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ON THE BANACH ALGEBRA �(lp(α))
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We give some properties of the Banach algebra of bounded operators �(lp(α)) for 1≤ p≤∞,
where lp(α)= (1/α)−1∗lp . Then we deal with the continued fractions and give some prop-

erties of the operator ∆h for h > 0 or integer greater than or equal to one mapping lp(α)
into itself for p ≥ 1 real. These results extend, among other things, those concerning the
Banach algebra Sα and some results on the continued fractions.
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1. Introduction. In this paper, we are interested in the study of operators repre-

sented by infinite matrices. In [10, 15], necessary and sufficient conditions for an oper-

ator to map a set of sequences into another set of sequences are given. In this way, in

[5, 6, 8, 11, 12], some properties of the set F(∆h) can be found, where h is an integer

or a real, F is one of the sets c, c0, sα, or s◦α, and ∆ is the well-known operator of first

difference. Then some characterizations of operators mapping in these sets have been

given. Böttcher and Silbermann [1] have put together some results on Toeplitz matrices

and have studied some sets of Banach algebras of infinite matrices. In this paper, we

are dealing with a particular class of Banach algebras of bounded operators mapping

lp(α) into itself and we are giving some results which extend the previous one.

This paper is organized as follows. In Section 2, we recall some results on the Banach

algebra of bounded operators. In Section 3, we deal with the Banach algebra �(lp(α)),
where 1≤ p ≤∞ andα= (αn)n, withαn > 0 for alln. In Section 4, necessary conditions

forA to be invertible in the set �(lp(α)) are given. In Section 5, we consider applications

to infinite tridiagonal matrices and continued fractions. Finally in Section 6 we deal with

some new properties of the operators ∆t and ∆h, for h > 0 integer or real, considered

as operators from lp(α) into itself.

2. Preliminary results. A= (anm)n,m≥1 being an infinite matrix, we will consider the

sequence X = (xn)n≥1 as a column vector and define the product

AX =


a11 . . . a1m .. .

...
...

...
...

an1 . . . anm .. .
...

...
...

...




x1

...

xm
...

=

y1

...

yn
...

 , (2.1)

http://dx.doi.org/10.1155/S0161171204406498
http://dx.doi.org/10.1155/S0161171204406498
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


3188 BRUNO DE MALAFOSSE

whenever the series yn =
∑∞
m=1anmxm for n ≥ 1 are convergent. We will denote by s

the set of all sequences. For any given subsets E, F of s, we will say that an operator

represented by the infinite matrix A = (anm)n,m≥1 maps E into F , that is, A ∈ (E,F)
(see [10]) if

(i) for each n ≥ 1 and for all X ∈ E, the series defined by yn =
∑∞
m=1anmxm is

convergent ;

(ii) AX ∈ F for all X ∈ E.

For any subset E of s, we will write

AE = {Y ∈ s : Y =AX for some X ∈ E}. (2.2)

If F is a subset of s, we will denote

F(A)= FA = {X ∈ s : Y =AX ∈ F}. (2.3)

Let E be a Banach space with norm ‖‖E . We will say that a linear operator A : E � E
is bounded if

sup
X≠0

(
‖AX‖E
‖X‖E

)
<∞. (2.4)

It is well known [1] that the set �(E) of all bounded operators mapping E into itself is a

Banach algebra and we will write

‖A‖�(E) = sup
X≠0

(
‖AX‖E
‖X‖E

)
<∞. (2.5)

A Banach space E of complex sequences with the norm ‖ · ‖E is a BK space if each

projection Pn : X � PnX = xn is continuous. A BK space E is said to have AK if every

sequence X = (xn)∞n=1 ∈ E has a unique representation X =∑∞n=1xnen, where en is the

sequence with 1 in the nth position and 0 otherwise. It is well known [9] that if E has

AK, then �(E)= (E,E).

3. Banach algebra �(lp(α)) for 1≤ p ≤∞
3.1. Case 1≤ p <∞. Recall that the set

lp =
{
X = (xn)n≥1 :

∞∑
n=1

∣∣xn∣∣p <∞
}

(3.1)

is a Banach space normed by

‖X‖lp =
( ∞∑
n=1

∣∣xn∣∣p
)1/p

. (3.2)

Put now

U+∗ = {X = (xn)n≥1 ∈ s : xn > 0 ∀n}. (3.3)
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Using Wilansky’s notations [15], we have, for any given α = (αn)n≥1 ∈ U+∗ and p ≥ 1

real,

lp(α)=
(

1
α

)−1

∗lp =
{
X ∈ s :

