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We introduce the hypersymmetric functions of 2× 2 nonautonomous matrices and show
that they are related, by simple expressions, to the Pochhammers (factorial polynomials) of
these matrices. The hypersymmetric functions are generalizations of the associated elemen-
tary symmetric functions, and for a specific class of 2×2 matrices, having a high degree of
symmetry, they reduce to these latter functions. This class of matrices includes rotations,
Lorentz boosts, and discrete time generators for the harmonic oscillators. The hypersym-
metric functions are defined over four sets of independent indeterminates using a triplet
of interrelated binary partitions. We work out the algebra of this triplet of partitions and
then make use of the results in order to simplify the expressions for the hypersymmetric
functions for a special class of matrices. In addition to their obvious applications in matrix
theory, in coupled difference equations, and in the theory of symmetric functions, the re-
sults obtained here also have useful applications in problems involving successive rotations,
successive Lorentz transformations, discrete harmonic oscillators, and linear two-state sys-
tems.
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1. Introduction. In a previous article [4], we introduced the associated elementary

symmetric functions Unm(xj,yj ; j ∈Nn), and showed that, combined with the ordinary

elementary symmetric functions Tnm(xj ; j ∈Nn), they provide the native mathematical

language of trigonometry, and more generally polygonometry. In this paper, we in-

troduce the hypersymmetric functions Wn
m(αj,βj,γj,ηj ; j ∈Nn) ≡Wn

m(ω(j); j ∈Nn),
where ω(j) is a 2×2 nonautonomous matrix whose elements are {αj,βj,γj,ηj}, and

show that they are related by simple expressions to the Pochhammers (factorial poly-

nomials) of the matrix ω(j). For a specific class of matrices having a high degree of

symmetry, the hypersymmetric functions reduce to the associated elementary symmet-

ric function. This class of matrices includes rotations, Lorentz boosts, and discrete time

generators for the harmonic oscillator.

The hypersymmetric functions are defined over four sets of independent indeter-

minates using the binary partition �, of m into n parts, where � = {�1,�2, . . . ,�n} and

�i ∈ {0,1}, as well as its associated dual partitions h and h̄. The algebra of the resulting

triplet of interrelated binary partitions �, h, and h̄ is worked out in Appendix B, and

the results are used to simplify the expressions for the hypersymmetric functions for a

special class of matrices.

The results obtained here have bearing on matrix theory, coupled difference equa-

tions [3, 5, 12], and symmetric functions [16, 18]. They also have useful applications in
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problems involving successive rotations, successive Lorentz transformations [2], dis-

crete harmonic oscillators [6], and linear two-state systems. They are based on the

analytic solution for two coupled first-order difference equations with variable coeffi-

cients [3, 5], which, in turn, is based on the discrete path approach to linear recursion

relations [1] (see also [7, 9, 10]).

In Section 2, we introduce the triplet of binary associated partitions underlying the

definition of the hypersymmetric functions. In Section 3, we introduce the hypersym-

metric functions. In Section 4, we derive an expression for the Pochhammers of 2×2

nonautonomous matrices in terms of the hypersymmetric functions. In Section 5, we

apply the above expression to a class of matrices with a high degree of symmetry.

Appendix A deals with integer decomposition. Appendix B gives proofs of the main re-

sults on the interrelated triplet of partitions. Appendix C sets out the notation, and lists

the needed identities, for the symmetric functions. Appendix D sets out the notation

for Pochhammers and for the Pauli matrices.

2. Associated ordered partitions

2.1. The general case. Let Nq = {1,2, . . . ,q} denote, as usual, the set of the first q
positive integers, with N0 =∅, and let λ(n,m,q) denote an ordered partition ofm into

n parts belonging to the set {0,Nq}. That is

λ(n,m,q)= (λ1,λ2, . . . ,λn
)
, m=

n∑
i=1

λi, λi ∈ {0,1,2, . . . ,q}. (2.1)

Corresponding to every ordered partition λ(n,m,q), we introduce q + 1 associated

partitions h(λ,n,q,s) defined by

h(λ,n,q,s)= (h1,h2, . . . ,hn
)
, hj =


s+ j∑

i=1

λi


mod(q+1), s = 0,1,2, . . . ,q. (2.2)

The ordered partition λ(n,m,q), combined with its q+1 associated ordered partitions

h(λ,n,q,s), constitute a q+2 multiplet of interrelated ordered partitions.

2.2. The case q = 1: the triplet of partitions. In the special case q = 1, we use the

simplified notation � ≡ λ(n,m,1), h≡ h(�,n,1,0), and h̄≡ h(�,n,1,1), so that

� = (�1,�2, . . . ,�n
)
,

n∑
i=1

�i =m, �i ∈ {0,1}, (2.3)

h= (h1,h2, . . . ,hn
)
, hj =


 j∑
i=1

�i


mod2, hi ∈ {0,1}, (2.4)

h̄= (h̄1, h̄2, . . . , h̄n
)
, h̄j =


1+

j∑
i=1

�i


mod2, h̄i ∈ {0,1}. (2.5)
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It is easy to see that the two associated partitions h and h̄ are dual to each other,

and that their components obey the relations

hih̄i = 0, hi+ h̄i = 1. (2.6)

Hence, they are also orthogonal,

h• h̄=
n∑
i=1

hih̄i = 0 (2.7)

and, making use of identity (B.2) of Appendix B, the sum of the squares of their norms

is given by

h•h+ h̄• h̄=
n∑
i=1

(
hi+ h̄i

)=n. (2.8)

Furthermore, we have the following two important identities:

�•h=
n∑
i=1

�ihi =
⌊
m+1

2

⌋
,

�• h̄=
n∑
i=1

�ih̄i =
⌊
m
2

⌋
.

