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S of infinitely differentiable functions rapidly decaying at infinity.
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1. Introduction, notation, and results. Vlasov equation and its various modifica-

tions are classical equations of physics. They appear in the mean-field approximations

of the dynamics of a large number of interacting classical particles (molecules). Cur-

rently, there is a numerous literature devoted to its mathematical treatments. In par-

ticular, in [2, 5, 7, 12] a well-posedness for this equation supplied with initial data and

its derivation from molecular dynamics are considered in the case when the potential

of interactions between particles is smooth and bounded. In [1, 3, 6, 8, 10, 11, 13, 15],

this equation is studied for the singular Coulomb potential U(r)=±r−1 (in [6, 13], the

Vlasov-Maxwell system and the two-dimensional Vlasov-Poisson system are considered,

respectively). In [9], the local existence of smooth solutions in the case U(r)=±r−2 is

studied. We also mention paper [14] where a well-posedness of this equation supplied

with a joint distribution of particles at two moments of time is proved.

In the present paper, we consider the problem

∂
∂t
f +v ·∇xf +∇vf ·E(x,t)= 0, f = f(t,x,v), t ∈R, (x,v)∈R3×R3, (1.1)

E(x,t)=
∫
R3×R3

∇U(x−y)f(t,y,v)dydv, U(x)= κ|x|−2, κ =±1, (1.2)

f(0,x,v)= f0(x,v), (1.3)

where all quantities are real, x,v ∈ R3, κ is a constant, ∇x and ∇v are the gradients

in x and v , respectively, v ·∇xf and ∇vf ·E(x,t) are the scalar products in R3, and

f is an unknown function. For any fixed t, f(t,x,v) regarded as a function of (x,v)
has the sense of a distribution function of particles in (x,v)∈R3×R3. Therefore, the

following requirements are natural:

f(t,·,·)≥ 0,
∫
R3×R3

f(t,x,v)dxdv = 1, ∀t ∈R. (1.4)

Generally speaking, it is known that proving the existence of a solution for problem

(1.1), (1.2), (1.3), and (1.4) is more difficult for a singular potential U than for a more
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regular one. Also, although the Vlasov equation appeared for the first time with the

Coulomb potential U(r) = ±r−1 for a description of plasma, it is well known that in

statistical physics potentials with higher singularities occur, for example, the follow-

ing one, the so-called Lennard-Jones potential, is known: U(r)= Ar−12−Br−6. So, the

author of the present paper believes that considerations of Vlasov equations for po-

tentials with singularities of degrees higher than r−1 make sense. Here we consider

the case U(r)=±r−2 proving the existence and uniqueness of a local smooth solution

of the problem (1.1), (1.2), (1.3), and (1.4). This case is critical in a sense. A treatment

of the problem in the case U(r) = r−2−a with a > 0 is still left open. As for the case

U(r) = r−a with a ∈ (1,2), here the problem becomes simpler, and our methods still

hold for it.

The existence and uniqueness of a smooth solution of problem (1.1), (1.2), (1.3), and

(1.4) is proved in [9]. In fact, we prove a similar result by using another method that

allows to treat the problem in a simpler and shorter way. We do not exploit the known

method of characteristics but we use an approach known in the theory of nonlinear

PDEs, too. Our results also hold for potentials of interaction of a more general kind

U(r)= κr−2+U1(r), where U1(r) is a function continuously differentiable everywhere

except maybe the point r = 0 where it may have a singularity of order |r |a−2 with

0<a< 2 and U1(r) must satisfy certain conditions of decay at infinity.

Now, we introduce some notation. Let

S=
{
g(x,v)∈C∞(R3×R3):∀ki,mi=0,1,2, . . . , sup

(x,v)∈R3×R3
|x|k1|v|k2

∣∣∣∣∂m1+m2g(x,v)
∂xm1∂vm2

∣∣∣∣<∞
}
.

