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We study local bifurcations of critical periods in the neighborhood of a nondegenerate cen-
ter of a Liénard system of the form ẋ = −y + F(x), ẏ = g(x), where F(x) and g(x) are
polynomials such that deg(g(x)) ≤ 3, g(0) = 0, and g′(0) = 1, F(0) = F ′(0) = 0 and the
system always has a center at (0,0). The set of coefficients of F(x) and g(x) is split into
two strata denoted by SI and SII and (0,0) is called weak center of type I and type II, re-
spectively. By using a similar method implemented in previous works which is based on the
analysis of the coefficients of the Taylor series of the period function, we show that for a
weak center of type I, at most [(1/2)deg(F(x))]−1 local critical periods can bifurcate and
the maximum number can be reached. For a weak center of type II, the maximum number
of local critical periods that can bifurcate is at least [(1/4)deg(F(x))].

2000 Mathematics Subject Classification: 34C23, 37G10.

1. Introduction. During the last decades, there has been considerable interest in

studying the generalized Liénard system of the form

ẋ =−y+F(x), ẏ = g(x), (1.1)

or its equivalent form

ẋ =−y, ẏ = g(x)+f(x)y, (1.2)

where f(x)= F ′(x). The popularity is due to at least two reasons. First, it generalizes

many oscillation systems arising from applications. Second, many other systems can

be transformed into the form (1.1) or (1.2) (see [1]).

One of the most studied problems is to determine the number and relative configu-

ration of limit cycles of (1.1) in terms of the properties of F(x) and g(x). There is an

enormous literature on this problem, see, for example, [15] for more on these issues.

For the special class of system (1.2), where f(x) and g(x) are polynomials of degrees

at most n and m, respectively, there are also extensive studies of the cyclicity Ĥn,m,

that is, the maximum number of small amplitude limit cycles bifurcating from the fine

focus of (1.2). In [7], Christopher and Lynch give results for Ĥn,m when f(x) or g(x) is

quadratic or cubic polynomial.

The purpose of this paper is to examine the local bifurcations of critical periods in

the neighborhood of a nondegenerate center of system (1.1), where F(x) and g(x) are

polynomials such that deg(g(x)) ≤ 3, g(0) = 0, and g′(0) = 1, F(0) = F ′(0) = 0 and
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the system always has a center at (0,0). Let G(x)= ∫ x0 g(ξ)dξ, the center condition for

polynomial Liénard systems is given by the following theorem of Christopher (see [5]).

Theorem 1.1 [5]. If F(x) and g(x) are polynomials, then system (1.1) has a nonde-

generate center at (0,0) if and only if F(x) and G(x) are both polynomials of a polyno-

mial M(x) with M(0)=M′(0)= 0 and M′′(0)≠ 0.

The bifurcation of critical periods from centers of planar vector fields is an important

problem, because it is closely related to the monotonicity of periods of closed orbits

surrounding a center and subharmonic bifurcation for periodically forced systems.

Similar to Hilbert’s 16th problem, the following problem can be formulated.

Problem 1.2. Determine the maximum number �(n) of critical periods of polyno-

mial systems of degree n with nondegenerate centers in terms of n only.

While Problem 1.2 is still completely open, an easier problem is proposed.

Problem 1.3. Determine the maximum number �̃(n) of local critical periods bifur-

cating from a weak center of polynomial systems of degree n in terms of n only.

In 1989, Chicone and Jacobs (see [3]) developed a general theory of solving Problem

1.3 and proved that �̃(2) = 2. However, the problem for higher-degree systems is still

unsolved. A few classes of cubic systems studied in [10, 11, 13, 14] proved that �̃(3)≥ 4.

It is worth noting that some researchers have considered the global problem of bifurca-

tions of critical periods for some specific systems, see, for example, [9]. However, there

is still no general method of solving Problem 1.2.

The monotonicity of the period function of centers of system (1.2) or isochronicity

has been studied by several authors (see [12] and the references therein). Recently,

Christopher and Devlin [6] gave a complete classification for isochronous centers of

polynomial Liénard systems of degree 34 or less. However, there are only very few

studies on the number of critical periods that can bifurcate from the nondegenerate

center of (1.1) for the special case where F(x)≡ 0, which significantly simplifies matters

(see [3, 4]).