(2.9)

The proofs of identities (2.9) are given in Appendix B, and they make use of the theorem

on integer decomposition derived in Appendix A.

3. Hypersymmetric functions. The hypersymmetric functions Wn
m(αj,βj,γj,δj ; j ∈

Nn) and W̄n
m(αj,βj,γj,δj ; j ∈ Nn) are defined over four sets of independent inde-

terminates �n = {α1,α2, . . . ,αn}, �n = {β1,β2, . . . ,βn}, �n = {γ1,γ2, . . . ,γn}, and �n =
{η1,η2, . . . ,ηn}, by using the triplet of ordered partitions �, h, and h̄, according to

Wn
m
(
αj,βj,γj,ηj ; j ∈Nn

)= ∑
�1+�2+···+�n=m

�ν∈{0,1}

n∏
i=1

α(1−�i)(1−hi)i β�i(1−hi)i γ�ihii η(1−�i)hii ,

W̄n
m
(
αj,βj,γj,ηj ; j ∈Nn

)= ∑
�1+�2+···+�n=m

�ν∈{0,1}

n∏
i=1

α(1−�i)(1−h̄i)i β�i(1−h̄i)i γ�ih̄ii η(1−�i)h̄ii ,

(3.1)

where h= {h1,h2, . . . ,hn} and h̄= {h̄1, h̄2, . . . , h̄n} are defined by (2.4) and (2.5), respec-

tively. We will also make use of the more compact notation

Wn
m
(
αj,βj,γj,ηj ; j ∈Nn

)≡Wn
m
(
ω(j); j ∈Nn

)
,

W̄n
m
(
αj,βj,γj,ηj ; j ∈Nn

)≡ W̄n
m
(
ω(j); j ∈Nn

)
,

(3.2)

where the matrix ω(j) is given by

ω(j)=
(
αj βj
γj ηj

)
. (3.3)
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4. Matrix Pochhammers

4.1. Pochhammers in terms of the evolution matrix. In [5], the Pochhammers (fac-

torial polynomials) of a 2×2 nonautonomous matrix M(n) were obtained in terms of

the evolution matrix S(n,n0) according to

[
M(n)

](n−n0) ≡M(n)M(n−1)···M(n0+1
)= S(n,n0

)
, (4.1)

where the elements of the evolution matrix S(n,n0) are given in terms of the structure

functions Bn0
j (n,m) by [5]

Sij
(
n,n0

)= δij n−n0∑
m=0
m even

Bn0
j
(
n−n0,m

)+(1−δij) n−n0∑
m=0
m odd

Bn0
j
(
n−n0,m

)
(4.2)

and the structure functions Bn0
j (n,m) are defined by

Bn0
j
(
n,m

)= ∑
�1+···+�n=m
�ν∈{0,1}

n∏
p=1

F�p


n0+p,


j−1+

p∑
s=1

�s


mod2


 (4.3)

with the transmission coefficients F�(p,h) given by

F�(p,h)=
[
Mh+1 h+1(p)

]1−�[Mh+1 2−h(p)
]�, � = 0,1, h= 0,1. (4.4)

4.2. Pochhammers in terms of the hypersymmetric functions. It is not difficult to

show that the transmission coefficients (4.4) can alternatively be rewritten as

F�(p,h)=
[
M11(p)

](1−�)(1−h)[M12(p)
]�(1−h)[M21(p)

]�h[M22(p)
](1−�)h,

� = 0,1, h= 0,1.
(4.5)

Combining identities (4.3) and (4.5) for the structure functions Bn0
j (n,m), comparing

with definitions (3.1) for the hypersymmetric functions Wn
m and W̄n

m, and making use of

the notation introduced in (3.2), we obtain

Bn0
1 (n,m)=Wn

m
(
M
(
n0+p

)
; p ∈Nn

)
,

Bn0
2 (n,m)= W̄n

m
(
M
(
n0+p

)
; p ∈Nn

)
.

(4.6)
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Substituting from identities (4.6) into identity (4.2), we obtain the elements of the evo-

lution matrix in terms of the hypersymmetric functions as

S11
(
n,n0

)= n−n0∑
m=0
m even

Wn−n0
m

(
M
(
n0+p

)
; p ∈Nn−n0

)
, (4.7)

S22
(
n,n0

)= n−n0∑
m=0
m even

W̄n−n0
m

(
M
(
n0+p

)
; p ∈Nn−n0

)
, (4.8)

S12
(
n,n0

)= n−n0∑
m=0
m odd

W̄n−n0
m

(
M
(
n0+p

)
; p ∈Nn−n0

)
, (4.9)

S21
(
n,n0

)= n−n0∑
m=0
m odd

Wn−n0
m

(
M
(
n0+p

)
; p ∈Nn−n0

)
, (4.10)

and due to identity (4.1), we finally obtain

[
M(n)

](n−n0)

≡M(n)M(n−1)···M(n0+1
)

=
n−n0∑
m=0
m even

(
Wn−n0
m

(
M
(
n0+p

)
; p ∈Nn−n0

)
0

0 W̄n−n0
m

(
M
(
n0+p

)
; p ∈Nn−n0

)
)

+
n−n0∑
m=0
m odd

(
0 W̄n−n0

m
(
M
(
n0+p

)
; p ∈Nn−n0

)
Wn−n0
m

(
M
(
n0+p

)
; p ∈Nn−n0

)
0

)
.

