisfied for all u∈ EN and v ∈ FN .

To extend the conclusion to all u ∈ FN , we recall that for any u ∈ FN , there is a

sequence {uk} ⊂ EN such that uk ≤uk+1 and u= limk→∞uk. By [6, Proposition 2.4], we

have that u∗k ≤u∗k+1 and u∗ = limk→∞u∗k . Since we have already shown that

0≤
∫
H
(|x|,uk(x),v(x))dx ≤

∫
H
(|x|,u∗k (x),v∗(x))dx (4.12)

for all v ∈ FN , the monotone convergence theorem yields the conclusion for all u,v ∈
FN , since H(r ,·, t) is nondecreasing on R+ for all r > 0 and all t ≥ 0. Indeed, by (iii), for

a≥ b ≥ 0 and t ≥ 0,

H(r ,a,t)−H(r ,b,t)−H(r ,a,0)+H(r ,b,0)≥ 0 (4.13)

whereas H(r ,a,0)−H(r ,b,0)≥ 0 by (ii).

As we have already observed, the hypotheses of Proposition 4.1 impose several mono-

tonicity conditions on the function H. As we now show, these hypotheses can be re-

laxed, although in some cases it may be necessary to restrict the class of functions for

which (1.1) holds to achieve this. In this way we obtain conditions on H which seem

very natural for dealing with (1.1) in the calculus of variations.

Theorem 4.4. Let H : (0,∞)×R2+ → R be a 2-Carathéodory function having the fol-

lowing properties.

(i) H(|x|,0,0) is integrable on RN .

(ii) H(·,0,·) has the property (CZR-2).

(iii) H(r ,·,·) has the property (CZR) for all r > 0.

(iv) H(·,·,0) has the property (CZR-2).

(v) H has the property (CZR-3).

(vi) There are continuous functions g1, g2 on R+ such that

g1(s)= lim
r→∞H(r ,s,0), g2(s)= lim

r→∞H(r ,0,s), (4.14)

for all s ≥ 0.
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Then

−∞<
∫
H
(|x|,u(x),v(x))dx ≤ ∫ H(|x|,u∗(x),v∗(x))dx (4.15)

for all u,v ∈ FN such that [g1]− ◦u and [g2]− ◦v are integrable on RN.

Remark 4.5. Note that (i) and (vi) imply that g1(0)= g2(0)= 0.

Remark 4.6. We do not claim that the integrals in the conclusion of Theorem 4.4

are finite, but they are well defined in the following sense. By (ii),

H(R,0, t)−H(R,0,0)−H(r ,0, t)+H(r ,0,0)≤ 0 (4.16)

for all t ≥ 0 and R,r ∈ (0,∞) with R > r. Letting R→∞, we find that

g2(t)−g2(0)−H(r ,0, t)+H(r ,0,0)≤ 0 (4.17)

and hence that

0≤H−(r ,0, t)≤H+(r ,0, t)−g2(t)−H(r ,0,0) (4.18)

for all t ≥ 0 and r ∈ (0,∞). Since H+(r ,0, t) = 0 whenever H−(r ,0, t) > 0, this implies

that

0≤H−(r ,0, t)≤
[
g2
]
−(t)+H−(r ,0,0) (4.19)

for all t ≥ 0 and r ∈ (0,∞). Therefore

0≤
∫
H−
(|x|,0,v(x))dx ≤ ∫ [g2

]
−
(
v(x)

)+H−(|x|,0,0)dx <∞ (4.20)

for all v ∈ FN such that [g2]− ◦v is integrable over RN . Similarly,

0≤
∫
H−
(|x|,u(x),0)dx <∞ (4.21)

for all u∈ FN such that [g1]− ◦u is integrable over RN .