Under our assumption, deg(G(x))≤ 4 and by Theorem 1.1, both F(x) and G(x) are

polynomials of M(x), where M(x) is as in Theorem 1.1. Without loss of generality, we

assume that M′′(0) = 2. Thus, M(x) = x2 +O(x3) and deg(M(x)) ≤ 4. So, we write

M(x)= x2+b1x3+b2x4 and F(x), G(x) have the form

F =
n∑
k=1

akMk, G = 1
2
M+b0M2. (1.3)

Clearly, there are only 2 possibilities: b0 = 0 or b0 ≠ 0 and M(x) = x2. To unify these

two cases, we write system (1.1) into the following form:

ẋ =−y+
n∑
k=1

ak
(
x2+b1x3+b2x4)k, ẏ = x+ 3

2
b1x2+(b0+2b2

)
x3. (1.4)



CRITICAL PERIODS OF LIÉNARD SYSTEMS 3261

Thus, F(x) is as in (1.3) and g(x), G(x) are given below:

g(x)= x+ 3
2
b1x2+(b0+2b2

)
x3, G(x)= 1

2
M(x)+ 1

4
b0x4. (1.5)

For the coefficients (b0,b1,b2,a1, . . . ,an) we will use the abbreviation λ so that λk = bk
for k= 0,1,2 and λk+2 = ak for k= 1, . . . ,n. In particular, we have λ∈Rn+3. Then, from

Theorem 1.1 we have the following lemma.

Lemma 1.4. System (1.4) has a nondegenerate center at (0,0) if and only if the pa-

rameter value λ∈Rn+3 is in one of the following strata:

SI := {λ∈Rn+3 | λ0 ≠ 0, λ1 = λ2 = 0
}
, SII := {λ∈Rn+3 | λ0 = 0

}
. (1.6)

We say system (1.4) has a weak center of type I (resp., type II) if the system is non-

linear and λ∈ SI (resp., λ∈ SII ). Our main result is the following theorem.

Theorem 1.5. (1) System (1.4) has an isochronous center at the origin if and only

if b0 = (4/9)a2
0 and b1 = b2 = a1 = ··· = an = 0. At most n− 1 critical periods can

bifurcate from the nonlinear isochronous center and there are perturbations to produce

n−1 critical periods.

(2) If system (1.4) has a weak center of type I of finite order at the origin, then at most

n−1 critical periods can bifurcate from the weak center and there are perturbations to

produce n−1 critical periods.

(3) The maximum critical periods can bifurcate from a weak center of type II of system

(1.4) is at least n.

It is clear from Theorem 1.5 that there are no nonlinear isochronous centers inside

type II. For a weak center of type I, deg(F(x))= 2n, the maximum local critical periods

that can bifurcate are [(1/2)deg(F(x))]−1 and this upper bound can be attained. For a

weak center of type II, deg(F(x))= 4n, the maximum local critical periods can bifurcate

is at least [(1/4)deg(F(x))].
Our approach is similar to the one implemented in [3, 10, 11, 13]. It is based on the

analysis of the coefficients of the Taylor series of the period function. The Taylor coeffi-

cients of the period function have been computed and simplified by reduction modulo

a Gröbner basis using Maple for low degrees of F(x). This enables us to conjecture a

general pattern for the ideal generated by the coefficients over the polynomial ring of

the parameters. These conjectures are then proved rigorously using arguments similar

to those used by Bautin in [2] to determine the structure of ideal generated by focal

values of quadratic system.

This paper is organized as follows. Section 2.1 summarizes the general results by

Chicone and Jacobs (see [3]). Section 2.2 summarizes a recursive algorithm to compute

the period coefficients. Section 3 considers weak center of type I. Section 4 considers

weak center of type II. Section 5 is the proof of Theorem 1.5.
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2. Preliminary

