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ON THE EDGE SET OF GRAPHS OF LATTICE PATHS
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This note explores a new family of graphs defined on the set of paths of the m×n lattice.
We let each of the paths of the lattice be represented by a vertex, and connect two vertices
by an edge if the corresponding paths share more than k steps, where k is a fixed parameter
0= k=m+n. Each such graph is denoted by G(m,n,k). Two large complete subgraphs of
G(m,n,k) are described for all values ofm, n, and k. The size of the edge set is determined
for n = 2, and a complicated recursive formula is given for the size of the edge set when
k= 1.
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1. Introduction. A classic combinatorial problem, presented in nearly every intro-

ductory text, is enumerating the number of distinct paths on an m×n rectangular lat-

tice. For the purposes of this note, we let m denote the number of rows and n denote

the number of columns of rectangular cells in the lattice.

This problem is often modelled as walking along a rectangular grid of square city

blocks. Following Gillman [2], we say two paths are essentially the same, or (k+ 1)-
equivalent, if they share more than k steps (or, conversely, they are k-distinct if they

share no more than k steps). Paths are denoted as a sequence of m North steps and n
East steps on the lattice (N and E, respectively). Also, without loss of generality, allow

m ≥ n due to the symmetry of the lattice. For simplicity, we let C denote
(m+n

n
)

and

will let {P1,P2, . . . ,PC} denote the set of all paths on the m×n lattice, with paths listed

in reverse lexicographic order.

The set of all paths on the m×n lattice, denoted as L(m,n), can be viewed as the

vertices of a graph. The edges of the graph will connect those paths that are (k+1)-
equivalent. This graph is denoted as G(m,n,k), and its edge set is E(m,n,k).

2. Barrier paths. This section describes two complete subgraphs of G(m,n,k).

Definition 2.1. In L(m,n), the paths of the forms Nk+1 EnNm−(k+1) and Ek+1 Nm

En−(k+1) are called barrier paths and denoted as Pyk and Pxk , respectively, when the

paths of the m×n lattice are listed in reverse lexicographic order.

Result 2.2. The index yk is found by

yk =
(
m+n−k−1

n

)
. (2.1)
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Proof. Pyk is of the form Nk+1 EnNm−(k+1) and encloses an (m−(k+1))×n sublat-

tice of L(m,n). Since Pyk is the final path in this sublattice, yk =
(m+n−k−1

n
)
.

Result 2.3. The index xk is found recursively by

xk =
(
m−k+n−1

m−1

)
+xk−1 with x0 =

(
m+n−1
m−1

)
+1. (2.2)

Proof. Px0 immediately follows the path Py0 . Since y0 =
(m+n−1

n
)

from Result 2.2,

it is easy to see that x0 =
(m+n−1

n
)+1.

Pxk follows any path of the form EkNEn−kNm−1. This means that Pxk−1 and Pxk−1

enclose an (n−k)× (m−1) sublattice of L(m,n), and xk−xk−1 =
(m−k+n−1

m−1

)
. Thus,

xk =
(m−k+n−1

m−1

)+xk−1.

Theorem 2.4. The sets A = {P1, . . . ,Pyk} and B = {Pxk , . . . ,PC} induce complete sub-

graphs of G(m,n,k).

Proof. Any path in A begins with (k+1) N steps. Thus, it follows that every path

in A is adjacent to every other path in the set. Therefore, A forms a complete subgraph

of G(m,n,k).
Likewise, any path in B begins with (k+1) E steps. Thus, it follows that every path

in B is adjacent to every other path in the set. Therefore, B forms a complete subgraph

of G(m,n,k).

It is important to note that neither of the induced subgraphs on A or B is necessarily

maximal. Consider the paths P = Ek(NE)m−1 N and Q = Nk(EN)n−1 E. P is adjacent to

every path in B and Q is adjacent to every path in A, so neither subgraph is maximal.

