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The steady two-dimensional stagnation point flow of a non-Newtonian Walters’ B’ fluid with
slip is studied. The fluid impinges on the wall either orthogonally or obliquely. A finite
difference technique is employed to obtain solutions.
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1. Introduction. Some rheologically complex fluids such as polymer solutions,

blood, paints, and certain oils cannot be adequately described by the Navier-Stokes

theory. For this reason, several theories of non-Newtonian fluids were developed. One

important and useful model which has been used to describe the non-Newtonian behav-

ior exhibited by certain fluids is the Walters’ B’ fluid [16]. The equations of motion of

non-Newtonian fluids are highly nonlinear and one order higher than the Navier-Stokes

equations. Due to the complexity of these equations, finding accurate solutions is not

easy.

One class of flows which has received considerable attention is stagnation-point flow.

In a stagnation-point flow of a Newtonian fluid, a rigid wall occupies the entire x-axis,

the fluid domain is y > 0, and the flow impinges on the wall either orthogonally [6, 7]

or obliquely [4, 14, 15]. In a study of Newtonian fluid impinging on a flat rigid wall

obliquely, Dorrepaal [4] found that the slope of the dividing streamline at the wall

divided by its slope at infinity is independent of the angle of incidence. Beard and Wal-

ters [2] used boundary-layer equations to study two-dimensional flow near a stagnation

point of a viscoelastic fluid. Rajagopal et al. [11] have studied the Falkner-Skan flows

of an incompressible second grade fluid. Dorrepaal et al. [5] investigated the behavior

of a viscoelastic fluid impinging on a flat rigid wall at an arbitrary angle of incidence.

Labropulu et al. [9] studied the oblique flow of a second grade fluid impinging on a

porous wall with suction or blowing.

In a recent paper, Wang [17] studied stagnation-point flows with slip. This problem

appears in some applications where a thin film of light oil is attached to the plate or

when the plate is coated with special coatings such as a thick monolayer of hydropho-

bic octadecyltrichlorosilane [3]. Also, wall slip can occur if the working fluid contains

concentrated suspensions [13].

When the molecular mean free path length of the fluid is comparable to the system’s

characteristic length, then rarefaction effects must be considered. The Knudsen number

Kn, defined as the ratio of the molecular mean free path to the characteristic length

of the system, is the parameter used to classify fluids that deviate from continuum
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behavior. If Kn > 10, it is free molecular flow, if 0.1 < Kn < 10, it is transition flow, if

0.01<Kn < 0.1, it is slip flow, and if Kn < 0.01, it is viscous flow (see Wang [17], Kogan

[8]). Flows in the slip-flow region have been modeled using the Navier-Stokes equations

and the traditional nonslip condition is replaced by the slip condition

ut =Ap ∂ut∂n , (1.1)

whereut is the tangential velocity component,n is normal to the plate, andAp is a coef-

ficient close to 2(mean free path)/
√
π (see Sharipov and Seleznev [12]). This condition

was first proposed by Navier [10] nearly two hundred years ago.

In the present study, we follow Wang [17] and investigate the behavior of the Wal-

ters’ B’ fluid impinging on a rigid wall with slip. The fluid impinges on the wall either

orthogonally or obliquely. In particular, we study the effects of the slip condition and

the effects of viscoelasticity of the fluid.

2. Flow equations. The two-dimensional flow of a viscous incompressible non-

Newtonian Walters’ B’ fluid, neglecting thermal effects and body forces, is governed

by (see Beard and Walters [2]):
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(2.1)

whereu∗=u∗(x∗,y∗), v∗ = v∗(x∗,y∗) are the velocity components,p∗=p∗(x∗,y∗)
is the pressure, ν = µ/ρ is the kinematic viscosity, and α is the viscoelasticity of the

fluid. The star on a variable indicates its dimensional form. We nondimensionalize the

above equations according to

x = x∗
√
β
ν
, y =y∗

√
β
ν
,
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νβ
u∗, v = 1√

νβ
v∗, p = 1

ρνβ
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(2.2)
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where β has the units of inverse time. The flow equations in nondimensional form are
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∂x
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= 0, (2.3)
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(2.5)

where We is the Weissenberg number.