2.1. Local critical periods of polynomial systems. Consider a family of planar or-

dinary differential systems with a nondegenerate center at the origin

ẋ =−y+p(x,y,ν), ẏ = x+q(x,y,ν), (2.1)

where p(x,y,ν) and q(x,y,ν) are polynomials of degree n in x and y , the parame-

ter ν = (ν1, . . . ,νm) ∈ Rm. The minimum period T(r ,ν) of the periodic orbit passing

through (r ,0) associated with the center of the above system for the parameter ν yields

the so-called period function T . Let P(r ,ν) = T(r ,ν)−2π . For ν∗ ∈ Rm, the origin is

called a weak center of finite order k if P(0,ν∗)= P ′(0,ν∗)= ··· = P(2k+1)(0,ν∗)= 0 and

P(2k+2)(0,ν∗)≠ 0, where the derivatives are taken with respect to r . The origin is called

an isochronous center if P(k)(0,ν∗)= 0 for all k≥ 0. A critical period is a period corre-

sponding to a solution of the equation Pr (r ,ν) = 0 as ν varies. A local critical period

is a period corresponding to a critical point of P(r ,ν) which arises from a bifurcation

from a weak center.

For ν∗ corresponding to a weak center, the function (r ,ν)� T(r ,ν) is analytic in a

neighborhood of (0,ν∗) and can be represented by its Taylor series

T(r ,ν)= 2π+
∞∑
k=2

pk(ν)r 2k, (2.2)

for |r | and |ν−ν∗| sufficiently small. Here, the period coefficients pk ∈ R[ν1, . . . ,νm],
the Noetherian ring of polynomials in the variables ν1, . . . ,νm and for any k≥ 1, p2k+1 ∈
(p2,p4, . . . ,p2k), the ideal generated by p2,p4, . . . ,p2k. In particular, for any ν , the first

k ≥ 1 such that pk(ν) ≠ 0 is even (see [3]). The theory of Chicone and Jacobs in [3] is

based on the analysis of the period coefficients. To state their theorems precisely, we

first introduce the following concept.

Definition 2.1 [11]. Let {χν}ν∈Rm be a family of systems with a center at the origin

and associated period coefficients p2k(ν). The family is said to satisfy condition (�)
if for any ν∗ ∈ V(p2,p4, . . . ,p2k) := {ν | p2i(ν) = 0, i = 1, . . . ,k}, p2k+2(ν∗) ≠ 0 and any

neighborhood W ⊂Rm of ν∗ in which p2k+2 ≠ 0, there exists ν′ ∈W such that

p2k(ν′)p2k+2(ν′) < 0, with ν′ ∈ V(p2,p4, . . . ,p2k−2
)
. (2.3)

The system χν∗ is said to satisfy condition (�k).

The following version of the theorems of Chicone and Jacobs [3] are given by

Rousseau and Toni in [11].

Finite-order bifurcation theorem. From weak centers of finite order k at the

parameter value ν∗, no more than k local critical periods bifurcate. Moreover, if the

family satisfies the condition (�) and if χν∗ satisfies the condition (�k), then there are

perturbations with exactly j local critical periods for any 0≤ j ≤ k.
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Isochrone bifurcation theorem. If the vector field (2.1) has an isochronous cen-

ter at the origin for the parameter value ν∗ and if for each integern≥ 1, the period coeffi-

cient p2n is in the ideal (p2,p4, . . . ,p2k,p2k+2) over the ringR{ν1, . . . ,νm}ν∗ of convergent

power series at ν∗, then at most k local critical periods bifurcate from the isochronous

center at ν∗. Moreover, if the family satisfies the condition (�) and if χν∗ satisfies the

condition (�k), then exactly j local critical periods bifurcate from the center at ν∗ for

any 0≤ j ≤ k.

2.2. The computation of the periodic coefficients. Let g0(x)= g(x)−x and trans-

form (1.4) to polar coordinates by x = r cosθ, y = r sinθ, and eliminating time yields

dr
dθ

= F(r cosθ)cosθ+g0(r cosθ)sinθ
1+(1/r)g0(r cosθ)cosθ−(1/r)F(r cosθ)sinθ

. (2.4)