3. Some special cases. Brewer et al. [1] determined the size of G(m,1,k) in the

following theorem.

Theorem 3.1. If 0≤ k≤m−1,

∣∣E(m,1,k)
∣∣=

(
m−1

2

)
−
(
k+2

2

)
. (3.1)

Since the size of G(m,1,k) has been determined, we turn our attention to the size

of G(m,2,k) and begin by considering the extreme cases.

Definition 3.2. Let p(m,n,k) denote the number of pairs of paths in L(m,n) that

share exactly k steps. For k≥ 1,

p(m,n,k)= ∣∣E(m,n,k−1)
∣∣−∣∣E(m,n,k)

∣∣. (3.2)

Let E′X(Y) denote the set of pairs of paths, one in set X and the other in set Y , that

do not share any steps.
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Theorem 3.3. If m≥ 2,

∣∣E(m,2,0)
∣∣= 3

(
m+3

4

)
−
(
m+1

2

)
−2(m−1). (3.3)

Proof. Since the indices of the barrier paths are y0 =
(m+1

2

)
and x0 = y0 + 1 =(m+1

2

)+1, let A= {P1, . . . ,Py0} and B = {Px0 , . . . ,PC}.
There are

(C
2

)
possible edges in G(m,n,k). Since p(m,2,0) = |E′A(A)| + |E′B(B)| +

|E′A(B)|, that is, the total number of pairs of paths in L(m,2) that are disjoint, then

|E(m,2,0)| = (C2 )−p(m,2,0). It is clear that |E′A(A)| = |E′B(B)| = 0 by Theorem 2.4, so

we are left to find |E′A(B)|.
Px0 does not share any steps with any path of the form NiE2 Nm−i for 1 ≤ i ≤

m−1. Therefore, |E′A({Px0})| = m− 1. For B∗ = {Px|x0 + 1 ≤ x ≤ C − 1}, Px is of

the form ENm−(x−x0)ENx−x0 . Any Px does not share any steps with any path in the

(x−x0)×1 sublattice contained by P1 and the path of the form Nm−(x−x0)ENx−x0 E.

Thus, |E′A({Px})| = x−x0+1 and

∣∣E′A
(
B∗
)∣∣= m−1∑

x−x0=1

(
x−x0+1

)=
(
m
2

)
+m−1. (3.4)

PC does not share any steps with any path of the form NiENm−iE for 1 ≤ i ≤m. So

|E′A({PC})| =m.

The above cases have accounted for every path in B, so

p(m,2,0)= ∣∣E′A(B)
∣∣

=m−1+
(
m
2

)
+m−1+m

=
(
m+1

2

)
+2(m−1).

(3.5)

Since |E(m,2,0)| = (C2 )−p(m,2,0), through algebraic manipulation we have

∣∣E(m,2,0)
∣∣= 3

(
m+3

4

)
−
(
m+1

2

)
−2(m−1). (3.6)

Lemma 3.4. There are

(m+2
2 )−1∑
i=1

(i)−∣∣E(m,2,0)
∣∣ (3.7)

pairs of disjoint paths in an m×2 lattice.



3294 STEVEN KLEE ET AL.

Proof. There are
(m+2

2

)
vertices in G(m,2,k). The complete graph on these

(m+2
2

)
vertices has an edge for every pair of vertices, that is, for all pairs of paths in L(m,2).

There are
∑(m+2

2 )−1
i=1 i edges in the complete graph on

(m+2
2

)
vertices. Further, |E(m,2,0)|

is the number of edges in G(m,2,0) representing pairs of paths that share at least 1

step, that is, not disjoint. Therefore, the number of pairs of disjoint paths in L(m,2) is

the difference of these which are equal to

(m+2
2 )−1∑
i=1

(i)−∣∣E(m,2,0)
∣∣. (3.8)

Theorem 3.5.

