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1. Introduction. We consider the differential-difference operatorΛα onR introduced

by Dunkl [1] and called in the literature Dunkl operator on R of index (α+1/2) associ-

ated with the reflection group Z2, given by

Λαu(x)= du(x)dx
+ α+1/2

x
[
u(x)−u(−x)], α >−1

2
. (1.1)

These operators are very important in mathematics and physics. They allow the devel-

opment of generalized wavelets from generalized continuous classical wavelet analysis.

Moreover, we have proved in [2] that the generalized two-scale equation associated with

the Dunkl operator has a solution and then we can define continuous multiresolution

analysis.

Dunkl has proved in [1] that there exists a unique isomorphism Vα, called the Dunkl

intertwining operator, from the space of polynomials on R of degree n onto itself,

satisfying the transmutation relation

ΛαVα = Vα ddx , (1.2)

Vα(1)= 1. (1.3)

Rösler has proved in [3] that for each x ∈R there exists a probability measure µx on

R with support in the interval [−x,x], such that for all polynomials p on R, we have

Vα(p)(x)=
∫
R
p(y)dµx(y). (1.4)

Next, Trimèche in [5] has extended the operator Vα to an isomorphism from �(R),
the space of C∞-functions on R, onto itself satisfying the relations (1.1) and (1.2), and

has shown that for each x ∈R, there exists a unique distribution ηx in �′(R), the space

of distributions of compact support on R, with support in the interval [−x,x] such
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that

(
Vα
)−1(f )(x)= 〈ηx,f〉, f ∈ �(R). (1.5)

He has shown also in [5] that the transposed operator tVα of the operator Vα has the

integral representation

∀y ∈R, tVα(f)(y)=
∫
R
f(x)dνy(x), f ∈�(R), (1.6)

where νy is a positive measure on R with support in the set {x ∈R : |x| ≥ |y|} and f in

�(R), the space of C∞-functions onRwith compact support, and tVα is an isomorphism

from �(R) onto itself, satisfying the relations

∀y ∈R, tVα
(
Λαf

)
(y)= d

dy
tVα(f)(y), (1.7)

and for eachy ∈R, there exists a unique distributionZy in �′(R), the space of tempered

distributions on R, such that

(tVα)−1(f )(y)= 〈Zy,f〉, f ∈�(R). (1.8)

In this paper, we are interested in Dunkl wavelets and associated Dunkl continuous

wavelet transforms. More precisely, we give here a general construction allowing inverse

formulas for the Dunkl intertwining operator and its dual.

The contents of this paper are as follows. In Section 2, we define and study the Dunkl

intertwining operator and its dual. Section 3 is devoted to Dunkl wavelets and associ-

ated Dunkl wavelet transforms. In the last section, we give as application of the previous

results inverse formulas for the Dunkl intertwining operator and its dual.

2. The Dunkl intertwining operator on R and its dual. We define and study in this

section the Dunkl intertwining operator on R and its dual and we give their properties.

Notation 2.1. We have the following notations:

(i) Da(R) is the space of C∞-functions on R with support in the interval [−a,a];
(ii) S(R) is the space of C∞-functions on R, rapidly decreasing together with their

derivatives;

(iii) �◦(R) is the subspace of �(R) consisting of functions f such that

∀n∈N,
∫
R
f(x)xndx = 0; (2.1)

(iv) �α◦ (R) is the subspace of �(R) consisting of functions f such that

∀n∈N,
∫
R
f(x)mn(x)|x|2α+1dx = 0, (2.2)

where

∀x ∈R, mn(x)= Vα
(
un

n!

)
(x); (2.3)
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(v) µα is the measure defined on R by

dµα(x)= |x|2α+1

2α+1Γ(α+1)
dx; (2.4)

(vi) Lrα(R), 1≤ r ≤+∞, is the space of measurable functions f on R such that

‖f‖α,r =
[∫

R

∣∣f(x)∣∣rdµα(x)
]1/r

<+∞,
‖f‖α,∞ = esssup

x∈R

∣∣f(x)∣∣<+∞. (2.5)

Definition 2.2. Define the Dunkl intertwining operator Vα on �(R) by

∀x ∈R, Vαf(x)=




∫ |x|
−|x|

kα(x,y)f(y)dy if x ≠ 0,

f (0) if x = 0,
(2.6)

where

kα(x,y)= Γ(α+1)|x|−2α−1

√
π Γ(α+1/2)

(
x2−y2)α−1/2(|x|+y)χ]−|x|,|x|[(y), (2.7)

with χ]−|x|,|x|[ the characteristic function of the interval ]−|x|,|x|[.
Theorem 2.3. (i) For all f in �(R),