Then, (2.4) is analytic and we assume the following expansion:

dr
dθ

=
∞∑
k=2

Ak(θ)rk,
dt
dθ

=
∞∑
k=0

Bk(θ)rk, (2.5)

where B0(θ)≡ 1. Let γξ be the closed orbit of (1.4), through (ξ,0). The period function

is given by

T(ξ,λ)=
∫
γξ
dt =

∫ 2π

0

dt
dθ
dθ = 2π+

∫ 2π

0

∞∑
k=1

Bk(θ)rkdθ, (2.6)

where r =r(θ,ξ,λ) is the solution of (1.4), with the initial condition r(0,λ)=ξ. r(θ,ξ,λ)
may be locally represented as a convergent power series in ξ:

r(θ,ξ,λ)=
∞∑
k=1

uk(θ,λ)ξk, (2.7)

where u1(0,λ) = 1 and uk(0,λ) = 0 for any k > 1 and λ. Substituting (2.7) into (2.5)

and comparing the coefficients of ξk, k ≥ 1, we obtain recursive equations for uk. For

example, the first 3 equations are given by

du1

dθ
= 0,

du2

dθ
=A2u2

1,
du3

dθ
=A3u3

1+2A2u1u2, (2.8)

which can be found by direct integration. From (2.6) and (2.7), we obtain a recursive

algorithm for computing the period coefficients p2, p4, . . . ,p2k, . . . . The algorithm can

be easily implemented in the computer algebra system Maple.

3. Weak center of type I. A weak center of type I corresponds to the case where

F(x) is a polynomial of degree 2n and system (1.4) has the following form:

ẋ =−y+
n∑
k=1

akx2k, ẏ = x+b0x3, (3.1)

where b0 ≠ 0. Direct computation with the aid of Maple yields the following lemma.



3264 ZHENGDONG DU

Lemma 3.1. The period coefficient p2 for (3.1) is given by p2 = (π/12)(4a2
1−9b0).

It is convenient to split the set SI as SI = SAI
⋃
SBI , where

SAI := {λ∈Rn+3 | λ0 < 0, λ1 = λ2 = 0
}
,

SBI := {λ∈Rn+3 | λ0 > 0, λ1 = λ2 = 0
}
.

(3.2)

Following our notation, we say system (1.4) has a weak center of type IA (resp., type

IB) if the system is nonlinear and λ ∈ SAI (resp., λ ∈ SBI ). We consider weak centers of

type IA and type IB separately. Obviously, p2 > 0 for b0 < 0 by Lemma 3.1. Thus, we

have the following theorem.

Theorem 3.2. A weak center of type IA has order 0 and no local critical periods can

bifurcate from a weak center of type IA.

Now, we discuss weak centers of type IB . In this case, the system has the same form

as (3.1) with b0 > 0. We have the following lemma.

Lemma 3.3. Suppose b0 > 0 in (3.1). Then, if b0 = (4/9)a2
1 and a2 = ··· = an = 0, the

origin is an isochronous center.

Proof. Since b0 > 0, the assumption of Lemma 3.3 implies that a1 ≠ 0. Perform

coordinate transformation (x,y)� ((2/3)a1x,(2/3)a1y), system (3.1) becomes

ẋ =−y+ 3
2
x2, ẏ = x+x3. (3.3)

It can be linearized by the change of coordinates (u,v)=(−2x/(x2−2y−2),(x2−2y)/
(x2−2y−2)) and has first integral F(x,y) = −4(2x2 − 2y − 1)/(x2 − 2y − 2)2. By

[8, Theorem 3.2], the origin is an isochronous center.

To simplify the computation, we scale system (3.1) so that b0 = 1. Then, system (3.1)

has the form

ẋ =−y+
n∑
k=1

akx2k, ẏ = x+x3. (3.4)

Lemma 3.4. If 2 ≤ k ≤ n, then the period coefficient p2k of system (3.4) has the

form p2k = βa1ak + q(a1, . . . ,ak−1), where β ≠ 0 is a constant and q(a1, . . . ,ak−1) ∈
R[a1, . . . ,ak−1].

Proof. The expansion (2.4) for system (3.4) is given by

dr
dθ

=
∑n
k=1

(
ak cos2k+1θ

)
r 2k+(cos3θ sinθ

)
r 3

1−∑n
k=1

(
ak cos2k θ sinθ

)
r 2k−1+(cos4θ

)
r 2

=
[ n∑
k=1

(
ak cos2k+1θ

)
r 2k+(cos3θ sinθ

)
r 3

]

·
[

1+
∞∑
m=1

(−1)m
( n∑
k=1

(
ak cos2k θ sinθ

)
r 2k−1+(cos4θ

)
r 2

)m]
.