Continuity equation (2.3) implies the existence of a streamfunctionψ(x,y) such that

u= ∂ψ
∂y
, v =−∂ψ

∂x
. (2.6)

Substitution of (2.6) in (2.4) and (2.5) and elimination of pressure from the resulting

equations using pxy = pyx yields

∂
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)
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+∇4ψ= 0. (2.7)

Having obtained a solution of (2.7), the velocity components are given by (2.6) and the

pressure can be found by integrating (2.4) and (2.5).

The shear stress component τ12 is given by

τ12 = µβ
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(2.8)

3. Orthogonal flow. We assume that the infinite plate is at y = 0 and that the fluid

occupies the entire upper half-plane y > 0. Furthermore, we assume that the stream-

function far from the wall is given by ψ = xy (see Hiemenz [7]). Thus, the nondimen-

sional boundary conditions are given by

∂ψ
∂x

= 0 at y = 0, ψ(x,y)∼y as y �→∞. (3.1)

The slip condition in (1.1) is

∂ψ
∂y

= γ ∂
2ψ
∂y2

, (3.2)

where γ =Ap
√
βν is a parameter representing the slip to viscous effects.
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Table 3.1. Numerical values of F ′′(0) for various values of We and γ.

γ
We

0 0.1 0.2 0.3
0 1.23259 1.36954 1.58730 2.11092

0.2 1.04258 1.14323 1.29803 1.63401

0.4 0.88634 0.95916 1.06657 1.27238

0.6 0.76428 0.81807 0.89459 1.02828

0.8 0.66896 0.70984 0.76634 0.85879

1 0.59346 0.62537 0.66850 0.73581

2 0.37588 0.38834 0.40415 0.42609

5 0.17726 0.17995 0.18319 0.18731

10 0.09402 0.094776 0.09565 0.09674

20 0.04847 0.04866 0.04889 0.04917

Following Wang [17], we assume that

ψ= xF(y). (3.3)

Using (3.3) in (2.7) and the boundary conditions (3.1) and (3.2), we obtain

F(iv)+FF ′′′ −F ′F ′′ +We
(
FF(v)−F ′F(iv))= 0, (3.4)

F(0)= 0, F ′(0)= γF ′′(0), F ′(∞)= 0, (3.5)

where the prime denotes differentiation with respect toy . Integration of (3.4) once with

respect to y and use of the condition at infinity yields

F ′′′ +FF ′′ −F ′2+We
(
FF(iv)−2F ′F ′′′ +F ′′2)=−1,

F(0)= 0, F ′(0)= γF ′′(0), F ′(∞)= 0.
(3.6)

The above system with γ = 0 has been solved by many authors for various values

of We (see Beard and Walters [2], Ariel [1]). When We = 0, the above system has been

solved numerically by Wang [17] for various values of γ. Using the shooting method

with the finite difference technique described by Ariel [1], we find that F ′′(0)= 1.23259

when We = 0 and γ = 0. Numerical values of F ′′(0) for different values of We and γ are

shown in Table 3.1. Figure 3.1 shows the profiles of F ′ for γ = 0 and various values of

We. Figure 3.2 depicts the profiles of F ′ for γ = 1 and various values of We. Figure 3.3

shows the profiles of F ′ for We = 0.2 and various values of γ. Figure 3.4 depicts the

profiles of F for We = 0.2 and various values of γ. We observe that as the elasticity

of the fluid increases, the velocity near the wall increases and as the slip parameter γ
increases the velocity near the wall increases as well.

For large y , we find that

F ≈y+C, (3.7)
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Figure 3.1. Variation of F ′(y) for γ = 0 and various values of We.
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Figure 3.2. Variation of F ′(y) for γ = 1 and various values of We.

where the numerical values of C are shown in Table 3.2 for various values of We and γ.

The numerical results are in good agreement with those of Wang [17] if We = 0 and

those of Ariel [1] if γ = 0.
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Figure 3.3. Variation of F ′(y) for We = 0.2 and various values of γ.
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Table 3.2. Numerical values of C for various values of We and γ.

γ
We

0 0.1 0.2 0.3
0 −0.65086 −0.55952 −0.44641 −0.26445

0.2 −0.49199 −0.40368 −0.29665 −0.13110

0.4 −0.39045 −0.30926 −0.21462 −0.08016

0.6 −0.32210 −0.24848 −0.16585 −0.05625

0.8 −0.27359 −0.20683 −0.13433 −0.04289

1 −0.23757 −0.17677 −0.11255 −0.03449

2 −0.14297 −0.10161 −0.06152 −0.01716

5 −0.06513 −0.04433 −0.02583 −0.00675

10 −0.03416 −0.02282 −0.01311 −0.00334

20 −0.01752 −0.01157 −0.00660 −0.00166

The Maclaurin series expansion for F(y) is given by

F(y)= γsy+ 1
2
sy2− 1

6
1+Wes2−γ2s2

1−2Weγs
y3, (3.8)

where the values of F ′′(0)= s are given in Table 3.1.