∣∣E(m,2,1)
∣∣= ∣∣E(m,2,0)

∣∣−2

(
m
2

)
−2(3m−5). (3.9)

Proof. Since |E(m,2,0)| is the number of pairs of paths that share at least one step

and |E(m,2,1)| is the number of pairs of paths that share at least two steps in L(m,2),
|E(m,2,0)|− |E(m,2,1)| is the number of pairs of paths that share exactly one step.

Consider all the ways two paths can share exactly one edge in L(m,2). Notice that any

path must begin with either an N step or an E step and must end with either an N step

or an E step. There is exactly one pair of disjoint paths that share either their first or

last E step. Also, for every interior N step, of which there are m−2, there are two pairs

of disjoint paths. Now we only have to find the number of pairs of disjoint paths in

the (m−1)×2 sublattices consisting of paths that either begin or end with an N step.

Combining this result with Lemma 3.4, we have

∣∣E(m,2,0)
∣∣−∣∣E(m,2,1)

∣∣= 2+2(m−2)+2


(

m+1
2 )−1∑
i=1

(i)−∣∣E(m−1,2,0)
∣∣

. (3.10)

Through algebraic manipulation, we arrive at our final result

∣∣E(m,2,1)
∣∣= ∣∣E(m,2,0)

∣∣−2

(
m
2

)
−2(3m−5). (3.11)

A path has a corner whenever an N step is followed immediately by an E step, or

vice-versa. An N-E transposition consists of reversing the N and E steps at a corner. For

example, switching from ENNNEE to ENNENE is an N-E transposition, but switching

from ENNNEE to EEENNN is not.

Theorem 3.6. If m≥ 2,

∣∣E(m,2,m−1)
∣∣= 2

(
m+1

2

)
. (3.12)

Proof. Two vertices in G(m,2,m−1) share an edge if and only if their correspond-

ing paths in L(m,2) differ by exactly one N-E transposition. We will count all such pairs

of equivalent paths.



ON THE EDGE SET OF GRAPHS OF LATTICE PATHS 3295

Case 1 (P = EENm or P =Nm EE). Each of these paths has exactly one corner at which

to make an N-E transposition. Therefore, these paths yield two pairs of equivalent paths.

Case 2 (P = NiEENm−i, 0 < i < m, or P = ENm E). Each of these paths has exactly

two corners at which to make an N-E transposition. Further, notice that there arem−1

choices for i and only one path of the form ENm E, yielding 2m new pairs of equivalent

paths.

Case 3 (P = ENiENm−i or P =NiENm−iE, 0< i <m). Each of these paths has exactly

three corners at which to make an N-E transposition. Since there are 2(m−1) paths of

this form, there are 6(m−1) new pairs of equivalent paths.

Case 4. Consider the remaining paths of the form P = NiENj ENm−i−j , for i,j > 0

and i+j < m. Each of these paths has exactly four corners at which to make an N-E

transposition. Further, since there are
(m+2

2

)−2(m−1)−m−2 paths of this form, we

have 4(
(m+2

2

)−2(m−1)−m−2) new pairs of equivalent paths.

Thus, we have accounted for every path in L(m,2) in one of the cases above, and for

each path, we have counted all its equivalent paths. However, each pair of paths has

been counted exactly twice, one time for each path in the pairing. Therefore, the size of

G(m,2,m−1) is exactly half the number of pairs of equivalent paths counted above,

that is,

2
∣∣E(m,2,m−1)

∣∣= 2+2m+6(m−1)+4

((
m+2

2

)
−2(m−1)−m−2

)
,

∣∣E(m,2,m−1)
∣∣= 1+m+3(m−1)+2

((
m+2

2

)
−2(m−1)−m−2

)

= 2

(
m+1

2

)
.

(3.13)

4. The size of G(m,2,k). Now we are ready to develop a formula for the number of

edges in G(m,2,k) for all values of k. We begin with the following definition.

Definition 4.1. The number of pairs of paths, P1 and P2, in L(m,n) that share

exactly k steps given P1 begins with an N step and P2 begins with an E step is found by

the function g(m,n,k).