(3.5)
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Similarly, we have

dt
dθ

= 1+
∞∑
m=1

(−1)m
[ n∑
k=1

(
ak cos2k θ sinθ

)
r 2k−1+(cos4θ

)
r 2

]m
. (3.6)

Obviously, for any j ≤ 2(k− 1), where 2 ≤ k ≤ n, the coefficients Aj and Bj in the

corresponding expansion (2.5) are independent of ak.
On the other hand, B1 = a1 sinθcos2θ and for 2≤ k≤n,

A2k = ak cos2k+1θ+Ã2k, B2k−1 = ak cos2k θ sinθ+ B̃2k−1,

B2k = 2a1ak cos2k+2θ sin2θ+ B̃2k,
(3.7)

where Ã2k, B̃2k−1, B̃2k are polynomials only depending on a1, . . . ,ak−1. Furthermore,

from (2.5) and (2.7), it is clear thatu1, . . . ,u2k−1 only depend on a1, . . . ,ak−1.u2k satisfies

the following initial value problem:

du2k

dθ
=A2ku2k

1 +Du2k , u2k(0,λ)= 0, (3.8)

where Du2k only depends on A1, . . . ,A2k−1 and u1, . . . ,u2k−1. Solving (3.8) yields u2k =
akPu2k(cosθ,sinθ)+ũ2k, where Pu2k(cosθ,sinθ) is a polynomial of cosθ and sinθ that,

independent of a1, . . . ,an, ũ2k, is a polynomial only depending on a1, . . . ,ak−1. Hence,

the period coefficient p2k can be computed as follows:

p2k(λ)=
∫ 2π

0

(
B1u2k+(2k−1)B2k−1u2k−2

1 u2+B2ku2k
1 + B̃u

)
dθ, (3.9)

where B̃u only depends on B2, . . . ,B2k−2 and u1, . . . ,u2k−1. Thus, p2k has the form p2k =
βa1ak+q(a1, . . . ,ak−1), where β≠ 0 is a constant and q(a1, . . . ,ak−1)∈R[a1, . . . ,ak−1].

Direct computation of period coefficients using the Gröbner base package of Maple

for n≤ 8 suggests the following Lemma which is proved rigorously.

Lemma 3.5. For system (3.4), the period coefficients p2k (k > 1), reduced modulo the

ideal generated byp2, . . . ,p2k−2 and omitting the constant factor, are given byp2k = a1ak
for 1 < k ≤ n and p2k = 0 for k > n. In particular, p2k ∈ (p2, . . . ,p2n), the ideal of the

polynomial ring R[a1,a2, . . . ,an].

Proof. We prove Lemma 3.5 by induction on k. By direct computation, we find that

p4 modulo the ideal generated by p2 is given by p4 = (2π/3)a1a2. Thus, Lemma 3.5 is

true for k= 2.

Now, assume that 2 ≤ k ≤ n and p4, . . . ,p2k−2, with each reduced modulo the ideal

generated by the previous coefficients, and omitting the constant factor are given by

p2j = a1aj (j = 2, . . . ,k−1). By Lemma 3.4, p2k = βa1ak+q(a1, . . . ,ak−1), where β≠ 0 is

a constant and q(a1, . . . ,ak−1)∈R[a1, . . . ,ak−1].
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Because p2 is a quadratic polynomial of a1, q(a1, . . . ,ak−1) can be written into the

form q(a1, . . . ,ak−1) = q0(a1, . . . ,ak−1)p2 +a1q1(a2, . . . ,ak−1)+ q2(a2, . . . ,ak−1). Thus,

we have

p2k = βa1ak+q0
(
a1, . . . ,ak−1

)
p2+a1q1

(
a2, . . . ,ak−1

)+q2
(
a2, . . . ,ak−1

)
. (3.10)