(1.5)

The linear space S is equipped with a topology of open subsets becoming a complete

topological space. This topology is generated by the system of seminorms

pk,m(g)=


∫
R3×R3

(
1+|x|2)k1

(
1+|v|2)k2

3∑
i=1

(
∂mg(x,v)
∂xmi

)2

dxdv




1/2

, (1.6)

qk,m(g)=


∫
R3×R3

(
1+|x|2)k1

(
1+|v|2)k2

3∑
i=1

(
∂mg(x,v)
∂vmi

)2

dxdv




1/2

, (1.7)

where k = (k1,k2) with ki,m = 0,1,2, . . . . By C(I;S), where I ⊂ R is an interval, we

denote the linear space of all continuous functions g : I → S such that each seminorm

pk,m(g(t)) and qk,m(g(t)) is bounded uniformly in t ∈ I.
Our main result here is the following.

Theorem 1.1. Let f0 ∈ S and satisfy (1.4). Then, there exists T > 0 such that problem

(1.1), (1.2), (1.3), and (1.4) has a unique local solution f(t,x,v) satisfying f(t,·,·),f ′t (t,·,·)
∈ C([−T ,T];S).

Remark 1.2. As is shown in [4], if κ > 0, then problem (1.1), (1.2), (1.3), and (1.4)

possesses solutions blowing up in finite intervals of time. So, in this case, generally

speaking, solutions we consider can be not continuable onto the entire real line t ∈R.
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2. Proof of the theorem. Let ω(·) be a nonnegative even C∞-function in R3 with a

compact support satisfying
∫
R3ω(x)dx = 1 and let ωn(x) = n3ω(nx), n = 1,2,3, . . . .

Set Un(x)= (U�ωn)(x), where the star means the convolution. Consider the following

sequence of regularizations of problem (1.1), (1.2), (1.3), and (1.4):

fnt +v ·∇xfn+∇vfn ·En(x,t)= 0, f n = fn(t,x,v), (2.1)

En(x,t)=
∫
R3×R3

∇Un(x−y)fn(t,y,v)dydv, (2.2)

fn|t=0 = f0 ∈ S, (2.3)

fn(t,·,·)≥ 0,
∫
R3×R3

fn(t,x,v)dxdv ≡ 1, n= 1,2,3, . . . . (2.4)

The following statement is a corollary of results in [2, 5, 7, 12].

Proposition 2.1. For each n, problem (2.1), (2.2), (2.3), and (2.4) has a unique global

solution fn(t,x,v) that for any t0>0 belongs to C((−t0, t0);S) together with fnt
′(t,x,v).

Denote (Tng)(x)=
∫
R3×R3∇Un(x−y)g(y,v)dydv , where g ∈ S. Note that

∂m
(
Tng

)
(x)

∂xm1
1 ∂xm2

2 ∂xm3
3

≡
(
Tn

(
∂mg(x,·)

∂xm1
1 ∂xm2

2 ∂xm3
3

))
(x), m=m1+m2+m3. (2.5)

Lemma 2.2. There exists C > 0 such that ‖(Tng)‖L2(R3) ≤ Cp(0,2),0(g) for all g ∈ S
and n.

Proof. As is well known, there exists C1 > 0 such that

∥∥∥∥∥
∫
R3×R3

∇U(x−y)h(y)dy
∥∥∥∥∥
L2(R3)

≤ C1‖h‖L2(R3) ∀h∈ S
(
R3). (2.6)

Also,

∫
R3×R3

∇Un(x−y)g(y,v)dydv =
∫
R3×R3

∇U(x−y)(ωn�x g
)
(y,v)dydv (2.7)

and ‖ωn�h‖L2(R3) ≤ ‖h‖L2(R3) for all h∈ S(R3). Hence, we have, for g ∈ S,

∥∥∥∥∥
∫
R3×R3

∇Un(x−y)g(y,v)dydv
∥∥∥∥∥
L2(R3)

≤ C1

∥∥∥∥∥
∫
R3
g(·,v)dv

∥∥∥∥∥
L2(R3)

= C1

∥∥∥∥∥
∫
R3

(
1+|v|2)g(·,v)dv(

1+|v|2)
∥∥∥∥∥
L2(R3)

≤ C
{∫

R3×R3

(
1+|v|2)2g2(x,v)dxdv

}1/2

= Cp(0,2),0(g).
(2.8)