But, using (iii), we have that

H(r ,s,t)−H(r ,s,0)−H(r ,0, t)+H(r ,0,0)≥ 0 (4.22)

for all s,t ≥ 0 and r ∈ (0,∞). Hence

0≤H−(r ,s,t)≤H+(r ,s,t)−H(r ,s,0)−H(r ,0, t)+H(r ,0,0)
≤H+(r ,s,t)+H−(r ,s,0)+H−(r ,0, t)+H+(r ,0,0) (4.23)

and so

0≤H−(r ,s,t)≤H−(r ,s,0)+H−(r ,0, t)+H+(r ,0,0) (4.24)
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for all s,t ≥ 0 and r ∈ (0,∞) since H+(r ,s,t)= 0 whenever H−(r ,s,t) > 0. Thus

0≤
∫
H−
(|x|,u(x),v(x))dx

≤
∫
H−
(|x|,u(x),0)+H−(|x|,0,v(x))+H+(|x|,0,0)dx

<∞

(4.25)

for all u,v ∈ FN such that [g1]−◦u and [g2]−◦v are integrable on RN. This means that∫
H(|x|,u(x),v(x))dx is defined unambiguously by

∫
H+
(|x|,u(x),v(x))dx−∫ H−(|x|,u(x),v(x))dx (4.26)

and a similar interpretation applies to
∫
H(|x|,u∗(x),v∗(x))dx.

Proof. In Remark 4.6, we have already shown that both integrals are well defined

and that
∫
H(|x|,u(x),v(x))dx > −∞ and

∫
H(|x|,u∗(x),v∗(x))dx > −∞. Thus if∫

H(|x|,u∗(x),v∗(x))dx = ∞, the conclusion holds and we may assume henceforth

that H(|·|,u∗(·),v∗(·)) is integrable.

Consider the function Φ defined by

Φ(r ,s,t)=H(r ,s,t)−H(r ,s,0)−H(r ,0, t)+H(r ,0,0). (4.27)

One easily verifies that Φ satisfies the hypotheses of Proposition 4.1. Hence we have

that

0≤
∫
H
(|x|,u(x),v(x))−H(|x|,u(x),0)−H(|x|,0,v(x))+H(|x|,0,0)dx

≤
∫
H
(|x|,u∗(x),v∗(x))−H(|x|,u∗(x),0)−H(|x|,0,v∗(x))+H(|x|,0,0)dx

∀u,v ∈ FN.
(4.28)

Next we observe that the function g(r ,s)=H(r ,s,0) satisfies the hypotheses of Theo-

rem 3.5 with g = g1. Note that (i) implies that g1(0)= 0. Thus we obtain

−∞<
∫
H
(|x|,u(x),0)dx ≤ ∫ H(|x|,u∗(x),0)dx (4.29)

for all u∈ FN such that [g1]− ◦u is integrable on RN. A similar argument shows that

−∞<
∫
H
(|x|,0,v(x))dx ≤ ∫ H(|x|,0,v∗(x))dx (4.30)

for all v ∈ FN such that [g2]− ◦v is integrable on RN .
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Setting p(x) = H(|x|,u∗(x),v∗(x)) + H(|x|,0,0) and q(x) = H(|x|,u∗(x),0) +
H(|x|,0,v∗(x)), it follows from Lemma 3.1, (4.29), and (4.30) that

∫
q−(x)dx <∞. Since

p is integrable, Lemma 3.1 and (4.28) imply that

0≥
∫
(q−p)(x)dx =

∫
q(x)dx+

∫
(−p)(x)dx =

∫
q(x)dx−

∫
p(x)dx (4.31)

from which it follows that
∫
q(x)dx <∞.

Setting Q(x) = H(|x|,u(x),0)+H(|x|,0,v(x)), it follows from (4.29), (4.30), and

Lemma 3.1 that
∫
Q−(x)dx <∞ and∫
Q(x)dx =

∫
H
(|x|,u(x),0)dx+∫ H(|x|,0,v(x))dx. (4.32)

Similarly, ∫
q(x)dx =

∫
H
(|x|,u∗(x),0)dx+∫ H(|x|,0,v∗(x))dx (4.33)

and (4.29) and (4.30) now show that
∫
Q(x)dx ≤ ∫ q(x)dx. Thus Q is integrable and,

setting P(x)=H(|x|,u(x),v(x))+H(|x|,0,0), Lemma 3.1 yields

0≤
∫
(P−Q)(x)dx =

∫
P(x)dx+

∫
(−Q)(x)dx =

∫
P(x)dx−

∫
Q(x)dx. (4.34)

Hence ∫
P(x)dx =

∫
(P−Q)(x)dx+

∫
Q(x)dx

≤
∫
(P−Q)(x)dx+

∫
q(x)dx

≤
∫
(p−q)(x)dx+

∫
q(x)dx, (by (4.28))

=
∫
p(x)dx (by (4.31)).