(4.11)

4.3. Closure relations. The closure relations for the hypersymmetric functions can

be obtained via identities (4.7) through (4.10), by setting n0 = 0 leading to

2∑
i=1

[(
αn βn
γn ηn

)](n)
i1
=

n∑
m=0

Wn
m
(
αj,βj,γj,ηj ; j ∈Nn

)
,

2∑
i=1

[(
αn βn
γn ηn

)](n)
i2
=

n∑
m=0

W̄n
m
(
αj,βj,γj,ηj ; j ∈Nn

)
,

(4.12)

or alternatively

2∑
i=1

2∑
j=1

[(
αn βn
γn ηn

)](n)
ij
=

n∑
m=0

{
Wn
m
(
αk,βk,γk,ηk; k∈Nn

)
+W̄n

m
(
αk,βk,γk,ηk; k∈Nn

)
}
. (4.13)
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5. Matrices with a high degree of symmetry. In the special case ηj = aαj and γj =
bβj , the matrix ω(j) reduces to

ω̃(j;a,b)=
(
αj βj
bβj aαj

)
(5.1)

and the corresponding hypersymmetric functions reduce to

Wn
m
(
αj,βj,bβj,aαj ; j ∈Nn

)= ∑
�1+�2+···+�n=m

�ν∈{0,1}

a
∑n
i=1(1−�i)hib

∑n
i=1 �ihi

n∏
i=1

α(1−�i)i β�ii ,

W̄n
m
(
αj,βj,bβj,aαj ; j ∈Nn

)= ∑
�1+�2+···+�n=m

�ν∈{0,1}

a
∑n
i=1 (1−�i)h̄ib

∑n
i=1 �ih̄i

n∏
i=1

α(1−�i)i β�ii .

(5.2)

Making use of identities (2.8) and (2.9), the above identities (5.2) can be rewritten as

Wn
m
(
αj,βj,bβj,aαj ; j ∈Nn

)= (b
a

)�(m+1)/2� ∑
�1+�2+···+�n=m

�ν∈{0,1}

ah•h
n∏
i=1

α(1−�i)i β�ii ,

W̄n
m
(
αj,βj,bβj,aαj ; j ∈Nn

)= (b
a

)�m/2� ∑
�1+�2+···+�n=m

�ν∈{0,1}

ah̄•h̄
n∏
i=1

α(1−�i)i β�ii .

(5.3)

5.1. Pochhammers in terms of the associated elementary symmetric functions

5.1.1. The case a= 1. In the case a= 1, the matrix ω̃(j;a,b) further reduces to

ω̃(j;1,b)=
(
αj βj
bβj αj

)
(5.4)

and the hypersymmetric functions Wn
m and W̄n

m, as given by identities (5.3), reduce to

Wn
m
(
αj,βj,bβj,αj ; j ∈Nn

)= b�(m+1)/2� ∑
�1+�2+···+�n=m

�ν∈{0,1}

n∏
i=1

α(1−�i)i β�ii ,

W̄n
m
(
αj,βj,bβj,αj ; j ∈Nn

)= b�m/2� ∑
�1+�2+···+�n=m

�ν∈{0,1}

n∏
i=1

α(1−�i)i β�ii .

(5.5)

Due to definition (C.4) for the associated elementary symmetric functions Unm (see

Appendix C), the above identities (5.5) can be rewritten as

Wn
m
(
αj,βj,bβj,αj ; j ∈Nn

)= b�(m+1)/2�Unm
(
βj,αj ; j ∈Nn

)
,

W̄n
m
(
αj,βj,bβj,αj ; j ∈Nn

)= b�m/2�Unm(βj,αj ; j ∈Nn). (5.6)
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Consequently, identity (4.11) reduces to

[(
αn βn
bβn αn

)](n−n0)

=
n−n0∑
m=0
m even

(
b�(m+1)/2� 0

0 b�m/2�

)
Un−n0
m

(
βn0+j ,αn0+j ; j ∈Nn−n0

)

+
n−n0∑
m=0
m odd

(
0 b�m/2�

b�(m+1)/2� 0

)
Un−n0
m

(
βn0+j ,αn0+j ; j ∈Nn−n0

)
(5.7)

and can be rewritten as

[(
αn βn
bβn αn

)](n−n0)

= I
�(n−n0)/2�∑

k=0

bkUn−n0
2k

(
βn0+j,αn0+j ; j ∈Nn−n0

)

+(σ++bσ−) �(n−n0−1)/2�∑
k=0

bkUn−n0
2k+1

(
βn0+j,αn0+j ; j ∈Nn−n0

)
,

(5.8)

where I is the 2×2 identity matrix, σ+ and σ− are the standard linear combinations of

Pauli matrices as given by identities (D.2) and (D.3) of Appendix D.