Let [a] be the maximal integer not larger than a real a and let an integer m0 > 0 be

such that each Sobolev space Hl+m0(R3×R3) with a positive integer l is embedded into

Cl(R3×R3) (in fact, m0 > 3). Let m1 = 2m0+2. Everywhere k denotes k1+k2. In what
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follows, we exploit the following embeddings (g ∈ S):



∫
R3×R3

dxdv
(
1+|x|2)k1

(
1+|v|2)k2

(
∂lg

∂xni ∂v
r
j

)2



1/2

≤ C[pk,0(g)+pk,s(g)+qk,s(g)],
pk,m(g)≤ C

[
p(k,0),m(g)+p(0,k),m(g)

]
,

qk,m(g)≤ C
[
q(k,0),m(g)+q(0,k),m(g)

]
, m= 0,1,2, . . . ,

sup
(x,v)

(
1+|x|2)k1/2(1+|v|2)k2/2

∣∣∣∣∣∂
lg(x,v)
∂xni ∂v

r
j

∣∣∣∣∣≤ C[pk,0(g)+pk,m+l(g)+qk,m+l(g)],

sup
x



∫
R3

(
1+|x|2)k1

(
1+|v|2)k2

(
∂lg(x,v)
∂xni ∂v

r
j

)2

dv




1/2

≤ C[pk,0(g)+pk,l+m(g)+qk,l+m(g)],

(2.9)

where 0 ≤ l = n+ r ≤ s, i,j = 1,2,3, and m =m0,m0+1,m0+2, . . . . To prove them,

consider the partition ofR3×R3 by cubesKα defined by ri−1≤ xi ≤ ri, pj−1≤ vj ≤ pj ,
where ri, pj run over all integers. Observe that for any integer k1,k2 ≥ 0 there exist

0< c < C such that

c ≤ sup(x,v)∈Kα
(
1+|x|2)k1

(
1+|v|2)k2

inf(x,v)∈Kα
(
1+|x|2)k1

(
1+|v|2)k2

≤ C (2.10)

for all α. Now, inequalities (2.9) follow by standard Sobolev embeddings applied to each

cube Kα with further summing in α.

Lemma 2.3. There exist T > 0 and C > 0 such that

p2
(0,2),0

(
fn(t,·,·))+p2

(0,2),m1

(
fn(t,·,·))+q2

(0,2),m1

(
fn(t,·,·))≤ C (2.11)

for all t ∈ [−T ,T] and all n= 1,2,3, . . . .

Proof. We derive our estimates only for t > 0 because the case t < 0 can be treated

by analogy. Integrating by parts in v using the independence of En(x,t) of v , estimat-

ing En(x,t) by p(0,2),0(fn(t,·,·))+p(0,2),m1(fn(t,·,·)) according to the Sobolev em-

bedding of Hm1(R3) into C(R3), Lemma 2.2, and the fact that ∂m1En(x,t)/∂xm1 =
Tn(∂m1fn(t,x,v)/∂xm1), and applying Hölder’s inequality, we have, from (2.1),

1
2
d
dt
p2
(0,2),0

(
fn(t,·,·))

=−
∫
R3×R3

(
1+|v|2)2fn(t,x,v)fnv

′(t,x,v)·En(x,t)dxdv

= 2
∫
R3×R3

(
1+|v|2)v ·En(x,t)(fn(t,x,v))2dxdv

≤ Cp2
(0,2),0

(
fn(t,·,·))[p(0,2),0(fn(t,·,·))+p(0,2),m1

(
fn(t,·,·))].

(2.12)
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Consider

1
2
d
dt
p2
(0,2),m1

(
fn(t,·,·))=−

∫
R3×R3

dxdv
(
1+|v|2)2

3∑
i,j=1

fn(m1)
xi (t,x,v)

×
m1∑
l=0

(
m1
l

) ∂l+1fn(t,x,v)
∂vj∂xli

∂m1−l

∂xm1−l
i

En,j(x,t).