(4.35)

But Lemma 3.1 shows that∫
P(x)dx =

∫
H
(|x|,u(x),v(x))dx+∫ H(|x|,0,0)dx,∫

p(x)dx =
∫
H
(|x|,u∗(x),v∗(x))dx+∫ H(|x|,0,0)dx, (4.36)

completing the proof.

We close this section with the observation that Theorem 4.4 already contains a gen-

eralization of the result by Crowe et al. [2] concerning inequality (1.2), although further

extensions will be obtained in the next section.

Corollary 4.7. Let F :R2+ →R be a function such that

(a) F(s,·) and F(·,s) are continuous on R+ for all s ≥ 0,

(b) F(0,0)= 0,

(c) F has the property (CZR).
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Then

−∞<
∫
F
(
u(x),v(x)

)
dx ≤

∫
F
(
u∗(x),v∗(x)

)
dx (4.37)

for all u,v ∈ FN such that F−(u(·),0) and F−(0,v(·)) are integrable on RN .

Remark 4.8. In [2, Theorem 3], inequality (1.2) is proved under similar hypotheses

except that (a) is replaced by the stronger assumption that F ∈ C(R2+). We point out that

it is claimed in [2] that (1.2) holds for all u,v ∈ FN under these assumptions. However,

as the following example shows, this clearly requires some qualification and it seems

that the integrability of F(u(·),0) and F(0,v(·)) is tacitly assumed in [2, page 437].

Example 4.9. Setting F(s,t)= s−t, we have that F ∈ C(R2+) and the hypotheses (b)

and (c) of Corollary 4.7 are satisfied. Now consider the functions

u(x)=



1
1+x for x ≥ 0,v(x)=u(−x),
0 for x < 0,v(x)=u(−x).

(4.38)

Clearly, u and v ∈ F1 with u∗(x) = v∗(x) = 1/(1+2|x|) for x ∈ R. Thus F(u∗(x),
v∗(x)) = 0 for all x, but

∫
F−(u(x),v(x))dx =

∫
F+(u(x),v(x))dx =∞ so there is no

sense in which
∫
F(u(x),v(x))dx can be interpreted. Observe that F−(u(x),0)= 0 and

F−(0,v(x)) = v(x). Replacing F(s,t) = s− t by F(s,t) = t− s, we see that, if either of

the integrals
∫
F−(u(x),0)dx or

∫
F−(0,v(x))dx is infinite, inequality (1.2) may fail to

hold.

5. Borel functions. In this section, we establish inequality (1.2) for a class of func-

tions F which are not even separately continuous.

Definition 5.1. A function F :R2+ →R is called an H-Borel function when either

(1) F(s,·) :R+ →R is Borel measurable for all s ≥ 0,

(2) F(·,s) :R+ →R is continuous on R+ for all s ≥ 0,

or

(3) F(s,·) :R+ →R is continuous on R+ for all s ≥ 0,

(4) F(·,s) :R+ →R is Borel measurable for all s ≥ 0.

Remark 5.2. Whenever F is an H-Borel function in what follows, we will assume

that properties (1) and (2) are satisfied, since in the case where (3) and (4) hold, we can

replace F by F̃(s,t)= F(t,s) and recover the former situation.

Remark 5.3. Suppose thatu,v ∈ FN and that F :R2+ →R is anH-Borel function. Then

F(u(·),v(·)) is Lebesgue measurable on RN. In fact, there is a sequence {um} ⊂ EN
such that limm→∞um(x) = u(x) for all x ∈ RN and consequently limm→∞F(um(x),
v(x))= F(u(x),v(x)). Hence it is enough to show that F(um(·),v(·)) is measurable.

But, in the notation (2.5),

um =
k∑
i=0

aiχAi (5.1)
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and so

F
(
um(x),v(x)

)= F(0,v(x))χZ(x)+ k∑
i=0

F
(
ai,v(x)

)
χAi(x), (5.2)

where Z = {x ∈ RN : um(x) = 0} = RN\∪ki=0Ai. Since F(ai,·) is Borel measurable and

v is Lebesgue measurable, [7, Theorem 19.B] (with footnote (2) on page 82) shows that

F(ai,v(·)) is Lebesgue measurable on RN and our assertion follows easily from this.