5.1.2. The case a= b = 1. In the case a= b = 1, ω̃(j;a,b) takes the highly symmet-

ric form:

ω̃
(
j;1,1)=

(
αj βj
βj αj

)
, (5.9)

and the hypersymmetric functions Wn
m and W̄n

m become degenerate and both reduce to

the corresponding associated elementary symmetric functions Unm,

Wn
m
(
αj,βj,βj,αj ; j ∈Nn

)= W̄n
m
(
αj,βj,βj,αj ; j ∈Nn

)=Unm(βj,αj ; j ∈Nn), (5.10)

while identity (5.8) reduces to

[(
αn βn
βn αn

)](n−n0)

= I
�(n−n0)/2�∑

k=0

Un−n0
2k

(
βn0+j,αn0+j ; j ∈Nn−n0

)

+σ1

�(n−n0−1)/2�∑
k=0

Un−n0
2k+1

(
βn0+j ,αn0+j ; j ∈Nn−n0

)
,

(5.11)

where I is the 2×2 identity matrix, and σ1 is the first Pauli matrix as defined by identity

(D.2) of Appendix D, and where we have also made use of identity (D.4) of this appendix.

The class of matrices ω̃(j;1,1) includes the Lorentz boosts. By imposing the group

property on successive collinear Lorentz boosts, and making use of identity (5.11), we

recover the relativistic law of addition of multiple collinear velocities derived in [2].
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5.1.3. The case a = −b = 1. In the case a = −b = 1, the matrix ω̃(j;a,b) takes the

asymmetric form

ω̃(j;1,−1)=
(
αj βj
−βj αj

)
, (5.12)

and the hypersymmetric functions Wn
m and W̄n

m reduce, respectively, to

Wn
m
(
αj,βj,−βj,αj ; j ∈Nn

)= (−1)�(m+1)/2�Unm
(
βj,αj ; j ∈Nn

)
, (5.13)

W̄n
m
(
αj,βj,−βi,αj ; j ∈Nn

)= (−1)�m/2�Unm
(
βj,αj ; j ∈Nn

)
, (5.14)

while identity (5.8) reduces to

[(
αn βn
−βn αn

)](n−n0)

= I
�(n−n0)/2�∑

k=0

(−1)kUn−n0
2k

(
βn0+j,αn0+j ; j ∈Nn−n0

)

+iσ2

�(n−n0−1)/2�∑
k=0

(−1)kUn−n0
2k+1

(
βn0+j ,αn0+j ; j ∈Nn−n0

)
,

(5.15)

where I is the 2×2 identity matrix, and σ2 is the second Pauli matrix as defined by

identity (D.2) of Appendix D, and where we have made use of identity (D.4) of this

appendix.

5.1.4. Successive rotations. The class of matrices ω̃(j;1,−1) includes the rotation

matrix Rẑ(θk) by an angle θk about the ẑ axis. In the case of successive rotations about

the same axis, we have

[
Rẑ
(
θn
)](n) ≡ Rẑ(θn)Rẑ(θn−1

)···Rẑ(θ1
)= Rẑ


 n∑
k=1

θk


. (5.16)

Setting n0 = 0 in identity (5.15), and combining it with identity (5.16), we obtain

(
cos

(
θ1+θ2+···+θn

)
sin

(
θ1+θ2+···+θn

)
−sin

(
θ1+θ2+···+θn

)
cos

(
θ1+θ2+···+θn

)
)

=
[(

cosθk sinθk
−sinθk cosθk

)](n)

= I
�n/2�∑
k=0

(−1)kUn2k
(
sinθj,cosθj ; j ∈Nn

)

+iσ2

�(n−1)/2�∑
k=0

(−1)kUn2k+1

(
sinθj,cosθj ; j ∈Nn

)
,

(5.17)
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leading to the following identities for the trigonometric functions of multiple distinct

angles:

cos
(
θ1+θ2+···+θn

)= �n/2�∑
k=0

(−1)kUn2k
(
sinθj,cosθj ; j ∈Nn

)
,

sin
(
θ1+θ2+···+θn

)= �(n−1)/2�∑
k=0

(−1)kUn2k+1

(
sinθj,cosθj ; j ∈Nn

)
,

(5.18)

which are identities (D.10) and (C.10), respectively, of [4].

5.2. Pochhammers in terms of the elementary symmetric functions

5.2.1. The case a= 1 and αi = 1. In the case a= 1 and αi = 1, the matrix ω̃(j;a,b)
further reduces to

ω̃(j;1,b)
∣∣
αj=1 =

(
1 βj
bβj 1

)
, (5.19)

while Wn
m and W̄n

m, as given, respectively, by identities (5.6), reduce to

Wn
m
(
1,βj,bβj,1; j ∈Nn

)= b�(m+1)/2�Tnm
(
βj ; j ∈Nn

)
,

W̄n
m
(
1,βj,bβj,1; j ∈Nn

)= b�m/2�Tnm(βj ; j ∈Nn), (5.20)

where we have made use of definition (C.3), and identity (C.5), of Appendix C. Further-

more, and again due to identity (C.5) of Appendix C, identity (5.8) reduces to

[(
1 βn
bβn 1

)](n−n0)

= I
�(n−n0)/2�∑

k=0

bkTn−n0
2k

(
βn0+j ; j ∈Nn−n0

)

+(σ++bσ−) �(n−n0−1)/2�∑
k=0

bkTn−n0
2k+1

(
βn0+j ; j ∈Nn−n0

)
.