(2.13)

To estimate the term with the (m1+1)st derivative of fn, we integrate by parts in v
and use the fact that En(x,t) does not depend on v . Also, as above, we estimate the

uniform norm of En(x,t) by p(0,2),0(fn(t,·,·))+p(0,2),m1(fn(t,·,·)) and apply Hölder’s

inequality. To estimate all other terms in the right-hand side of equation (2.13), ob-

serve that the order of one of the derivatives in (1+|v|2)(∂l+1fn(t,x,v)/∂vj∂xli) and

(∂m1−l/∂xm1−l
i )En,j(x,t) is not larger than m0+1 and therefore, either one has

∥∥∥∥∥∂
m1−lEn,j(x,t)

∂xm1−l
i

∥∥∥∥∥
C(R3)

≤ C[p(0,2),0(fn(t,·,·))+p(0,2),m1

(
fn(t,·,·))] (2.14)

or the estimate in the fourth string of (2.9) takes place; in addition, we estimate the

L2-norm of the other cofactor with the derivative of order larger than m0+1 by the

same quantity corresponding to it. So, applying Hölder’s inequality, we arrive at the

estimate

1
2
d
dt
p2
(0,2),m1

(
fn(t,·,·))

≤ Cp2
(0,2),m1

(
fn(t,·,·))[p(0,2),0(fn(t,·,·))+p(0,2),m1

(
fn(t,·,·))]

+
∣∣∣∣∣∣
∫
R3×R3

dxdv


m0+1∑

l=0

+
m1−1∑
l=m0+2


 3∑
i,j=1

(
1+|v|2)2

(
m1
l

)

×fn(m1)
xi (t,x,v)

∂l+1fn(t,x,v)
∂vj∂xli

∂m1−lEn,j(x,t)

∂xm1−l
i

∣∣∣∣∣∣
≤ Cp(0,2),m1

(
fn(t,·,·))

×[p(0,2),0(fn(t,·,·))+p(0,2),m1

(
fn(t,·,·))]

×[p(0,2),0(fn(t,·,·))+p(0,2),m1

(
fn(t,·,·))+q(0,2),m1

(
fn(t,·,·))].

(2.15)

Finally, we deduce by complete analogy

1
2
d
dt
q2
(0,2),m1

(
fn(t,·,·))

≤ C
[
p2
(0,2),0

(
fn(t,·,·))+p2

(0,2),m1

(
fn(t,·,·))+q2

(0,2),m1

(
fn(t,·,·))]

+
∣∣∣∣∣
∫
R3×R3

(
1+|v|2)2

3∑
i,j=1

∂vjf
n(m1)
vi (t,x,v)fn(m1)

vi (t,x,v)En,j(x,t)dxdv

∣∣∣∣∣
≤ C

[
p2
(0,2),0

(
fn(t,·,·))+p2

(0,2),m1

(
fn(t,·,·))+q2

(0,2),m1

(
fn(t,·,·))]

×[p(0,2),0(fn(t,·,·))+p(0,2),m1

(
fn(t,·,·))+1

]
.

(2.16)
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Now, in view of (2.12), (2.13), (2.14), (2.15), and (2.16), denoting A = p2
(0,2),0(fn) +

p2
(0,2),m1

(fn) and B = p2
(0,2),0(fn)+ q2

(0,2),m1
(fn), where p(0,2),0(fn) ≡ q(0,2),0(fn), we

obtain

Ȧ(t)≤ C1
(
1+A(t)+B(t))3/2,

Ḃ(t)≤ C2
(
1+A(t)+B(t))3/2,

(2.17)

and our claim is proved.

Lemma 2.4. There exist Ck > 0 such that pk,m1(fn(t,·,·)) + qk,m1(fn(t,·,·)) +
pk,0(fn(t,·,·))≤ Ck for all t ∈ [−T ,T] and all k1,k2,n= 1,2,3, . . . .