Theorem 5.4. Let F : R2+ → R be an H-Borel function which satisfies conditions (b)

and (c) of Corollary 4.7. Then the inequalities

−∞<
∫
F
(
u(x),v(x)

)
dx ≤

∫
F
(
u∗(x),v∗(x)

)
dx (5.3)

hold for all u,v ∈ FN such that F−(u(·),0) and F−(0,v(·)) are integrable on RN.

Remark 5.5. As in Theorem 4.4, these integrals may not be finite. However, using

(b) and (c), we find that, for all s,t ≥ 0,

F(s,t)−F(s,0)−F(0, t)≥ 0 (5.4)

and hence that

0≤ F−(s,t)≤ F−(s,0)+F−(0, t). (5.5)

Thus

0≤
∫
F−
(
u(x),v(x)

)
dx ≤

∫
F−
(
u(x),0

)+F−(0,v(x))dx <∞ (5.6)

for all u,v ∈ FN such that F(u(·),0) and F(0,v(·)) are integrable on RN. Similarly,∫
F−(u∗(x),v∗(x))dx <∞.
Remark 5.6. The following examples show that the conclusion of Theorem 5.4 can

fail if either of conditions (b) and (c) of Corollary 4.7 is not satisfied.

Example 5.7. Consider the function F : R2+ → R defined by F(s,t) = χ{0}(t). This is

an H-Borel function that satisfies condition (c) of Corollary 4.7 but not condition (b)

since F(0,0)= 1. Furthermore, F− ≡ 0. Let v :R→ [0,∞) be the function defined by

v(x)= e−xχ[0,∞)(x) ∀x ∈R. (5.7)

Clearly v ∈ F1 and µ({x ∈ R : v(x) = 0}) = ∞. However, v∗(x) = e−2|x| for all x ∈ R
and µ({x ∈R : v∗(x)= 0})= 0. Thus, for any u∈ F1,∫

F
(
u(x),v(x)

)
dx = µ({x ∈R : v(x)= 0

})=∞ (5.8)

whereas ∫
F
(
u∗(x),v∗(x)

)
dx = µ({x ∈R : v∗(x)= 0

})= 0. (5.9)
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The following example was inspired by a similar one given by Draghici [3] in the context

of polarization inequalities.

Example 5.8. Consider anH-Borel function F :R2+ →R such that F(0,0)= 0 and sup-

pose that condition (c) of Corollary 4.7 is not satisfied. Then there exist four numbers

b ≥ a≥ 0 and d≥ c ≥ 0 such that

F(b,d)−F(b,c)−F(a,d)+F(a,c) < 0. (5.10)

Let A and B be measurable subsets on RN with

A∩B =∅, 0< µ(A)= µ(B)=M <∞. (5.11)

Using the notation of (2.5), we now define two simple functionsu and v ∈ EN as follows:

u= a0χA0+a1χA1 , v = b0χB0+b1χB1 , (5.12)

where a0 = b, a1 = a, b0 = d, b1 = c, A0 = B1 =A, and A1 = B0 = B. By (2.7),

u∗ = a0χC0+a1χC1 , v∗ = b0χC0+b1χC1 , (5.13)

where µ(C0)= µ(C1)=M . Then, since F(0,0)= 0,

∫
F
(
u(x),v(x)

)
dx =

∫
A
F
(
u(x),v(x)

)
dx+

∫
B
F
(
u(x),v(x)

)
dx

= F(a0,b1
)
M+F(a1,b0

)
M

= {F(b,c)+F(a,d)}M,∫
F
(
u∗(x),v∗(x)

)
dx =

∫
C0

F
(
u(x),v(x)

)
dx+

∫
C1

F
(
u(x),v(x)

)
dx

= F(a0,b0
)
M+F(a1,b1

)
M

= {F(b,d)+F(a,c)}M

(5.14)

so that ∫
F
(
u∗(x),v∗(x)

)
dx−

∫
F
(
u(x),v(x)

)
dx

= {F(b,d)+F(a,c)−F(b,c)−F(a,d)}M < 0.
(5.15)