(5.21)

5.2.2. The simple harmonic oscillator. The formulation of Newton’s second law

of motion for the discretized one-dimensional harmonic oscillator, using the Euler

method, can be cast in the form of two coupled finite difference equations for the

position xn and the velocity vn (see [6, identity 27])(
xn
vn

)(
1 ∆tn

−ω2∆tn 1

)(
xn−1

vn−1,

)
, (5.22)

where ω = √k/m is the classical angular frequency, k being the spring constant, and

m the oscillating mass, and where we have allowed for the possibility of using variable

time intervals. The matrix

H
(
∆tn

)=
(

1 ∆tn
−ω2∆tn 1

)
(5.23)

in the above identity (5.22) advances the system forward one step in time (by an amount

∆tn). H(∆tn) is of the form of matrix ω̃(j;1,b)|αj=1, as given by identity (5.19), with
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βj =∆tj and b =−ω2. Hence, making use of identity (5.21), we obtain the solution for

the classical simple harmonic oscillator in the form

(
xn
vn

)
=
[(

1 ∆tn
−ω2∆tn 1

)](n)(
x0

v0

)

=
(
x0

v0

) �n/2�∑
k=0

(iω)2kTn2k
(
∆tj ; j ∈Nn

)

+
(

v0

−ω2x0

) �(n−1)/2�∑
k=0

(iω)2kTn2k+1

(
∆tj ; j ∈Nn

)
,

(5.24)

where we have made use of the identity

(
σ+−ω2σ−

)(x0

v0

)
=
(

v0

−ω2x0

)
. (5.25)

In the case of constant time intervals, identity (C.11) of Appendix C leads to

Tnm
(
∆t; j ∈Nn

)=
(
n
m

)
(∆t)m, (5.26)

consequently identity (5.24) reduces to

(
xn
vn

)
=
(
x0

v0

) �n/2�∑
k=0

(−1)k
(
n
2k

)
(∆tω

)2k

+ 1
ω

(
v0

−ω2x0

) �(n−1)/2�∑
k=0

(−1)k
(

n
2k+1

)
(∆tω)2k+1

(5.27)

which is equivalent to [6, identities (59) and (60)].

6. Conclusion. The main result of the paper is identity (4.11) expressing Pochham-

mers in terms of hypersymmetric functions. There are in addition a number of sec-

ondary results. Identities (2.9) concern the algebra of the triplet of partitions; identities

(5.10) and (5.13) give the reduction of the hypersymmetric functions to the associated

elementary symmetric functions; identities (5.20) give the reduction of the hypersym-

metric functions to the ordinary elementary symmetric functions. The applications are

to successive rotations (5.17), and to the time evolution of the discrete harmonic oscil-

lator (5.24). The main definitions are those of the hypersymmetric functions (3.1), and

the associated partitions (2.2) on which these functions are based.

The approach used here in the case of 2×2 matrices, whereby hypersymmetric func-

tions are first defined using associated partitions, and then related to Pochhammers,

may help indicate the way to obtaining similar analytic evaluations of Pochhammers of

n×n nonautonomous matrices.
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Appendices

A. Integer decomposition

Theorem A.1. Given any two positive integers m and q,

m=
q−1∑
j=0

⌊
m+j
q

⌋
. (A.1)

Proof. m can be written as

m= kq+i, i∈ {0,1,2, . . . ,q−1}, k∈�≡ {0,1,2, . . .}. (A.2)

Substituting the above expression form into the sum on the right-hand side of identity

(A.1), we obtain

q−1∑
j=0

⌊
m+j
q

⌋
=
q−1∑
j=0

⌊
kq+i+j

q

⌋
=
q−1∑
j=0

(
k+

⌊
i+j
q

⌋)
= kq+

q−1∑
j=0

⌊
i+j
q

⌋
. (A.3)

We now make the change of variable j→ j′ = j−(q−i) so that

q−1∑
j=0

⌊
i+j
q

⌋
=

i−1∑
j′=−(q−i)

⌊
q+j′
q

⌋
=

−1∑
j′=−(q−i)

⌊
q+j′
q

⌋
+
i−1∑
j′=0

⌊
q+j′
q

⌋
. (A.4)

But

−1∑
j′=−(q−i)

⌊
q+j′
q

⌋
= 0,

i−1∑
j′=0

⌊
q+j′
q

⌋
= i. (A.5)

Hence,

q−1∑
j=0

⌊
m+j
q

⌋
= kq+i=m, (A.6)

which completes the proof of Theorem A.1. For the special case q = 2, identity (A.1)

gives

m=
⌊
m
2

⌋
+
⌊
m+1

2

⌋
. (A.7)

B. The algebra of partitions. In this appendix, we study the algebra of a partition � =
(�1,�2, . . . ,�n) and its associated dual partitions h= (h1,h2, . . . ,hn) and h̄= (h̄1, h̄2, . . . ,
h̄n), where �i,hi, h̄i ∈ {0,1} are binary variables defined by

n∑
i=1

�i =m, hj =

 j∑
i=1

�i


mod2, h̄j =


1+

j∑
i=1

�i


mod2. (B.1)

The dual associated partitions obey relations (2.6).
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Table B.1. Proof by cases of Lemma B.1.