∀x ∈R, Vα(f)(x)= Rα
(
fe
)
(x)+ d

dx
RαI

(
f0
)
(x), (2.8)

where fe (resp., f0) is the even (resp., odd) part of f , Rα is the Riemann-Liouville integral

operator defined in [5], and I is the operator given by

∀x ∈R, I
(
f0
)
(x)=

∫ |x|
0
f0(t)dt. (2.9)

(ii) The transform Vα is the unique topological isomorphism from �(R) onto itself,

satisfying

Vα
(
d
dy
f
)
=ΛαVα(f), f ∈ �(R),

Vα(f)(0)= f(0).
(2.10)

The inverse transform V−1
α is given by

∀x ∈R, V−1
α (f)(x)= R−1

α
(
fe
)
(x)+ d

dx
R−1
α I
(
f0
)
(x), (2.11)

where R−1
α is the inverse operator of Rα.

Let f be in �(R) and g in D(R). The operator tVα, defined on D(R) by the relation

∫
R
Vα(f)(x)g(x)dµα(x)=

∫
R
f(y)tVα(g)(y)dµα(y), (2.12)
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is given by

∀y ∈R, tVα(f)(y)=
∫
|x|≥|y|

kα(x,y)f(x)dµα(x), (2.13)

where kα is the kernel given by relation (2.7). It is called the dual Dunkl intertwining

operator. It has the following properties.

Theorem 2.4. For all f in D(R),

∀y ∈R, tVα(f)(y)= tRα
(
fe
)
(y)+ d

dy
tRα

(
J
(
f0
))
(y), (2.14)

where fe (resp., f0) is the even (resp., odd) part of f , tRα is the Weyl integral operator

defined in [4], and J is the operator given by

J
(
f0
)
(x)=

∫ x
−∞
f0(y)dy, x ∈R. (2.15)

Theorem 2.5. (i) The transform tVα is a topological isomorphism from D(R) (resp.,

S(R)) onto itself. Moreover,

f ∈Da(R)⇐⇒ tVα(f)∈Da(R). (2.16)

The inverse transform (tVα)−1 is given by

∀y ∈R, (tVα)−1(f )(y)= (tRα)−1(fe)(y)+ d
dy

(tRα)−1(J(f0
))
(y), (2.17)

where (tRα)−1 is the inverse operator of tRα.

(ii) The transform tVα satisfies the transmutation relation

∀y ∈R, tVα
(
Λαf

)
(y)= d

dy
tVα(f)(y), f ∈D(R). (2.18)

3. Classical continuous wavelets and Dunkl wavelets

3.1. Classical continuous wavelets on R. We say that a measurable function g on R
is a classical continuous wavelet on R if it satisfies, for almost all x ∈R, the condition

0<Ccg =
∫∞

0

∣∣�(g)(λx)
∣∣2dλ
λ
<+∞, (3.1)

where � is the classical Fourier transform.

Let a∈]0,+∞[ and let g be a classical wavelet on R in L2(R). We consider the family

ga,x , x ∈R, of classical wavelets on R in L2(R) defined by

ga,x(y)=Ha(g)(x−y), (3.2)

where Ha is the dilation operator given by the relation

Ha(f)(x)= 1
a
f
(
x
a

)
. (3.3)
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We define, for regular functions f on R, the classical wavelet transform Tg on R by

Tg(f)(a,x)=
∫
R
f(y)ga,x(y)dy ∀x ∈R. (3.4)

This transform can also be written in the form

Tg(f)(a,x)= f ∗Ha(g)(x), (3.5)

where ∗ is the classical convolution product.

The transform Tg has been studied in [5]. Several properties are given; in particular,

if we consider a classical wavelet g on R in L2(R), we have the following results.

(i) Plancherel formula. For all f in L2(R), we have

∫
R

∣∣f(x)∣∣2dx = 1
Ccg

∫∞
0

∫
R

∣∣Tg(f)(a,x)∣∣2dx
da
a
. (3.6)

(ii) Inversion formula. For all f in L1(R) such that �(f ) belongs to L1(R), we have

f(x)= 1
Ccg

∫∞
0

(∫
R
Tg(f)(a,y)ga,x(y)dy

)
da
a
, a.e., (3.7)

where for each x ∈ R, both the inner and the outer integrals are absolutely

convergent, but possibly not the double integral.

3.2. Dunkl wavelets on R. Using the Dunkl transform �D and the Dunkl translation

operators τx , x ∈ R, we define and study in this section Dunkl wavelets on R and the

Dunkl continuous wavelet transform on R, and we prove for this transform Plancherel

and inversion formulas.