This definition gives us the following relationship.

Lemma 4.2.

p(m,2,k)= p(m−1,2,k−1)+p(m,1,k−1)+g(m,2,k). (4.1)

Proof. p(m−1,2,k−1) is the number of pairs of paths that share exactly k steps

given both paths begin with an N step, p(m,1,k−1) is the number of pairs of paths

that share exactly k steps given both paths begin with an E step, and, by definition,

g(m,2,k) is the number of pairs of paths that share exactly k steps given one path

begins with an N step and the other begins with an E step. Thus, all pairs of paths have

been accounted for.
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Lemma 4.3.

g(m,2,k)=m+(2m−1)(m−k−1)−3

(
m−k−1

2

)
. (4.2)

Proof. Begin by noting that

g(m,2,k)= g(m−1,2,k−1)+2(m−k)−3. (4.3)

g(m−1,2,k−1) is the number of pairs of paths sharing exactly k−1 steps, with one

path beginning with an N step and the other beginning with an E step, but both paths

ending with an N step. There are (m−k−2) ways for two paths to share exactly k N

steps on the interior of the lattice, and each of these sets of N steps results in two pairs

of paths that share exactly k N steps and are disjoint elsewhere. Also, there is one pair

of paths that share exactly k steps such that they share a final E step. This accounts for

all possible paths in g(m,2,k) and verifies that

g(m,2,k)= g(m−1,2,k−1)+2(m−k)−3. (4.4)

Also, from Lemma 4.2 and Theorems 3.3 and 3.5,

g(m,2,1)= p(m,2,1)−p(m−1,2,0)−p(m,1,0)

=m2+5m−10− 1
2

(
(m−1)2+5(m−1)−4

)−1

= 1
2

(
m2+7m−14

)
.

(4.5)

Thus, by back substitution on g(m,2,k)−g(m,2,k−1), we have

g(m,2,k)=m+(2m−1)(m−k−1)−3

(
m−k−1

2

)
. (4.6)

Theorem 4.4.

p(m,2,k)= k+1
2

(
m2+5m−(k+1)(k+4)

)
. (4.7)

Proof. We will proceed by induction. p(m,2,1)=m2+5m−10 is a direct result of

Theorem 3.5. Now assume p(m,2, i−1)= (i/2)(m2+5m−(i)(i+3)). From Lemma 4.2,

p(m,2, i)= p(m−1,2, i−1)+i+g(m,2, i)

= i+1
2

(
m2+5m−(i+1)(i+4)

)
.

(4.8)

Thus,

p(m,2,k)= k+1
2

(
m2+5m−(k+1)(k+4)

)
. (4.9)

This theorem leads directly to the result that we want, a general formula for |E(m,2,
k)|, which we now present as a corollary.
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Corollary 4.5. If m≥ 2 and k <m,

∣∣E(m,2,k)
∣∣= ∣∣E(m,2,0)

∣∣+3

(
k+3

4

)
+2k(k+2)+ 2k2(k+1)−k(k+3)m(m+5)

4
.

(4.10)

Proof. From Theorem 4.4, p(m,2,k)= ((k+1)/2)(m2+5m−(k+1)(k+4)). Thus,

∣∣E(m,2,k)
∣∣= ∣∣E(m,2,0)

∣∣+k−1∑
i=1

(
i+1

2

(
m2+5m−(i+1)(i+4)

))

= ∣∣E(m,2,0)
∣∣+3

(
k+3

4

)
+2k(k+2)+ 2k2(k+1)−k(k+3)m(m+5)

4
.

(4.11)

5. A small generalization. The following theorem suggests the increasing complex-

ity of the recursion formula as n increases.

Theorem 5.1.