∞∑
n=1

(∣∣xn∣∣
αn

)p
<∞

}
. (3.4)

If we define byDα the diagonal matrixDα = (αnδnm)n,m≥1 (where δnm = 0 for alln≠m
and δnm = 1 otherwise), we see from (2.2) that

Dαlp = lp(α). (3.5)

It is easy to see that lp(α) is a Banach space with the norm

‖X‖lp(α) =
∥∥D1/αX

∥∥
lp =

[ ∞∑
n=1

(∣∣xn∣∣
αn

)p]1/p

. (3.6)

If α= (αn)n≥1, β= (βn)n≥1 ∈U+∗, the condition αn = βnO(1) (n→∞) implies that

lp(α)⊂ lp(β). (3.7)

We also have lp(α)⊂ lp′(α) for 1≤ p ≤ p′.
Since lp(α) has AK, we have �(lp(α)) = (lp(α),lp(α)) (see [9]) so A ∈ �(lp(α)) if

and only if A∈ (lp(α),lp(α)) and

‖A‖�(lp(α)) = sup
X≠0

(‖AX‖lp(α)
‖X‖lp(α)

)
<∞. (3.8)

The set �(lp(α)) is a Banach algebra with identity; see [1]. So we get

‖AX‖lp(α) ≤ ‖A‖�(lp(α))‖X‖lp(α) ∀X ∈ lp(α). (3.9)

We have lp = lp(e), where e= (1, . . . ,1, . . .) and for all A∈�(lp(α)),

∥∥D1/αADα
∥∥

�(lp) = ‖A‖�(lp(α)). (3.10)

Indeed, writing DαX = Y , we get

sup
X≠0

(∥∥(D1/αADα
)
X
∥∥
lp

‖X‖lp

)
= sup

Y≠0

(∥∥D1/αAY
∥∥
lp∥∥D1/αY

∥∥
lp

)
= ‖A‖�(lp(α)). (3.11)

So we can write that

A∈�
(
lp(α)

)⇐⇒D1/αADα ∈�
(
lp
)
. (3.12)

When α = (rn)n≥1, for a given real r > 0, lp(α) is denoted by lp(r). When p = ∞, we

obtain the next results.
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3.2. Case p =∞. The Banach algebra Sα. Let α = (αn)n≥1 ∈ U+∗. Using Wilansky’s

notation, we have

l∞(α)=
(

1
α

)−1

∗l∞ =Dαl∞. (3.13)

We will write sα = l∞(α) = {X ∈ s : xn/αn = O(1)}; see [2, 3, 4, 5, 6, 7]. The set sα is a

Banach space with the norm

‖X‖sα = sup
n≥1

(∣∣xn∣∣
αn

)
. (3.14)

The set

Sα =
{
A= (anm)n,m≥1 : sup

n≥1

( ∞∑
m=1

∣∣anm∣∣αmαn
)
<∞

}
(3.15)

is Banach algebra with identity normed by

‖A‖Sα = sup
n≥1

( ∞∑
m=1

∣∣anm∣∣αmαn
)
. (3.16)

Putting B(sα)=�(sα)
⋂
(sα,sα), we can state a first elementary result.

Lemma 3.1. Let α∈U+∗. Then

B
(
sα
)= Sα = (sα,sα). (3.17)

Proof. First, for any given infinite matrix A, the condition A ∈ Sα is equivalent to

D1/αADα ∈ Se and since Se = (l∞, l∞) (see [8, 10]) we conclude that Sα = (sα,sα). Now

we show that B(sα)= Sα. It can be easily seen that B(sα)⊂ (sα,sα). Conversely, assume

that A∈ Sα. Then for every X ∈ sα,

‖AX‖sα = sup
n≥1

(∣∣∑∞
m=1anmxm

∣∣
αn

)
≤ ‖A‖Sα‖X‖sα . (3.18)

So A is bounded and belongs to B(sα).

As we have seen above when α= (rn)n≥1, r > 0, Sα and sα are denoted by Sr and sr .

Note that for r = 1 we get s1 = l∞.

4. Inverse of an infinite matrix in �(lp(α)). In this section, we are interested in

the case when an operator A∈ (lp(α),lp(α)) is bijective. For this, we need to explicitly

show the set �(lp(α)).
We put

Np,α(A)=
[ ∞∑
n=1

( ∞∑
m=1

(∣∣anm∣∣αmαn
)q)p−1]1/p

, (4.1)

for 1 < p <∞ and q = p/(p−1). In order to state the next results recall the following

lemma (see [10]).
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Lemma 4.1. A∈ (l1, l1) if and only if At ∈ S1.