Proof. We set F̃(s,t) = F(s,t)−F(0, t)−F(s,0)+F(0,0) and begin by considering

u ∈ EN and v ∈ FN . Clearly, F̃(0, t) ≡ 0 and it follows from (c) that F̃ ≥ 0. Using the

notation (2.5)–(2.7),

∫
F̃
(
u(x),v(x)

)
dx =

k∑
i=0

∫
F̃
(
ai,v(x)

)
χAi(x)dx

=
k∑
i=0

∫
Gi
(
v(x)

)
χSi(x)dx,

(5.16)
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where we have used (2.11) with

Gi(t)= F̃
(
ai,t

)− F̃(ai+1, t
)= F(ai,t)−F(ai,0)−F(ai+1, t

)+F(ai+1,0
)

(5.17)

and ak+1 = 0.

Clearly Gi :R+ →R is a Borel measurable function with Gi(0)= 0 and it follows from

(CZR) that Gi is nondecreasing on R+. Thus [Gi]− ≡ 0, so by [6, Theorem 6.2],

0≤
∫
Si
Gi
(
v|Si(x)

)
dx =

∫
(Si)∗

Gi
((
v|Si

)∗(x))dx. (5.18)

But (v|Si)∗ = (vχSi)∗ on (Si)∗ by (2.9) and, by [6, Proposition 2.4(iv)], (vχSi)
∗ ≤ v∗ on

RN. The monotonicity of Gi implies that

Gi
((
v|Si

)∗)≤Gi(v∗) on
(
Si
)∗ = Bi. (5.19)

This shows that

0≤
∫
F̃
(
u(x),v(x)

)
dx ≤

k∑
i=0

∫
Gi
(
v∗(x)

)
χBi(x)dx. (5.20)

On the other hand, still using the notation (2.5)–(2.7) and then (2.11),

∫
F̃
(
u∗(x),v∗(x)

)
dx =

k∑
i=0

∫
F̃
(
ai,v∗(x)

)
χCi(x)dx

=
k∑
i=0

∫
Gi
(
v∗(x)

)
χBi(x)dx.

(5.21)

Thus

0≤
∫
F̃
(
u(x),v(x)

)
dx ≤

∫
F̃
(
u∗(x),v∗(x)

)
dx, (5.22)

for all u ∈ EN and v ∈ FN. It follows from the property (CZR) of F that F̃(·, t) is non-

decreasing on R+ for all t ≥ 0. As in the proof of Proposition 4.1, this means that [6,

Proposition 2.4(v)] and the monotone convergence theorem can be used to extend in-

equality (5.22) to all u,v ∈ FN. Thus

0≤
∫
F
(
u(x),v(x)

)−F(0,v(x))−F(u(x),0)dx
≤
∫
F
(
u∗(x),v∗(x)

)−F(0,v∗(x))−F(u∗(x),0)dx (5.23)
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since F(0,0)= 0. Using [6, Proposition 4.3(ii)], we find that

0≤
∫
F−
(
0,v(x)

)
dx =

∫
F−
(
0,v∗(x)

)
dx <∞, (5.24)

0≤
∫
F−
(
u(x),0

)
dx =

∫
F−
(
u∗(x),0

)
dx <∞ (5.25)

for u,v ∈ FN such that F−(u(·),0) and F−(0,v(·)) are integrable on RN.
By Remark 5.5 preceding the proof, we know that for all such functions u and v ,

∫
F−
(
u(x),v(x)

)
dx <∞,

∫
F−
(
u∗(x),v∗(x)

)
dx <∞. (5.26)

Thus
∫
F(u(x),v(x))dx >−∞ and, if

∫
F+(u∗(x),v∗(x))dx =∞, the conclusion holds

without further discussion. Hence we assume from now on that
∫
F+(u∗(x),v∗(x))dx

<∞.

Setting p(x) = F(u∗(x),v∗(x)) and q(x) = F(0,v∗(x))+ F(u∗(x),0), it follows

from Lemma 3.1 that

∫
(q−p)(x)dx =

∫
q(x)dx+

∫
(−p)(x)dx =

∫
q(x)dx−

∫
p(x)dx, (5.27)

and by (5.23),

∫
(q−p)(x)dx ≤ 0. (5.28)

Hence we see that
∫
q(x)dx ≤ ∫ p(x)dx <∞ and so q is integrable.