4. Oblique flow. Following Stuart [14], we assume that the streamfunction far from

the wall is given by

ψ(x,y)∼ ky2+xy, (4.1)

where k is a constant. The dividing streamline which comes from the wall from infinity

is defined by ψ(x,y)= 0 and its slope at infinity is −1/k. Equation (4.1) suggests that

ψ(x,y) has the form

ψ(x,y)= xF(y)+G(y). (4.2)

The boundary conditions for F(y) and G(y) are

F(0)= 0, F ′(0)= γF ′′(0), G(0)= 0, G′(0)= γG′′(0),
F(y)∼y, G(y)∼ ky2 as y �→∞. (4.3)

Employing (4.2) in (2.7), we obtain an equation which contains terms of O(x) and O(1).
The terms of O(x) yield an ordinary differential equation for F(y) and the terms of

O(1) yield an equation for G(y).
After one integration the boundary-value problem for F(y) is

F ′′′ +FF ′′ −F ′2+We
(
FF(iv)−2F ′F ′′′ +F ′′2)=−1,

F(0)= 0, F ′(0)= γF ′′(0), F ′(∞)= 1.
(4.4)

Numerical solutions of this system were obtained in the previous section for various

values of We and γ.
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Table 4.1. Numerical values of H′(0) for various values of We and γ.

γ
We

0 0.1 0.2 0.3
0 1.40651 1.46151 1.55278 1.70295

0.2 1.09256 1.11018 1.14278 1.18676

0.4 0.87851 0.87714 0.88073 0.87935

0.6 0.72934 0.71877 0.70902 0.69089

0.8 0.62139 0.60642 0.59064 0.56662

1 0.54037 0.52337 0.50500 0.47934

2 0.32534 0.30824 0.29044 0.26913

5 0.14793 0.13698 0.12677 0.11561

10 0.07757 0.07100 0.06527 0.05919

20 0.03977 0.03615 0.03311 0.02995

The boundary-value problem for G(y) is given by

G(iv)+FG′′′ −F ′′G′ +We
(
FG(v)−F(iv)G′)= 0, (4.5)

G(0)= 0, G′(0)= γG′′(0), G′(∞)= 2ky. (4.6)

Integration of (4.5) once with respect to y using the conditions at infinity yields

G′′′ +FG′′ −F ′G′ +We
(
FG(iv)−F ′G′′′ +F ′′G′′ −F ′′′G′)= 2kC, (4.7)

where the values of C are given in Table 3.2.

Letting G′(y)= 2kH(y), we obtain

H′′ +FH′ −F ′H+We
(
FH′′′ −F ′H′′ +F ′′H′ −F ′′′H)= C. (4.8)

The boundary conditions for H(y) are

H(0)= γH′(0), H′(∞)= 1. (4.9)

Equation (4.8) with boundary conditions (4.9) is solved numerically using the same

numerical technique as in the previous section. The numerical values ofH′(0) are given

in Table 4.1 for various values of We and γ. These values are in good agreement with

those obtained by Wang [17] for We = 0. Figure 4.1 shows the profiles of H′ for γ = 1

and various values of We. Figure 4.2 depicts the profiles of H′ for We = 0.2 and various

values of γ. It can be observed that as the slip parameter γ increases the values of H′

near the wall decreases.

The Maclaurin series for G(y) is given by

G(y)= 2kγλy+kλy2+ k
3
(
1−Weγs

)[C+γ2sλ−Weλ
(
s+ γ

(
1−γ2s2+Wes2

)
1−2Weγs

)]
y3,

(4.10)

where H′(0)= λ are given in Table 4.1 for various values of γ and We.
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Figure 4.1. Variation of H′(y) for γ = 1 and various values of We.
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5. Conclusions. The behavior of the Walters’ B’ fluid impinging on a rigid wall with

slip was examined. The fluid impinges on the wall either orthogonally or obliquely. It

was found that the effects of the slip condition and the viscoelasticity were to increase

the velocity near the wall.
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