We get the following results.

Theorem 4.2. Let α∈U+∗.

(i) (a) Then

�
(
l1(α)

)= {A= (anm)n,m≥1 :At ∈ S1/α
}
,

(
l∞(α),l∞(α)

)⊂ Sα. (4.2)

(b) If

�̂p(α)=
{
A= (anm)n,m≥1 :Np,α(A) <∞

}
for 1<p <∞, (4.3)

then

�̂p(α)⊂�
(
lp(α)

)
. (4.4)

(ii) (a) For every A∈�(l1(α)),

‖A‖�(l1(α)) ≤
∥∥At∥∥S1/α

= sup
m≥1

( ∞∑
n=1

∣∣anm∣∣αmαn
)

; (4.5)

(b) when 1<p <∞, for every A∈�(lp(α)),

‖A‖�(lp(α)) ≤Np,α(A); (4.6)

(c) for every A∈�(l∞(α)),

‖A‖�(l∞(α)) ≤ ‖A‖Sα = sup
n≥1

( ∞∑
m=1

∣∣anm|αmαn
)
. (4.7)

(iii) The identity

A(A′X)= (AA′)X, ∀X ∈ lp(α), (4.8)

holds in the following cases:

(a) A,A′ ∈�(l1(α)) when p = 1;

(b) A,A′ ∈ �̂p(α) when 1<p <∞;

(c) A,A′ ∈ Sα when p =∞.

Proof. (i)(a) Since l1(α) has AK, then �(l1(α)) = (l1(α),l1(α)). So A ∈ �(l1(α))
if and only if D1/αADα ∈ (l1, l1). From the characterization of (l1, l1), the condition

D1/αADα ∈ (l1, l1) is equivalent to (D1/αADα)t =DαAtD1/α ∈ S1, that is, At ∈ S1/α, and

we have shown that �(l1(α)) = �̂(α). The identity (l∞(α),l∞(α)) = Sα comes from

Lemma 3.1.
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(i)(b) Take any X ∈ lp . We have

‖AX‖plp =
∥∥∥∥∥
( ∞∑
m=1

anmxm

)
n≥1

∥∥∥∥∥
p

lp

=
∞∑
n=1

∣∣∣∣∣
∞∑
m=1

anmxm

∣∣∣∣∣
p

≤
∞∑
n=1

( ∞∑
m=1

∣∣anmxm∣∣
)p
,

(4.9)

and from Hölder’s inequality, we get, for every n,

∞∑
m=1

∣∣anmxm∣∣≤
( ∞∑
m=1

∣∣anm∣∣q
)1/q( ∞∑

m=1

∣∣xm∣∣p
)1/p

=
( ∞∑
m=1

∣∣anm∣∣q
)1/q

‖X‖lp ,
(4.10)

with q = p/(p−1). We deduce

‖AX‖plp ≤
∞∑
n=1

[( ∞∑
m=1

∣∣anm∣∣q
)1/q

‖X‖lp
]p
=

∞∑
n=1

( ∞∑
m=1

∣∣anm∣∣q
)p/q

‖X‖plp ; (4.11)

and since p/q = p−1, we have

‖AX‖lp ≤
[ ∞∑
n=1

( ∞∑
m=1

∣∣anm∣∣q
)p−1]1/p

‖X‖lp , (4.12)

‖A‖�(lp) = sup
X≠0

(‖AX‖lp
‖X‖lp

)
≤
[ ∞∑
n=1

( ∞∑
m=1

∣∣anm|q
)p−1]1/p

. (4.13)

We have proved that if A ∈ �̂p(e), then A ∈ �(lp). So if A ∈ �̂p(α), then D1/αADα ∈
�̂p(e), so from the equivalence given by (3.12), D1/αADα ∈ �(lp) and A belongs to

�(lp(α)). This concludes the proof.

(ii)(a) Now take A∈ �̂(α). For any fixed X ∈ l1(α) and for any integersN1 andN2 ≥ 1,

we have

N1∑
n=1

(∣∣∣∣∣
N2∑
m=1

anmxm

∣∣∣∣∣ 1
αn

)
≤

N1∑
n=1

( N2∑
m=1

∣∣anmxm∣∣ 1
αn

)

≤
N2∑
m=1

( N1∑
n=1

∣∣anm∣∣αmαn
∣∣xm∣∣
αm

)

≤
( N2∑
m=1

∣∣xm∣∣
αm

)
sup
m≥1

( N1∑
n=1

∣∣anm∣∣αmαn
)

≤ ‖X‖l1(α)
∥∥DαAtD1/α

∥∥
S1
.