By Lemma 3.3, when p2 = 0 and a2 = ··· = ak = 0, p2k = 0. Thus, q1(0, . . . ,0) =
q2(0, . . . ,0)= 0. Hence, they have the following form:

q1
(
a2, . . . ,ak−1

)= k−1∑
j=2

ajSj
(
a2, . . . ,ak−1

)
,

q2
(
a2, . . . ,ak−1

)= k−1∑
j=2

ajRj
(
a2, . . . ,ak−1

)
,

(3.11)

where Sj(a2, . . . ,ak−1) and Rj(a2, . . . ,ak−1) are polynomials of a2, . . . ,ak−1. By induction

hypothesis, a1aj = p2j (j = 2, . . . ,k−1). Thus, (3.10) becomes

p2k = βa1ak+q0p2+
k−1∑
j=2

p2jSj+
k−1∑
j=2

ajRj. (3.12)

On the other hand, we have µp2+γa2
1 = 1, where µ = −4/3π , γ = 4/9. Therefore, by

induction hypothesis, for each aj (2≤ j ≤ k−1), we have

aj = µajp2+γa1
(
a1aj

)= µajp2+γa1p2j . (3.13)

Substituting (3.13) into (3.12) yields

p2k = βa1ak+q0p2+
k−1∑
j=2

p2jSj+
k−1∑
j=2

(
µajp2+γa1p2j

)
Rj. (3.14)

Thus, p2k, reduced modulo (p2, . . . ,p2(k−1)) and omitting the constant factor, is a1ak.
This completes the proof of Lemma 3.5 for 1< k≤n.

Now, assume that k >n. Then, p2k has the form p2k = V0(a1, . . . ,an)p2+a1V1(a2, . . . ,
an)+V2(a2, . . . ,an), where V0, V1, V2 are polynomials. By Lemma 3.3, when p2 = 0 and

a2 = ··· = an = 0, p2k = 0. Thus, for j = 1,2, Vj(0, . . . ,0)= 0. Using the same method as

above and the result about p2, . . . ,p2n we just proved, it is straightforward to show that

p2k, reduced modulo the ideal generated by p2, . . . ,p2n, is zero. Hence, for any k ≥ 1,

p2k ∈ (p2, . . . ,p2n).

Lemma 3.5 describes the simple structure of the period coefficients which enables

us to prove the following theorem.
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Theorem 3.6. If the origin is a weak center of type IB , then it is an isochronous center

of (3.1) if and only if b0 = (4/9)a2
1 and a2 = ··· = an = 0. If the origin is a weak center

of finite order, then its order is at most n−1, at most n−1 local critical periods can

bifurcate and there are perturbations with exactly j critical periods for each j ≤ n−1.

Moreover, at most n−1 local critical periods can bifurcate from the isochronous center

and there are perturbations to produce the maximum number of critical periods. Here,

all perturbations of parameters are within SBI .

Proof. We first prove that the origin is an isochronous center if and only if b0 =
(4/9)a2

1 and a2 = ··· = an = 0. The sufficiency of the condition has been proved

in Lemma 3.3. Now, assume that the origin is an isochronous center. By Lemma 3.1,

p2 = 0 if and only if b0 = (4/9)a2
1 > 0. Perform coordinate transformation (x,y) �

((2/3)a1x,(2/3)a1y), hence system (3.1) becomes

ẋ =−y+
n∑
k=1

ãkx2k, ẏ = x+x3, (3.15)

where ãk = (3/2a1)2k−1ak. System (3.15) has the same form as (3.4). Hence, by Lemma

3.5, p4 = ··· = p2n = 0 if and only if ã2 = ··· = ãn = 0. This implies that a2 = ··· =
an = 0. Thus, the necessity of the condition is also proved.

To discuss the local critical periods, note that b0 > 0, we can scale system (3.1) so

that b0 = 1. It suffices to consider (3.4) only.

If the origin is a weak center of finite order and p2 = 0, then a2
1 = 9/4 and there

must be an integer k, such that 1 < k ≤ n and a2 = ··· = ak−1 = 0 and ak ≠ 0. Thus,

by Lemma 3.5, p2 = ··· = p2(k−1) = 0, p2k = a1ak ≠ 0 (with a nonzero constant factor

omitted). That is, the origin is a weak center of order k−1. Hence, the maximum order

of the weak center is n−1 and at most n−1 local critical periods can bifurcate.