(∑n
i=1�i,�i+1

)
(even,0) (even,1) (odd,0) (odd,1)

hi according to definition (B.1) 0 0 1 1
hi+1 according to definition (B.1) 0 1 1 0
hi+1 according to Lemma B.1 0 1 1 0

B.1. Binary identities. Let µ = (µ1,µ2, . . . ,µn) be an ordered set of independent in-

determinates µi belonging to {0,1}. Then, we have the following useful identities:

µni = µi, (B.2)

µ2 = µ•µ =
n∑
i=1

µi, (B.3)

(
1−µi

)
µi = 0, (B.4)(

2µi−1
)
µi = µi, (B.5)

1−(−1)µi−2µi = 0. (B.6)

Identities (B.3) through (B.5) follow directly from identity (B.2), while identity (B.6) can

be proved by inspection.

B.2. Recursive representations of the associated partitions

Lemma B.1. The components of the associated partition h are given recursively by

hi+1 = hi+(−1)hi�i+1. (B.7)

Proof. It is possible to give an analytic proof of this lemma by making use of the

results of Section B.1 above. On the other hand, the shortest proof is by cases, and it is

given in Table B.1.

Lemma B.2. The components of the associated partition h are given recursively by

hk =
k∑
i=1

�i
(
hi− h̄i

)
. (B.8)

Proof. We give a proof by induction. For k= 1, identity (B.8) reduces to

(
1−�1

)
h1+�1h̄1 = 0. (B.9)

But from definition (B.1), we have h1 = �1, and h̄1 = 1−�1. Hence, the above equation

reduces to 2(1−�1)�1 = 0, and is satisfied due to identity (B.4). Hence, identity (B.8) is

valid for k= 1.
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Next, we assume that identity (B.8) is valid for k. Then, combining identities (B.7) and

(B.8) we obtain

hk+1 =
k∑
i=1

�i
(
hi− h̄i

)+(−1)hk�k+1, (B.10)

which can be rewritten as

hk+1 =
k+1∑
i=1

�i
(
hi− h̄i

)+[(−1)hk−(hk+1− h̄k+1
)]
�k+1, (B.11)

or, more conveniently, as

hk+1 =
k+1∑
i=1

�i
(
hi− h̄i

)+R, (B.12)

where, making use of identity (2.6), R is given by

R = [1+(−1)hk−2hk+1
]
�k+1, (B.13)

and due to identities (B.2) and (B.7) reduces to

R = [1−(−1)hk−2hk
]
�k+1. (B.14)

Due to identity (B.6), R = 0, leading to

hk+1 =
k+1∑
i=1

�i
(
hi− h̄i

)
. (B.15)

Hence, identity (B.8) is valid for all integer k ≥ 1, and the proof of Lemma B.2 is com-

plete.

Corollary B.3. The components of the associated partition h are given recursively

by

hk =
k∑
i=1

�i
(
2hi−1

)
. (B.16)

Identity (B.16) follows from Lemma B.2 and the fact that hi+ h̄i = 1 (identity (2.6)).

Corollary B.4. The components of the associated partition h are given recursively

by

hk = 1(
2�k−1

)

�k−k−1∑

i=1

�i
(
2hi−1

). (B.17)

Identity (B.17) follows from Corollary B.3 by grouping together the terms containing

hk.
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B.3. Scalar products of partitions. The scalar products ofh and h̄ obey the identities

h• h̄=
n∑
i=1

hih̄i = 0, h•h+ h̄• h̄=
n∑
i=1

(
hi+ h̄i

)=n, (B.18)

where we have made use of identities (2.6) and (B.3).

Lemma B.5. Let � = (�1,�2, . . . ,�n) be a partition of m into n parts, with
∑n
i=1�i =m

and �i ∈ {0,1}. Let h = (h1,h2, . . . ,hn) and h̄ = (h̄1, h̄2, . . . , h̄n) be its associated dual

partitions. Let �′ = (�′1,�′2, . . . ,�′n) with
∑n
i=1�

′
i =m+1 and �′i ∈ {0,1} be a partition of

m+1 into n parts, obtained from the partition � = (�1,�2, . . . ,�n) by changing the value

of one �i from 0 to 1. Let this be �k = 0. Let h′ = (h′1,h′2, . . . ,h′n) and h̄′ = (h̄′1, h̄′2, . . . , h̄′n)
be the dual partitions associated with �′. Then,

�′ • h̄′ = �•h, (B.19)

or, explicitly,

n∑
i=1

�′ih̄
′
i =

n∑
i=1

�ihi. (B.20)

Proof. From the conditions of the lemma, we have

n∑
i=1

�i =m, �i ∈ {0,1}, (B.21)

n∑
i=1

�′i =m+1, �′i ∈ {0,1}, (B.22)