(4.14)
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Letting N1 and N2 →∞, we obtain

∞∑
m=1

( ∞∑
n=1

∣∣anmxm∣∣ 1
αn

)
<∞. (4.15)

Then the series
∑∞
n=1((1/αn)|

∑∞
m=1anmxm|) is also convergent and

∞∑
n=1

(∣∣∣∣∣
∞∑
m=1

anmxm

∣∣∣∣∣ 1
αn

)
= ‖AX‖l1(α) ≤

∥∥At∥∥S1/α
‖X‖l1(α). (4.16)

So A is bounded and

‖A‖�(l1(α)) ≤
∥∥At∥∥S1/α

(4.17)

is a direct consequence of (i).

(ii)(b) comes from inequality (4.13) and equivalence (3.12).

(ii)(c) comes from the preliminary results.

(iii) is an immediate consequence of the fact that �(l1(α)), �(lp(α)), and Sα are

Banach algebras of operators represented by infinite matrices and �̂p(α) ⊂�(lp(α)).

We deduce the following corollary, in which we put a = (ann)n≥1 and |a| =
(|ann|)n≥1.

Corollary 4.3. The operator represented by A is bijective from lp(α) into lp(α|a|)
in each of the following cases:

(i) for p = 1,

∥∥I−AtD1/a
∥∥
S1/α

= sup
m≥1

 ∞∑
n=1
n≠m

∣∣∣∣anmann

∣∣∣∣αmαn
< 1; (4.18)

(ii) for 1<p <∞,

Npp,α
(
I−D1/aA

)= ∞∑
n=1

 ∞∑
m=1
m≠n

(∣∣∣∣anmann

∣∣∣∣αmαn
)q

p−1

< 1; (4.19)

(iii) for p =∞,

∥∥I−D1/aA
∥∥
Sα = sup

n≥1

 ∞∑
m=1
m≠n

∣∣∣∣anmann

∣∣∣∣αmαn
< 1. (4.20)

Proof. (i) First, from Theorem 4.2(ii)(a), we have

∥∥I−D1/aA
∥∥

�(l1(α)) ≤
∥∥I−AtD1/a

∥∥
S1/α

< 1. (4.21)
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For any given B such that D1/aB ∈ l1(α), consider the solutions of the equation AX = B
belonging to l1(α). The previous equation is equivalent to(

D1/aA
)
X =D1/aB. (4.22)

Since D1/aA is invertible in �(l1(α)), we deduce from Theorem 4.2(iii)(a) that, for every

X ∈ l1(α), (
D1/aA

)−1[(D1/aA
)
X
]=X = (D1/aA

)−1D1/aB. (4.23)

We conclude that the equation AX = B admits a unique solution in l1(α) since D1/aB ∈
l1(α) and (D1/aA)−1 ∈�(l1(α)).

(ii) Since p > 0, we have Npp,α(I−D1/aA) < 1 if and only if Np,α(I−D1/aA) < 1 and we

conclude reasoning as in (i).

(iii) can also be obtained reasoning as in (i).

Remark 4.4. Let r > 0. If α= (rn)n, it is obvious that for 1<p <∞, the condition

Npp,r
(
I−D1/aA

)= ∞∑
n=1

 ∞∑
m=1
m≠n

(∣∣∣∣anmann

∣∣∣∣r (m−n)
)q

p−1

< 1 (4.24)

implies that the operator A is bijective from lp(r) into lp((rn|ann|)n≥1).

We deduce the following application.

Proposition 4.5. LetA= (anm)n,m≥1 be an infinite matrix. Consider τ > 0, 0< ρ<1,

and 1<p <∞, satisfying the inequality

ρp(
1−ρq)p−1 < τp−1, with q = p−1

p
, (4.25)

and assume that

∣∣anm∣∣≤ 1
nτ

for 1≤m<n−1;

ann = 1, for n≥ 1;

anm = 0, otherwise.

(4.26)

Then A is bijective from lp(1/ρ) into itself.

Proof. We have

σn =
∞∑
m=1
m≠n

∣∣anm∣∣q
(

1
ρ

)(m−n)q
≤ 1
nτq

n−1∑
m=1

(
1
ρ

)(m−n)q
≤ 1
nτq

ρq

1−ρq . (4.27)

Then

∞∑
n=1

σp−1
n ≤ ρp(

1−ρq)p−1

∞∑
n=2

1
nτp

, (4.28)
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since p−1= p/q and τp−1> 0 in (4.25). Now from the inequality

∞∑
n=2

1
nτp

≤
∫∞

1

dx
xτp

= 1
τp−1

, (4.29)

we conclude using (4.25) that

[
Np,1/ρ(I−A)

]p = ∞∑
n=1

σp−1
n ≤ ρp(

1−ρq)p−1

1
τp−1

< 1. (4.30)

So A is invertible in �(lp(1/ρ)) and A is bijective from lp(1/ρ) to itself.