Now, assume that the origin is a weak center of order n−1. Then, a2
1 = 9/4, a2 =

··· = an−1 = 0, and an ≠ 0. Let ν∗ = (a1,0, . . . ,0,an), where a1 = 3/2 or −3/2. Let

a′1 be 3/2 or −3/2. It is straightforward to see that the algebraic surfaces p2(n−2)(a′1,
0, . . . ,0,a′n−2,a

′
n−1,a′n)= 0 andp2(n−1)(a′1,0, . . . ,0,a

′
n−2,a

′
n−1,a′n)= 0 intersect transver-

sally at their common roots for (a′n−2,a
′
n−1) ∈ (−∞,∞)× (−∞,∞). In fact, from the

expressions for the period coefficients given in Lemma 3.5, the determinant of the Ja-

cobian matrix of p2(n−2)(a′1,0, . . . ,0,a
′
n−2,a

′
n−1,a′n) and p2(n−1)(a′1,0, . . . ,0,a

′
n−2,a

′
n−1,

a′n) is given by a
′2
1 , which is not zero. This guarantees that in the neighborhood of ν∗,

there exists a perturbation ν′ such that p2(n−2)(ν′)p2(n−1)(ν′) < 0 with p2n(ν′) ≠ 0.

This implies that, in the neighborhood of such perturbation, we may choose ν̃∗ such

that the system satisfies the condition (�k) with k = n− 1. Thus, by the finite-order

bifurcation theorem, there are perturbations with exactly j critical periods for each

j ≤n−1.

Denote by ν̃∗ = (δ+ε1,ε2, . . . ,εn) the perturbation of the isochronous center, where

δ is 3/2 or −3/2. Denote by p̃2k(ν̃∗) the perturbed period coefficients. Using the same

method as in the proof of Lemma 3.5, we find the perturbed period coefficients, with

each reduced modulo the ideal generated by the previous coefficients, are given by

p̃2(ν̃∗) = (π/3)ε1(2δ+ε1), p̃2k(ν̃∗) = εk(δ+ε1) for 2 ≤ k ≤ n, p̃2k(ν̃∗) = 0 for k >n.
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Clearly, for any k≥ 1, p̃2k(ν̃∗)∈ (p̃2(ν̃∗), . . . , p̃2n(ν̃∗)), the ideal of the Noetherian ring

R{a1, . . . ,an}ν∗ of convergent power series at ν∗ = (δ,0, . . . ,0). Thus, by the isochrone

bifurcation theorem, at most n − 1 local critical periods can bifurcate from the

isochronous center. Similar to the argument in the previous paragraph, the maximum

number can be reached.

4. Weak center of type II. A weak center of type II corresponds to the following

system:

ẋ =−y+
n∑
k=1

ak
(
x2+b1x3+b2x4)k, ẏ = x+ 3

2
b1x2+2b2x3. (4.1)

Executing our Maple program yields the following lemma.

Lemma 4.1. The period coefficient p2 for (4.1) is given by p2 = (π/24)(8a2
1+45b2

1−
36b2).

We split SII into 3 subsets as SII = SAII
⋃
SBII
⋃
SCII , where

SAII := {λ∈Rn+3 | λ0 = 0, λ2 ≤ 0
}
,

SBII := {λ∈Rn+3 | λ0 = λ1 = 0, λ2 > 0
}
,

SCII := {λ∈Rn+3 | λ0 = 0, λ1 ≠ 0, λ2 > 0
}
.

(4.2)

We say system (4.1) has a weak center of type IIA (resp., type IIB or type IIC ) if the

system is nonlinear and λ ∈ SAII (resp., λ ∈ SBII or λ ∈ SCII ). We immediately have the

following theorem.

Theorem 4.2. A weak center of type IIA cannot be an isochronous center and no

local critical periods can bifurcate from a weak center of type IIA.

Proof. If b2 ≤ 0 and b2
1 +b2

2 ≠ 0, then p2 > 0 by Lemma 4.1 and the order of the

weak center is 0. Thus, no local critical periods can bifurcate by finite order bifurcation

theorem. If b1 = b2 = 0, then the weak center is of type IA, there are no local critical

periods that can bifurcate by Theorem 3.2.