Setting Q(x) = F(0,v(x))+F(u(x),0), inequalities (5.24) and (5.25), together with

Lemma 3.1, show that
∫
Q−(x)dx <∞ and

∫
Q(x)dx =

∫
F
(
0,v(x)

)
dx+

∫
F
(
u(x),0

)
dx. (5.29)

Similarly,

∫
q(x)dx =

∫
F
(
0,v∗(x)

)
dx+

∫
F
(
u∗(x),0

)
dx, (5.30)

so that (5.23) yields

∫
Q(x)dx ≤

∫
q(x)dx. (5.31)

Therefore Q is integrable and Lemma 3.1 now shows that

∫
Q(x)−F(u(x),v(x))dx = ∫ Q(x)dx+∫ (−F)(u(x),v(x))dx

=
∫
Q(x)dx−

∫
F
(
u(x),v(x)

)
dx.

(5.32)
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Finally,

∫
F
(
u(x),v(x)

)
dx =

∫
F
(
u(x),v(x)

)−Q(x)dx+∫ Q(x)dx
≤
∫
F
(
u∗(x),v∗(x)

)−q(x)dx+∫ Q(x)dx (by (5.23))

≤
∫
F
(
u∗(x),v∗(x)

)−q(x)dx+∫ q(x)dx (by (5.31))

≤
∫
F
(
u∗(x),v∗(x)

)
(by (5.27)),

(5.33)

and the proof is complete.

Example 5.9. Let h : R+ → R be a continuous function and let k : R+ → R be a

monotone function. Then F(s,t)= h(s)k(t) is an H-Borel function. If h and k are both

nondecreasing on R+, it follows that F has the property (CZR). Furthermore, F(0,0)= 0

provided that h(0)k(0) = 0. This gives a very simple type of function satisfying the

hypotheses of Theorem 5.4 and these functions F are continuous on R2+ only when k is

continuous on R+ or h≡ 0. Note that examples of this kind do not have the continuity

property with respect to rectangles that is discussed in the remarks about extensions

of (1.2) in [2, Section 6], unless k is continuous on R+ or h is constant. Since, if R is

the rectangle in R2+ with corners at (a,c), (b,c), (b,d), and (a,d), then F(R)= {h(b)−
h(a)}{k(d)−k(c)} in the notation of [2].

6. Variants and extensions. First of all we observe that in Definitions 3.2, 3.3, and

5.1, the assumption of continuity can be replaced by left-continuity without changing

the conclusions of our results since our method uses the approximation of a function

in FN from below.

Our results concerning inequalities (1.1) and (1.2) are presented in the case of func-

tions defined on all RN. However, it is easy to deduce analogous results for functions

defined on subsets of RN by the procedure which we used in [6, Section 6], so we do

not formulate such results here.

Proposition 4.1 requires rather restrictive monotonicity properties of functionH but

yields inequality (1.1) for all u,v ∈ FN . Our proofs of Theorems 4.4 and 5.4 begin by

introducing auxiliary functions Φ and F̃ which have additional monotonicity properties

not enjoyed by H and F. To obtain conclusions concerning H and F from those involv-

ing Φ and F̃ , we impose some integrability assumptions on the functions u and v. A

variant of this device is to assume that H (or F ) is monotone with respect to one of

the variables and to modify its dependence on the other variable. This leads to a result

requiring monotonicity of H (or F ) with respect to u and some additional assumption

of integrability concerning v . Here is one example of what we mean.

Theorem 6.1. Let F : R2+ → R be an H-Borel function which satisfies conditions (b)

and (c) of Corollary 4.7 and also

(d) F(·, t) is nondecreasing on R+ for all t ≥ 0.
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Then the inequality

−∞<
∫
F
(
u(x),v(x)

)
dx ≤

∫
F
(
u∗(x),v∗(x)

)
dx (6.1)

holds for all u,v ∈ FN such that F−(0,v(·)) is integrable on RN .

Proof. Set F̃(s,t)= F(s,t)−F(0, t) and then follow the proof of Theorem 5.4.

Finally we mention that there are extensions of (1.1) to inequalities involving more

than two functions. Such results have been obtained in [1, 4].
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