Remark 4.6. If we put ρ = 1/2, p = q = 2, and τ > 2/3, then (4.25) holds and A is

bijective from l2(2) to itself.

5. Application to the infinite tridiagonal systems. In this section, we deal with op-

erators represented by infinite tridiagonal matrix A. We will deduce that under some

condition A is bijective from lp(α) into itself.

5.1. First properties. For simplification we will write

A=



d1 b1

a2 d2 b2 0
. . .

. . .
. . .

an dn bn

0
. . .

. . .
. . .


, (5.1)

where a= (an)n, b = (bn)n, and d= (dn)n are three given sequences. We immediately

obtain

D1/dA−I =



0 b′1
a′2 0 b′2 0

. . .
. . .

. . .

a′n 0 b′n

0
. . .

. . .
. . .


, (5.2)

with a′n = an/dn and b′n = bn/dn. Putting K1 = supn≥1(|a′n|) < ∞ and K2 =
supn≥1(|b′n|) <∞, we get the following result, in which we do the convention α0 = 0.

Theorem 5.1. (i) Let p ≥ 1 be a real. If

K̃p =Kp1 +Kp2 <
1

2p−1
, (5.3)

then A is bijective from lp into lp(|d|).
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(ii) The operator A is bijective from lp(α) into lp(α|d|) in the following cases:

(a) for 1≤ p <∞,

K̃p,α =
[

sup
n≥1

(∣∣∣∣andn αn−1

αn

∣∣∣∣)]p+[sup
n≥1

(∣∣∣∣bndn αn+1

αn

∣∣∣∣)]p < 1
2p−1

, (5.4)

(b) when p =∞,

K̃′α = sup
n≥1

(∣∣∣∣andn αn−1

αn

∣∣∣∣+∣∣∣∣bndn αn+1

αn

∣∣∣∣)< 1, (5.5)

with the convention α0 = 0.

Proof. Using the convention x0 = 0, we get, from (5.2),

∥∥(I−D1/dA
)
X
∥∥p
lp =

∞∑
n=1

∣∣a′nxn−1+b′nxn+1

∣∣p ≤ ∞∑
n=1

(
K1

∣∣xn−1

∣∣+K2

∣∣xn+1

∣∣)p ; (5.6)

and since

∞∑
n=1

(
K1

∣∣xn−1

∣∣+K2

∣∣xn+1

∣∣)p ≤ 2p−1

( ∞∑
n=1

Kp1
∣∣xn−1

∣∣p+ ∞∑
n=1

Kp2
∣∣xn+1|p

)
≤ 2p−1(Kp1 +Kp2 )‖X‖plp ,

(5.7)

we conclude that

∥∥I−D1/dA
∥∥

�(lp) = sup
X≠0

(∥∥(I−D1/dA
)
X
∥∥
lp

‖X‖lp

)
≤ [2p−1(Kp1 +Kp2 )]1/p < 1. (5.8)

So D1/dA is invertible in �(lp) and A = Dd(D1/dA) is bijective from lp into lp(|d|).
(ii)(a) is obtained replacing A by D1/αADα = (anmαm/αn)n,m≥1. (ii)(b) comes from the

fact that ‖I−D1/dA‖�(l∞(α)) ≤ ‖I−D1/dA‖Sα =K′α.

We deduce the next corollaries.

Corollary 5.2. If K̃1,α < 1, then A is bijective from l1(α) to l1(α|d|) and bijective

from sα to sα|d|.

Proof. First taking p = 1 in Theorem 5.1(ii), we deduce that A is bijective from

l1(α) to l1(α|d|). Then from

∥∥I−D1/dA
∥∥
Sα = K̃′α ≤ K̃1,α < 1, (5.9)

we deduce, reasoning as in Theorem 5.1(i), that A is bijective from sα to sα|d|.

Corollary 5.3. Let p ≥ 1 be a real. If K = sup(K1,K2) < 1/2, then A is bijective from

lp into lp(|d|).
Proof. In fact, Kp1 +Kp2 ≤ 2Kp < 1/2p−1 if and only if Kp < 1/2p and K < 1/2.
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5.2. Application to the continued fractions. We consider the system of linear equa-

tions

(
β1+z

)
x1−c1x2 = b1,

−c1x1+
(
β2+z

)
x2−c2x3 = b2,

−c2x2+
(
β3+z

)
x3−c3x4 = b3,

...