Proof. Again, we consider only the case t > 0. We have from (2.1)

1
2
d
dt
p2
(k,0),m1

(
fn(t,·,·))

≤ Ck
[
p2
(k,0),m1

(
fn(t,·,·))+p2

(0,k),m1

(
fn(t,·,·))]

+
∣∣∣∣∣∣
∫
R3×R3

(
1+|x|2)k× 3∑

i,j=1

fn(m1)
xi (t,·,·)


m0+1∑

l=0

+
m1−1∑
l=m0+2


(m1

l

) ∂l+1fn(t,·,·)
∂vj∂xli

× ∂
m1−lEn,j(x,t)

∂xm1−l
i

dxdv

∣∣∣∣∣∣.
(2.18)

As earlier, we apply the embeddings (2.9) and Hölder’s inequality and estimate the

uniform norm of those of two expressions (1+ |x|2)k/2(∂l+1fn(t,x,v)/∂vj∂xli) and

(∂m1−lEn,j(x,t)/∂x
m1−l
i ), the order of the derivative in which is not larger thanm0+1,

byC[p(k,0),0(fn(t,·,·))+p(k,0),m1(fn(t,·,·))+q(k,0),m1(fn(t,·))] orC[p(0,2),0(fn(t,·,·))
+p(0,2),m1(fn(t,·,·))], respectively. In this way, applying (2.9), we obtain as when prov-

ing Lemma 2.3

1
2
d
dt
p2
(k,0),m1

(
fn(t,·,·))

≤ Ck
[
p2
(k,0),m1

(
fn(t,·,·))+p2

(0,k),m1

(
fn(t,·,·))]

+Cp(k,0),m1

(
fn(t,·,·))[p(k,0),0(fn(t,·,·))+p(k,0),m1

(
fn(t,·,·))

+q(k,0),m1

(
fn(t,·,·))]

×[p(0,2),0(fn(t,·,·))+p(0,2),m1

(
fn(t,·,·))].

(2.19)
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By the complete analogy,

1
2
d
dt
p2
(0,k),m1

(
fn(t,·,·))

≤ C1
kp(0,k),m1

(
fn(t,·,·))[p(0,k),0(fn(t,·,·))+p(0,k),m1

(
fn(t,·,·))

+q(0,k),m1

(
fn(t,·,·))]

×[p(0,2),0(fn(t,·,·))+p(0,2),m1

(
fn(t,·,·))],

(2.20)

1
2
d
dt
q2
(k,0),m1

(
fn(t,·,·))≤ C2

k

[
p2
(k,0),0

(
fn(t,·,·))+p2

(0,k),0
(
fn(t,·,·))

+q2
(k,0),m1

(
fn(t,·,·))+q2

(0,k),m1

(
fn(t,·,·))], (2.21)

1
2
d
dt
q2
(0,k),m1

(
fn(t,·,·))

≤ C3
k

[
p2
(0,k),0

(
fn(t,·,·))+p2

(0,k),m1

(
fn(t,·,·))+q2

(0,k),m1

(
fn(t,·,·))]

+C3
kq

2
(0,k),m1

(
fn(t,·,·))[p(0,2),0(fn(t,·,·))+p(0,2),m1

(
fn(t,·,·))],

(2.22)

1
2
d
dt
p2
k,0
(
fn(t,·,·))≤ C4

k

[
p2
(k,0),0

(
fn(t,·,·))+p2

(0,k),0

(
fn(t,·,·))]

×[p(0,2),0(fn(t,·,·))+p(0,2),m1

(
fn(t,·,·))+1

]
.

(2.23)

Now, in view of (2.18), (2.19), (2.20), (2.21), (2.22), (2.23), Lemma 2.3, and the embeddings

(2.9), our result follows.

Lemma 2.5. There exist Ck,m > 0 such that pk,m(fn(t,·,·))+qk,m(fn(t,·,·)) ≤ Ck,m
for all n, k, m and t ∈ [−T ,T].

Proof. Again, we establish all our estimates only for t > 0. Let m ≥ 2m0 + 3. It

follows from (2.1) that

1
2
d
dt
p2
k,m

(
fn(t,·,·))

≤ Ck
[
p2
(k,0),0

(
fn(t,·,·))+p2

(0,k),0

(
fn(t,·,·))+p2

(k,0),m

(
fn(t,·,·))

+p2
(0,k),m

(
fn(t,·,·))]

+
∣∣∣∣∣∣
∫
R3×R3

(
1+|x|2)k1

(
1+|v|2)k2

3∑
i,j=1

fn(m)xi (t,x,v)

×

 ∂m+1fn

∂vj∂xmi
En,j(x,t)+


 [m/2]∑

l=0

+
m−1∑

l=[m/2]+1




×
(
m
l

) ∂l+1fn(t,x,v)
∂vj∂xli

∂m−lEn,j(x,t)
∂xm−li

dxdv



∣∣∣∣∣∣.