�′i =

�i for i 	= k, �k = 0,

1 for i= k, �k = 0,
(B.23)

h′i =

hi for i < k,

1−hi for i≥ k. (B.24)

Furthermore, due to identity (2.6), we have

h′i+ h̄′i = 1, (B.25)

and making use of identities (B.24) and (B.25), we obtain

h̄′j = hj for j ≥ k. (B.26)

Due to identities (B.23), (B.25), and (B.24), and the fact that �k = 0, we have

�′ • h̄′ =
n∑
i=1

�′ih̄
′
i = h̄′k+

n∑
i=1

�ih̄′i = h̄′k+
k−1∑
i=1

�ih̄i+
n∑
i=k
�i
(
1− h̄i

)
(B.27)
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and due to identities (2.6) and (B.26), the above identity can be rewritten as

�′ • h̄′ = hk+
k−1∑
i=1

�i
(
1−hi

)+ n∑
i=k
�ihi. (B.28)

But

n∑
i=k
�ihi = �•h−

k−1∑
i=1

�ihi, (B.29)

hence,

�′ • h̄′ = �•h+hk+
k−1∑
i=1

�i
(
1−2hi

)
, (B.30)

and due to identity (B.16), and the fact that �k = 0,

hk+
k−1∑
i=1

�i
(
1−2hi

)= 0. (B.31)

Hence we recover identity (B.19), and the proof of Lemma B.5 is completed.

Theorem B.6. Let � = (�1,�2, . . . ,�n) be an ordered partition of m into n parts be-

longing to {0,1}, and let h = (h1,h2, . . . ,hn) be an associated partition given by hj =
(
∑j
i=1�i)mod2. Then, the scalar product of � and h is given by

�•h=
n∑
i=1

�ihi =
⌊
m+1

2

⌋
. (B.32)

Proof. We prove Theorem B.6 by induction on m.

The casem= 1. Form= 1, �i = δik for some value of k in the range k∈ {1,2, . . . ,n},
and

hj =

 j∑
i=1

�i


mod2=


0 for j < k,

1 for j ≥ k. (B.33)

Hence,

n∑
i=1

�ihi =
n∑
i=k
�i =

n∑
i=k
δik = 1, (B.34)

which is the result predicted by �(m+1)/2� evaluated atm= 1. Hence, Theorem B.6 is

valid for m= 1, for all positive integer values of n.

The case m=n. For m=n, �i = 1 and

hj =

 j∑
i=1

�i


mod2= jmod2=


0 for j even,

1 for j odd.
(B.35)
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Hence,

n∑
i=1

�ihi =
n∑
i=1

hi =
�n/2�∑
s=1

h2s+
�(n+1)/2�∑

s=1

h2s−1 =
�(n+1)/2�∑

s=1

1=
⌊
n+1

2

⌋
(B.36)

and since m = n, then Theorem B.6 is also valid for the case m = n, for all positive

integer values of n.

The case 1 ≤m ≤ n−1. Next, we assume identity (B.32) to be valid for m ≤ n−1,

and evaluate �′ •h′, where �′ is a partition of m+1 into n parts, as defined by (B.22)

and (B.23). Then, using identity (B.25), we have

�′ •h′ =
n∑
i=1

�′ih
′
i =

n∑
i=1

�′i
(
1− h̄′i

)= n∑
i=1

�′i−
n∑
i=1

�′ih̄
′
i. (B.37)

But according to Lemma B.5,

n∑
i=1

�′ih̄
′
i =

n∑
i=1

�ihi. (B.38)

Hence, making use of identity (B.22), we have

�′ •h′ = (m+1)−
n∑
i=1

�ihi. (B.39)

According to the induction hypothesis,

n∑
i=1

�ihi =
⌊
m+1

2

⌋
. (B.40)

Hence,

�′ •h′ = (m+1)−
⌊
m+1

2

⌋
=
⌊
m+2

2

⌋
, (B.41)

where the last step follows from Theorem A.1 of Appendix A. Hence identity (B.32) is

also true for m+ 1, and the above three results combined (for m = 1, m = n, and

1 ≤m ≤ n−1), guarantee the validity of Theorem B.6 for all positive integer m ≤ n.

Theorem B.7. Let � = (�1,�2, . . . ,�n) be an ordered partition of m into n parts be-

longing to {0,1}, and let h̄ = (h̄1, h̄2, . . . , h̄n) be an associated partition given by h̄j =
(1+∑j

i=1�i)mod2. Then, the scalar product of � and h̄ is given by

�• h̄=
n∑
i=1

�ih̄i =
⌊
m
2

⌋
. (B.42)



HYPERSYMMETRIC FUNCTIONS 3167

Proof.

�• h̄=
n∑
i=1

�ih̄i =
n∑
i=1

�i
(
h̄i+hi

)− n∑
i=1

�ihi. (B.43)

But according to identities (B.1), (2.6), as well as Theorem B.6, we have

n∑
i=1

�i =m,
(
h̄i+hi

)= 1,
n∑
i=1

�ihi =
⌊
m+1

2

⌋
. (B.44)

Hence, making use of identity (A.7) of Appendix A, we have

�• h̄=m−
⌊
m+1

2

⌋
=
⌊
m
2

⌋
. (B.45)

This completes the proof of Theorem B.7.