Notation 3.1. We have the following notations:

(i) σ(x,y,z), ρ(x,y,z), and Wα(x,y,z) are the functions defined for all x,y,z ∈
R\{0} by

σ(x,y,z)=



1
2xy

(
x2+y2−z2

)
if x,y ≠ 0,

0 otherwise,

ρ(x,y,z)=
(

1
2
(1−σ(x,y,z)+σ(z,x,y)+σ(z,y,x)

)
,

Wα(x,y,z)= 2α+1Γ(α+1)Kα
(|x|,|y|,|z|)ρ(x,y,z),

(3.8)

where Kα is the Bessel kernel;

(ii) for all x,y ∈R, µαx,y is the measure on R given by

dµαx,y(z)=




Wα(x,y,z)dµα(z) if x,y ≠ 0,

δx if y = 0,

δy if x = 0,

(3.9)

where δx is the Dirac measure;
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(iii) the Dunkl translation operators τx , x ∈R, are defined on �(R) by

∀y ∈R, τxf(y)=
∫
R
f(z)dµαx,y . (3.10)

Definition 3.2. A Dunkl wavelet on R is a measurable function g on R satisfying,

for almost all x ∈R, the condition

0<Cg =
∫∞

0

∣∣�D(g)(λx)
∣∣2dλ
λ
<+∞, (3.11)

where

�D(f)(λ)=
∫
R
f(x)ψαλ (x)dµα(x), λ∈R, (3.12)

and ψαλ(z) is the Dunkl kernel given by

ψαλ (z)=
Γ(α+1)√
π Γ(α+1/2)

∫ 1

−1
e−iλzt(1−t)α−1/2(1+t)α+1/2dt, λ,z ∈ C. (3.13)

Example 3.3. The function αt , t > 0, defined by

∀x ∈R, αt = Ck
(4t)α+1/2 e

−x2/4t , (3.14)

satisfies

∀y ∈R, �D
(
αt
)
(y)= e−ty2

. (3.15)

The function g(x)=−(d/dt)αt(x) is a Dunkl wavelet on R in �(R), and Cg = 1/8t2.

Proposition 3.4. A function g is a Dunkl wavelet on R in �(R) (resp., �◦◦(R)) if and

only if the function tVα(g) is a classical wavelet on R in �(R) (resp., �◦(R)), and

CtVα(g) = Cg. (3.16)

Proof. The transform �D is a topological isomorphism from �(R) onto itself, from

�α◦ (R) onto �0(R). We deduce then these results from Theorem 2.4.

Let a ∈]0,+∞[ and let g be a regular function on R. We consider the function ga
defined by

∀x ∈R, ga(x)= 1
a2α+1

g
(
x
a

)
. (3.17)

It satisfies the following properties:

(i) for g in L2
α(R), the function ga belongs to L2

α(R) and we have

�D
(
ga
)
(y)=�D(g)(ay), y ∈R; (3.18)
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(ii) for g in �(R) (resp., �α◦ (R)), the function ga belongs to �(R) (resp., �α◦ (R)) and

we have

ga =
(tVα)−1oHaotVα(g). (3.19)

Let g be a Dunkl wavelet on R in L2
α(R). We consider the family ga,x,x ∈ R, of Dunkl

wavelets on R in L2
α(R) defined by

ga,x(y)= τxga(−y), y ∈R, (3.20)

where τx , x ∈R, are the Dunkl translation operators.

Using (3.15), we deduce that the family ga,x , x ∈R, given by

∀y ∈R, ga,x(y)=−τx
(
d
dt
αt
)
(−y), (3.21)

is a family of Dunkl wavelets on R in �(R).

Definition 3.5. Let g be a Dunkl wavelet on R in L2
α(R). The Dunkl continuous

wavelet transform SDg on R is defined for regular functions f on R by

SDg (f)(a,x)=
∫
R
f(y)ga,x(y)|y|2α+1dy, a > 0, x ∈R. (3.22)

This transform can also be written in the form

SDg (f)(a,x)= f ∗D ga(x), (3.23)

where ∗D is the Dunkl convolution product defined by

∀x ∈R, f ∗D g(x)=
∫
R
τxf(−y)g(y)dµα(y). (3.24)

Theorem 3.6 (Plancherel formula for SDg ). Let g be a Dunkl wavelet on R in L2
α(R).

For all f in L2
α(R),
∫
R

∣∣f(x)∣∣2|x|2α+1dx = 1
Cg

∫∞
0

∫
R

∣∣SDg (f)(a,x)∣∣2|x|2α+1dx
da
a
. (3.25)

Proof. The function f∗Dg satisfies the relation �D(f∗Dg)=�D(f)·�D(g). Using

Fubini-Tonnelli’s theorem and relations (3.23) and (3.18), we obtain

1
Cg

∫∞
0

∫
R

∣∣SDg (f)(a,x)∣∣2|x|2α+1dx
da
a

= 1
Cg

∫∞
0

(∫
R

∣∣f ∗D ga(x)∣∣2|x|2α+1dx
)
da
a
,

= 1
Cg

∫∞
0

(∫
R

∣∣�D(f)(y)
∣∣2∣∣�D

(
ga
)
(y)

∣∣2|y|2α+1dy
)
da
a
,

=
∫
R

∣∣�D(f)(x)
∣∣2
(

1
Cg

∫∞
0

∣∣�D(g)(ay)
∣∣2da
a

)
|y|2α+1dy.