(2.24)

The first term in the integrand in the right-hand side of this relation can be estimated

as when proving Lemma 2.3: we integrate by parts in v and apply the estimate

∥∥En,j(·, t)∥∥C(R3) ≤ C
[
p(0,2),0

(
fn(t,·,·))+p(0,2),m0

(
fn(t,·,·))]. (2.25)
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As for the other terms in the integrand in (2.24), again, the order of one of two deriva-

tives in (1+|x|2)k1/2(1+|v|2)k2/2(∂l+1fn(t,x,v)/∂vj∂xli) and (∂m−lEn,j(x,t)/∂xm−li )
is not larger than [m/2]+1 and so, the uniform norm of the corresponding expres-

sion can be estimated by C[pk,0(fn(t,·,·))+pk,m−1(fn(t,·,·))+qk,m−1(fn(t,·,·))] or

C[p(0,2),0(fn(t,·,·))+p(0,2),m−1(fn(t,·,·))], respectively; the L2-norm of the other co-

factor can be estimated in a similar way. So, as earlier, applying Hölder’s inequality, we

arrive at the estimate

1
2
d
dt
p2
k,m

(
fn(t)

)
≤ C1

[
p2
(k,0),0

(
fn(t,·,·))+p2

(0,k),0

(
fn(t,·,·))+p2

(k,0),m

(
fn(t,·,·))

+p2
(0,k),m

(
fn(t,·,·))]

+C2p2
k,m

(
fn(t,·,·))[p(0,2),m0

(
fn(t,·,·))+p(0,2),0(fn(t,·,·))]

+C2pk,m
(
fn(t,·,·))[pk,0(fn(t,·,·))+pk,m−1(fn(t,·,·)

)+qk,m−1
(
fn(t,·,·))]

×[p(0,2),0(fn(t,·,·))+p(0,2),m(fn(t,·,·))]
+C2pk,m

(
fn(t,·,·))[pk,0(fn(t,·,·))+pk,m(fn(t,·,·))+qk,m(fn(t,·,·))]

×[p(0,2),0(fn(t,·,·))+p(0,2),m−1
(
fn(t,·,·))].

(2.26)

By complete analogy

1
2
d
dt
q2
k,m

(
fn(t,·,·))

≤ C
[
p2
(k,0),0

(
fn(t,·,·))+p2

(0,k),0

(
fn(t,·,·))+q2

(k,0),m

(
fn(t,·,·))

+q2
(0,k),m

(
fn(t,·,·))]

+C
[
q2
(k,0),m

(
fn(t,·,·))+q2

(0,k),m

(
fn(t,·,·))]

×[p(0,2),0(fn(t,·,·))+p(0,2),m0

(
fn(t,·,·))].

(2.27)

Now, the statement of our lemma follows from (2.26), (2.27), and Lemmas 2.3 and 2.4

by induction.

In view of Lemmas 2.2, 2.3, 2.4, and 2.5 and (2.1), the sequences {fn} and {dfn/dt}
are relatively compact in C([−T ,T];S). Without loss of generality, we can accept that

these sequences converge and let f(t,x,v) and f1(t,x,v) be their limit points in this

sense. Clearly, f ′t (t,x,v)≡ f1(t,x,v) and f satisfies problem (1.1), (1.2), (1.3), and (1.4).

Now, we prove the uniqueness of this solution. Assume the existence of two solutions

f1 and f2 of the above class and set f = f1−f2. As earlier, we establish our estimates

only for t > 0. One can obtain, as when proving Lemmas 2.3 and 2.4,

d
dt
p2
(0,2),0

(
f(t,·,·))≤ Cp2

(0,2),0
(
f(t,·,·)), (2.28)

therefore f(t,x,v)≡ 0 for all t ∈ [0,T ], which completes our proof of the theorem.
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