(5.10)

If tB = e′1 = (1,0,0, . . .), it is well known that we may write the linear equations in the

form

x1 = 1
β1+z−

(
c1x2/x1

) , c1x2

x1
= c2

1

β2+z−
(
c2x3/x2

) ,
c2x3

x2
= c2

2

β3+z−
(
c3x4/x3

) , . . . . (5.11)

If we substitute in succession from each into the preceding, we obtain the formal ex-

pansion of x1 into a continued fraction, also denoted by the A fraction, that is,

x1 =
1

β1+z−
c2

1

β2+z−
c2

2

β3+z−···

. (5.12)

The system defined by (5.10) is equivalent to the matrix equation AzX = B; see [14]. The

infinite tridiagonal matrix Az admits infinitely many right inverses and x1 can be writ-

ten, as above, in a continued fraction when Az admits an inverse A′z = (a′nm(z))n,m≥1.

Then we have x1 = c′11(z); see [2, 14]. Recall the following well-known result [15].

Lemma 5.4. Let p > 1 be a real. A∈ (lp,l∞) if and only if

sup
n≥1

( ∞∑
m=1

∣∣anm∣∣p/(p−1)
)
<∞. (5.13)

We deduce from the preceding the following.

Proposition 5.5. Let p > 1 be a real. If Az ∈ (lp,lp), there is a real K1 > 0 such that

Az is bijective from lp to lp and from l∞ to l∞ for |z|>K1.

Proof. First we see that Az ∈ (lp,lp) implies Az ∈ (lp,l∞). So, from Lemma 5.4,

we get

sup
n≥2

(∣∣cn−1

∣∣q+∣∣βn+z∣∣q+∣∣cn∣∣q)<∞, (5.14)
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with q = p/(p−1), and the sequences (βn)n≥1 and (cn)n≥1 are bounded. Putting K =
supn≥1(|cn|,|βn|), we deduce that for |z|> 3K,

sup
n≥1

(∣∣∣∣ cn−1

βn+z
∣∣∣∣,∣∣∣∣ cn

βn+z
∣∣∣∣)≤ K

|z|−K <
1
2
, (5.15)

with the convention c0 = 0. By Corollary 5.3, we conclude that if d = (βn+z)n≥1, A is

bijective from lp to lp(|d|). Now, since there exist k1 = 2K and k2 = K+|z| > 0 such

that k1 ≤ |dn| ≤ k2 for all n, lp(|d|)= lp . From Theorem 5.1 we see that Az is bijective

from l∞ to l∞. This gives the conclusion.

6. Some properties of the operator ∆h mapping lp(α) into itself. In this section, we

deal with necessary and sufficient conditions for ∆ and ∆+ to be bijective from lp(α)
to lp(α).

Recall that ∆ is the first difference operator mapping s into itself, defined for each

X = (xn)n≥1 by [∆X]1 = x1, and [∆X]n = xn−xn−1 for n ≥ 2. The operator Σ ∈ (s,s),
defined by ΣX = (∑nk=1xk)n≥1, satisfies

Σ(∆X)=∆(ΣX)=X ∀X ∈ s. (6.1)

We will denote by ∆+ the operator ∆t and by Σ+ the operator Σt . We note that these

operators are well known and have been used, for instance, in [2, 3, 4, 5, 6, 7, 8, 11,

12, 13, 15]. Recall that for any integer h > 0, the sets l∞(∆h), c(∆h), and c0(∆h) are

BK spaces (recall that a BK space is a Banach space with continuous coordinates), with

respect to their natural norms

‖X‖l∞(∆h) = sup
n≥1

([∣∣∆hX∣∣]n)= sup
n≥1

(∣∣∣∣∣
h∑
j=0

(−1)j
(
h
j

)∣∣∣∣∣xn−j
)
, (6.2)

and c(∆h) and c0(∆h) are closed subspaces of l∞(∆h) (see [13]). We can also state that

the set sα is a BK space with respect to the norm ‖‖sα ; see [8]. In order to express the

next results, we need to define the following sets:

Ĉ1 =
{
α∈U+∗ :

1
αn

( n∑
k=1

αk

)
=O(1) (n �→∞)

}
,

Ĉ+1 =
{
α∈U+∗

⋂
cs :

1
αn

( ∞∑
k=n

αk

)
=O(1) (n �→∞)

}
,

Γ =
{
α∈U+∗ : lim

n→∞

(
αn−1

αn

)
< 1
}
,

Γ+ =
{
α∈U+∗ : lim

n→∞

(
αn+1

αn

)
< 1

}
.