(3.26)
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But from Definition 3.2, we have for almost all y ∈R,

1
Cg

∫∞
0

∣∣�D(g)(ay)
∣∣2da
a
= 1, (3.27)

then

1
Cg

∫∞
0

∫
R

∣∣SDg (f)(a,x)∣∣2∣∣x2α+1
∣∣dxda

a
=
∫
R

∣∣�D(f)(y)
∣∣2∣∣y2α+1

∣∣dy. (3.28)

We then deduce the relation (3.25).

The following theorem gives an inversion formula for the transform SDg .

Theorem 3.7. Let g be a Dunkl wavelet on R in L2
α(R). For f in L1

α(R) (resp., L2
α(R))

such that �D(f) belongs to L1
α(R) (resp., L1

α(R)∩L∞α (R)),

f(x)= 1
Cg

∫∞
0

(∫
R
SDg (f)(a,y)ga,x(y)|y|2α+1dy

)
da
a
, a.e., (3.29)

where for each x ∈R, both the inner and the outer integrals are absolutely convergent,

but possibly not the double integral.

Proof. We obtain (3.29) by using an analogous proof as for [5, Theorem 6.III.3, page

199].

4. Inversion of the Dunkl intertwining operator and of its dual by using Dunkl

wavelets. Using the inversion formulas for the Dunkl continuous wavelet transform

SDg and classical continuous transform Sg , we deduce relations which give the inverse

operators of the Dunkl intertwining operator Vα and of its dual tVα.

Theorem 4.1. (i) Let g be a Dunkl wavelet on R in �(R) (resp., �(R)). Then for all f
in the same space as g,

∀x ∈R, SDg (f )(a,x)=
(tVα)−1[StVα(g)

(tVα(f))(a,·)](x). (4.1)

(ii) Let g be a Dunkl wavelet on R in �◦◦(R). Then for all f in �◦(R),

∀x ∈R, StVα(g)(f )(a,x)= V−1
α
[
SDg
(
Vα(f)

)
(a,·)](x). (4.2)

Proof. We deduce these results from relations (2.8), (3.22), and properties of the

Dunkl convolution product.

Theorem 4.2. Let g be a Dunkl wavelet on R in �α◦ (R). Then,

(i) for all f in �◦◦(R),

∀x ∈R, SDg (f )(a,x)= a−2αVα
[
S�(tVα(g))

(tVα(f))(a,·)](x), (4.3)

where � is the operator given by the relation

∀x ∈R, �(f )(x)=�−1
[
π

|x|2α+1

2αΓ(α+1)
�(f )

]
(x); (4.4)
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(ii) for all f in �◦(R),

∀x ∈R, StVα(g)(f )(a,x)= a−2αtVα
[
SD�D(g)

(
Vα(f)

)
(a,·)](x), (4.5)

where �D is the operator given by the relation

∀x ∈R, �D(f)(x)=�−1
D

[
π

|x|2α+1

2αΓ(α+1)
�D(f)

]
(x). (4.6)

Proof. We obtain these relations from Theorem 4.1 and the fact that

�
(tVα(g)0a)= a−2α(�(tVα(g)))0

a,

�D
(
ga
)= a−2α(�D(g))a.

(4.7)

Theorem 4.3. Let g be a Dunkl wavelet on R in �α◦ (R). Then,

(i) for all f in �◦◦(R),

∀x ∈R, (tVα)−1(f )(x)

= 1
Cg

∫∞
0

(∫
R
Vα
[
S�(tVα(g))(f )(a,·)

]
(y)ga,x(y)|y|2α+1dy

)
da
a2α+1

;
(4.8)

(ii) for all f in �◦(R),

∀x ∈R, V−1
α (f)(x)

= 1

C0
tVk(g)

∫∞
0

(∫
R

tVα
[
SD�D(g)(f )(a,·)

]
(y)tVα(g)a,x(y)dy

)
da
a2α+1

.
(4.9)

Proof. We deduce (4.8) and (4.9) from Theorems 4.2, 2.4 and relation (2.9).

Remark 4.4. We can establish in a similar way without major changes the results

given above for the Dunkl intertwining operator and its dual in the multidimensional

case.
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