C. The symmetric functions. Let �n = {x1,x2, . . . ,xn} and �n = {y1,y2, . . . ,yn} be

two sets of independent indeterminates, with �0 =�0 =∅. The constrained symmetric

functions Tnmq(xj ; j ∈Nn) are defined over �n according to

Tnmq
(
xj ; j ∈Nn

)≡ Tnmq(�n)= ∑
λ1+λ2+···+λn=m
λν∈{0,1,2,...,q}

n∏
i=1

xλii , (C.1)

where Nq = {1,2, . . . ,q} denotes the set of the first q positive integers, with N0 =∅. The

elementary symmetric functions Tnm(xj ; j ∈Nn) are defined over �n by

Tnm
(
xj ; j ∈Nn

)≡ Tnm1

(
xj ; j ∈Nn

)
, (C.2)

or explicitly by

Tnm
(
xj ; j ∈Nn

)≡ Tnm(�n)= ∑
�1+�2+···+�n=m

�ν∈{0,1}

n∏
i=1

x�ii , (C.3)

and the associated elementary symmetric functions Unm(xj,yj ; j ∈Nn) are defined over

�n and �n according to [4]

Unm
(
xj,yj ; j ∈Nn

)≡Unm(�n,�n
)= ∑

�1+�2+···+�n=m
�ν∈{0,1}

n∏
i=1

x�ii y
1−�i
i . (C.4)
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The sums in identities (C.3) and (C.4) are taken over all partitions of m into n parts

{�1,�2, . . . ,�n} subject to the constraint �j ∈ {0,1}. The variables n and m are non-

negative integers, and for m> n, Tnm = Unm = 0. It is easy to see that these symmetric

functions are related by [4]

Tnm
(
x1,x2, . . . ,xn

)=Unm(x1,x2, . . . ,xn;1,1, . . . ,1
)
, (C.5)

Unm
(
xj,yj ; j ∈Nn

)=



n∏
j=1

yj


Tnm

(
xj
yj

; j ∈Nn
)
. (C.6)

They obey the scaling laws

Tnm
(
axj ; j ∈Nn

)≡ amTnm(xj ; j ∈Nn), (C.7)

Unm
(
axj,byj ; j ∈Nn

)= ambn−mUnm(xj,yj ; j ∈Nn), (C.8)

and the closure relations

[(
xn+1

)](n) = n∏
j=1

(
xj+1

)= n∑
m=0

Tnm
(
xj ; j ∈Nn

)
, (C.9)

[(
xn+yn

)](n) = n∏
j=1

(
xj+yj

)= n∑
m=0

Unm
(
xj,yj ; j ∈Nn

)= n∑
m=0

Unm
(
yj,xj ; j ∈Nn

)
.

(C.10)

When all the n variables (independent indeterminates) are identical, they collapse to

Tnm (x,x, . . . ,x)︸ ︷︷ ︸
n

=
(
n
m

)
xm, (C.11)

Unm(x,x, . . . ,x︸ ︷︷ ︸
n

;y,y,. . . ,y︸ ︷︷ ︸
n

)=
(
n
m

)
xmyn−m. (C.12)

Note that the closure relation (C.9), for the elementary symmetric functions Tnm(xj ; j ∈
Nn), is a special case of the generating equation (see, e.g., [16]),

n∏
i=1

(
1+txi

)= n∑
m=0

tmTnm
(
xj ; j ∈Nn

)
. (C.13)

Furthermore, by combining identities (C.8) and (C.10), it is seen that the closure rela-

tion (C.10), for the associated elementary symmetric functions Unm(xj,yj ; j ∈Nn), is a

special case of the generating equation

n∏
j=1

(
txj+syj

)= n∑
m=0

tmsn−mUnm
(
xj,yj ; j ∈Nn

)
. (C.14)
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D. Notation

D.1. Notation for Pochhammers. We refer to expressions

[
M(n)

](k) =M(n)M(n−1)···M(n−k+1),[
M(n)

][k] =M(n)M(n+1)···M(n+k−1),
(D.1)

as descending and (respectively) ascending matrix Pochhammers or matrix factorial

polynomials. When M(k) is a scalar discrete function Mk, they reduce to ordinary

Pochhammers, also called factorial polynomials and shifted factorials. If, in addition,

Mk = k, they further reduce to ordinary factorials. For the different notations and defi-

nitions used in the literature, see Elaydi [13, pages 49–51], Hildebrand [14, pages 262–

264], Milne-Thomson [17, pages 25–27], Jordan [15, pages 45–56], Berge [11, pages 19–

24], and [8, Appendix A].

D.2. Notation for the Pauli matrices. The set {σ0,σ1,σ2,σ3},

σ0 = I =
(

1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (D.2)

formed by the identity and the three Pauli matrices, provides a basis for the set of 2×2

matrices. It is also convenient to introduce the Pauli matrices σ± defined by

σ+ = 1
2

(
σ1+iσ2

)=
(

0 1

0 0

)
, σ− = 1

2

(
σ1−iσ2

)=
(

0 0

1 0

)
. (D.3)

The identities inverse to (D.3) are

σ1 =
(
σ++σ−

)
, iσ2 =

(
σ+−σ−

)
. (D.4)
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