(6.3)

Note that α∈ Γ+ if and only if 1/α∈ Γ . We will see in Proposition 6.1 that if α∈ Ĉ1,

then αn →∞ (n→∞). Furthermore, α ∈ Γ if and only if there is an integer q ≥ 1 such
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that

γq(α)= sup
n≥q+1

(
αn−1

αn

)
< 1. (6.4)

We obtain the following results in which we put

[
C(α)α

]
n =

1
αn

( n∑
k=1

αk

)
. (6.5)

Proposition 6.1. Let α∈U+∗. Then

(i) if α∈ Ĉ1, there are K > 0 and γ > 1 such that

αn ≥Kγn, ∀n; (6.6)

(ii) the condition α∈ Γ implies that α∈ Ĉ1 and there exists a real b > 0 such that

[
C(α)α

]
n ≤

1
1−γq(α) +b

[
γq(α)

]n
for n≥ q+1; (6.7)

(iii) the condition α∈ Γ+ implies α∈ Ĉ+1 .

Proof. (i) and (ii) were proved in [6, Proposition 2.1, pages 1786–1788]. (iii) Ifα∈ Γ+,

there are χ′ ∈ ]0,1[ and an integer q′ ≥ 1 such that

αk
αk−1

≤ χ′ for k≥ q′. (6.8)

Then for every n≥ q′, we have

1
αn

( ∞∑
k=n

αk

)
=

∞∑
k=n

(
αk
αn

)
≤ 1+

∞∑
k=n+1

k−n−1∏
i=0

(
αk−i
αk−i−1

)

≤
∞∑
k=n

χ′k−n =O(1) (n �→∞).
(6.9)

This gives the conclusion.

Remark 6.2. Note that as a direct consequence of Proposition 6.1, we have Ĉ1
⋂
Ĉ+1 =

Γ
⋂
Γ+ =φ.

Remark 6.3. It is proved in [4] that α∈ Ĉ1 does not imply α∈ Γ .
Before stating the following, note that l1(∆) ≠ l1. Indeed, putting e1 = (1,0, . . .), we

get Σe1 = e ∉ l1 and ∆−1 ∉ (l1, l1). We will see that when l1 is replaced by l1(α) we can

make explicit the set l1(α)(∆h) for h> 0. We have the next result.

Proposition 6.4. (i) The condition ∆+ ∈ (l1(α),l1(α)) is equivalent to

αn
αn−1

=O(1) (n �→∞); (6.10)

(ii) the condition 1/α∈ Ĉ1 is equivalent to Σ+ ∈ (l1(α),l1(α));
(iii) if 1/α∈ Ĉ1, then ∆+ is bijective from l1(α) into itself.



3200 BRUNO DE MALAFOSSE

Proof. ∆+ ∈ (l1(α),l1(α)) if and only if ∆∈ S1/α, that is, αn/αn−1 =O(1) (n→∞).
(ii) comes from the fact that Σ+ ∈ (l1(α),l1(α)) if and only if(

Σ+
)t = Σ∈ S1/α. (6.11)

(iii) The condition 1/α∈ Ĉ1 implies

αn
αn−1

≤αn
( n∑
k=1

1
αk

)
=O(1) (n �→∞), (6.12)

so ∆+ ∈ (l1(α),l1(α)). Consider now the equation

∆+X = B (6.13)

for any given B ∈ l1(α). We will prove that (6.13) admits a unique solution in the set

l1(α). First, from Proposition 6.1(i), the condition 1/α∈ Ĉ1 implies that there are K > 0

and γ > 1 such that αn ≤ 1/Kγn for all n. So α ∈ c0 and X ∈ l1(α) imply together

xn/αn = o(1) (n→∞) and xn =αno(1)= o(1) (n→∞), that is, X ∈ c0. Then for every

X = (xn)n≥1 ∈ l1(α),

Σ+
(
∆+X

)= ( ∞∑
k=n

(
xk−xk+1

))
n≥1

=X, (6.14)

and from (ii) we deduce that (6.13) admits in l1(α) the unique solution X = Σ+B. So we

have proved that ∆+ is bijective from l1(α) into itself.

Define now the operator ∆h for h real by

(
∆h
)
nm =


−h+n−m−1

n−m

 if m≤n,

0 otherwise.

(6.15)

See [3, 7]. Here we will see that when l1 is replaced by l1(α), we can study the set

l1(α)(∆h). So we obtain the following.