∣∣E(m,n,1)
∣∣= ∣∣E(m,n,0)

∣∣−2


(

(
m+n−1
m

)
2

)
−∣∣E(m,n−1,0)

∣∣



−2


(

(
m+n−1

n

)
2

)
−∣∣E(m−1,n,0)

∣∣



−
m−1∑
j=1

n−2∑
i=1


2



((i+j

i

)
2

)
−∣∣E(i,j,0)

∣∣



×


((m−j+n−i−1

m−j
)

2

)
−∣∣E(m−j,n−i−1,0)

∣∣





−
m−2∑
j=1

n−1∑
i=1


2


(

(
i+j
i

)
2

)
−∣∣E(i,j,0)

∣∣



×

(

(
m−j+n−i−1

n−i
)

2

)
−∣∣E(m−j−1,n−i,0)∣∣




.

(5.1)

Proof. Notice that |E(m,n,0)| − |E(m,n,1)| is the number of distinct paths in

L(m,n) that share exactly one edge. In L(m,n), label an edge in terms of its distance

from the lower left corner (i.e., set the origin as the lower left corner). First, we will

count the pairs of paths that share exactly one E step.

(1) If two paths share an E step with label (0,j) and j > 0, they necessarily share at

least one N step as well. Thus, there are no pairs of paths that share exactly one E step

of this form. Similarly for sharing an E step with label (n−1,j) and j <m and for (i,j)
with (i≠ 0 or n−1) and (j = 0 or m).

(2) Now, count all pairs of paths that share exactly the E step (0,0). Clearly, this is the

same as the number of disjoint paths in L(m,n−1), that is,
((m+n−1

m
)

2

)
−|E(m,n−1,0)|.
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(m+n−1
m

)
is the number of paths in L(m,n−1), and

((m+n−1
m

)
2

)
in L(m,n−1). |E(m,

n−1,0)| is the number of pairs of paths that share at least one step in L(m,n−1).
Thus, this difference is what we claim it is. Similarly for pairs of paths that share the E

step (n−1,m). Thus, there are 2
(((m+n−1

m
)

2

)
−|E(m,n−1,0)|

)
that share exactly the

E step (0,0) or (n−1,m).
(3) Now, count all pairs of paths that share exactly an E step (i,j) that have not

already been considered. There are m−1 choices for i and n−2 choices for j. Then,

for each (i,j) pair, the number of pairs of paths that share this E step is twice the

number of disjoint pairs of paths in L(i,j) times the number of disjoint pairs of paths

in L(m−j,n−i−1), yielding

m−1∑
j=1

n−2∑
i=1


2



((i+j

i

)
2

)
−∣∣E(i,j,0)

∣∣




((m−j+n−i−1

m−j
)

2

)
−∣∣E(m−j,n−i−1,0)

∣∣





(5.2)

additional pairs of paths that share exactly one more E step.

Thus, there are

2


(

(
m+n−1
m

)
2

)
−∣∣E(m,n−1,0)

∣∣



+2
m−1∑
j=1

n−2∑
i=1


2



((i+j

i

)
2

)
−∣∣E(i,j,0)

∣∣




((m−j+n−i−1

m−j
)

2

)
−∣∣E(m−j,n−i−1,0)

∣∣





(5.3)

pairs of paths that share exactly one E step.

A similar argument shows that there are exactly

2


(

(
m+n−1

n

)
2

)
−∣∣E(m,n−1,0)

∣∣



+2
m−2∑
j=1

n−1∑
i=1


2



((i+j

i

)
2

)
−∣∣E(i,j,0)

∣∣




((m−j+n−i−1

n−i
)

2

)
−∣∣E(m−j−1,n−i,0)∣∣






(5.4)

pairs of paths in L(m,n) that share exactly one N step.

Combining the above two statements with some algebraic manipulation gives the

stated theorem.

6. Conclusion. There are many other properties of these graphs that we could in-

vestigate, but our immediate attention will be on finding |E(m,n,k)| in general and in a

closed form, and of the other invariants for this family of graphs. Of particular interest

is the independence number, which was the original question posed in Gillman [2].
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