Theorem 6.5. Let α∈U+∗. Then

(i) for any given real h> 0, l1(α)(∆h)= l1(α) if and only if

αn

( ∞∑
m=n

(
h+m−n−1

m−n

)
1
αm

)
=O(1) (n �→∞); (6.16)

(ii) let h≥ 1 be an integer and p ≥ 1 a real. If α∈ Γ , then

lp(α)
(
∆h
)= lp(α). (6.17)

Proof. First ∆h ∈ (l1(α),l1(α)) if and only if (∆h)t = (∆+)h ∈ S1/α. So

αn

( ∞∑
m=n+1

∣∣∣∣∣
(−h+m−n−1

m−n

)∣∣∣∣∣ 1
αm

)
=O(1) (n �→∞). (6.18)
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On the other hand, Σh ∈ (l1(α),l1(α)) if and only if (∆−h)t = (∆+)−h ∈ S1/α. This means

that

αn

( ∞∑
m=n+1

(
h+m−n−1

m−n

)
1
αm

)
=O(1) (n �→∞). (6.19)

It can be easily seen that (6.19) implies (6.18), since for m>n∣∣∣∣∣
(−h+m−n−1

m−n

)∣∣∣∣∣= 1
(m−n)!

∣∣(−h+m−n−1)(−h+m−n−2)···(−h)∣∣
≤ 1
(m−n)! (h+m−n−1)(h+m−n−2)···(h).

(6.20)

This gives the conclusion.

Assertion (ii). It is enough to show (ii) for h= 1, because if ∆ is a one-to-one mapping

from lp(α) to lp(α), it is the same for ∆h, h being an integer. If we put

l= lim
n→∞

(
αn−1

αn

)
< 1 (6.21)

for given ε0, such that 0< ε0 < 1−l, there exists N0 such that

sup
n≥N0+1

(
αn−1

αn

)
≤ l+ε0 < 1. (6.22)

Consider now the infinite matrix

Σ(N0)
α =



[
∆(N0)
α

]−1
0

1

0 1
. . .

 , (6.23)

∆(N0)
α being the finite matrix whose entries are those of ∆α = D1/α∆Dα for n,m ≤ N0.

We get

Q= Σ(N0)
α ∆α =

(
qnm

)
n,m≥1, (6.24)

with

qnm =


1 for m=n,
− αm
αm+1

for m=n−1≥N0,

0 otherwise.

(6.25)

For every X ∈ lp we get

(I−Q)X =
(

0, . . . ,0,
αN0

αN0+1
xN0 , . . . ,

αn−1

αn
xn−1, . . .

)t
, (6.26)
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where αN0xN0/αN0+1 is in the (N0+1)th position. So

∥∥(I−Q)X∥∥plp = ∞∑
n=N0+1

(
αn−1

αn

)p∣∣xn−1|p ≤ sup
n≥N0+1

[(
αn−1

αn

)p]( ∞∑
n=N0

∣∣xn∣∣p
)
,

‖I−Q‖�(lp) = sup
X≠0

(∥∥(I−Q)X∥∥lp
‖X‖lp

)
≤
[

sup
n≥N0+1

(
αn−1

αn

)p]1/p

.

(6.27)

Since αn−1/αn ≤ l+ε0 < 1 for all n≥N0+1, we deduce

sup
n≥N0+1

(
αn−1

αn

)p
< 1. (6.28)

Hence ‖I−Q‖�(lp) < 1. We have shown thatQ is invertible in �(lp). Now let B ∈ lp . The

equations ∆αX = B andQX = Σ(N0)Y are equivalent in lp . SinceQ−1 ∈�(lp), we deduce

from Theorem 4.2(iii) that for every X ∈ lp , Q−1(QX)= (Q−1Q)X = X = (∆α)−1B. This

proves that the map ∆α is bijective from lp to lp and ∆ is bijective from lp(α) to lp(α).

Remark 6.6. Note that we also have 1/α∈ Ĉ+1 if and only if l1(α)(∆)= l1(α). Indeed

the conditions ∆∈ (l1(α),l1(α)) and Σ∈ (l1(α),l1(α)) are equivalent to ∆+ ∈ S1/α and

Σ+ ∈ S1/α, that is,

αn
αn−1

=O(1), αn

( n∑
k=1

1
αk

)
=O(1) (n �→∞). (6.29)

From the inequality αn/αn−1 ≤ αn(
∑n
k=1 1/αk) for all n, we conclude that 1/α ∈ Ĉ+1 if

and only if l1(α)(∆)= l1(α).
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