Thus, in the following we only need to discuss weak centers of types IIB and IIC .

4.1. Weak center of type IIB . For a weak center of type IIB , we can scale system (4.1)

so that b2 = 1/2. Thus, we only need to consider the following system:

ẋ =−y+
n∑
k=1

ak
(
x2+ x

4

2

)k
, ẏ = x+x3. (4.3)

We first prove the following lemma.

Lemma 4.3. A weak center of type IIB cannot be an isochronous center.
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Proof. Clearly, system (4.3) can be written into the form

ẋ =−y+
n∑
k=1

ckx2k, ẏ = x+x3, (4.4)

where

ck =
[k/2]∑
j=0

1
2j

(k−j)!
j!(k−2j)!

ak−j. (4.5)

System (4.4) has the same form as (3.4). By Theorem 3.6, if the origin is an isochronous

center, then c2 = ··· = c2n = 0 and c2
1 = 9/4. But c2 = ··· = c2n = 0 implies that a1 =

a2 = ··· = an = 0. Hence, c1 = 0. This is a contradiction.

The following Lemma characterizes the ideal generated by the period coefficients.

Lemma 4.4. For system (4.3), the period coefficients p2k (k > 1), reduced modulo the

ideal generated by p2, . . . ,p2k−2 and omitting the constant factor, are given by p2k =
a1ak+αk for 1 < k ≤ n, p2(n+1) = αn+1 and p2k = 0 for k > n+1, where α1, . . . ,αn+1

are nonzero constants. In particular, p2k ∈ (p2, . . . ,p2(n+1)), the ideal of the polynomial

ring R[a1,a2, . . . ,an].

Proof. We first prove the result about p2k for 1 < k ≤ n by induction on k. Direct

computation yields p2 = (π/12)(4a2
1−9), p4 reduced modulo the ideal generated by

p2 and omitting the constant factor is p4 = a1a2+9/8.

Now, assume that 2 ≤ k ≤ n and p4, . . . ,p2(k−1) with each reduced modulo the ideal

generated by previous coefficients and omitting the constant factor, are given by p2j =
a1aj+αj (j = 2, . . . ,k−1), where αj is nonzero constant. Similar to the proof of Lemma

3.4, p2k has the form p2k = βa1ak+R(a1, . . . ,ak−1), where β is a nonzero constant and

R(a1, . . . ,ak−1) is a polynomial. Since p2 = (π/12)(4a2
1−9), we can write R(a1, . . . ,ak−1)

= R1(a1, . . . ,ak−1)p2+a1R2(a2, . . . ,ak−1)+R3(a2, . . . ,ak−1), where R1, R2, R3 are poly-

nomials. We claim that R2(0, . . . ,0)= 0.

In fact, if we set a2 = ··· = an = 0, then system (4.3) has the form

ẋ =−y+a1

(
x2+ x

4

2

)
, ẏ = x+x3. (4.6)

Let T(ξ,a1) be the minimum period of the closed orbit of (4.6) passing through (ξ,0).
Then, T(ξ,−a1) is the minimum period of the closed orbit of the following system

passing through (ξ,0):

ẋ =−y−a1

(
x2+ x

4

2

)
, ẏ = x+x3. (4.7)

But (4.7) can be transformed to system (4.6) by the scaling (x,y) � (−x,−y) and

this scaling does not change the period of the closed orbit passing through (ξ,0).
Thus, T(ξ,a1) = T(ξ,−a1). Hence, when a2 = ··· = an = 0, the period coefficients are
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functions of a2
1. Thus, R(a1,0, . . . ,0)= R1(a1,0, . . . ,0)p2+a1R2(0, . . . ,0)+R3(0, . . . ,0) is

a polynomial of a2
1. Since p2 = (π/12)(4a2

1−9), it is clear that R1(a1,0, . . . ,0) does not

have terms of a1 with odd degree. Thus, R2(0, . . . ,0)= 0.

Hence, R2 has the form

R2
(
a2, . . . ,ak−1

)= a2S2
(
a2, . . . ,ak−1

)+···+ak−1Sk−1
(
a2, . . . ,ak−1

)
, (4.8)

where S2, . . . ,Sk−1 are polynomials. Therefore, p2k can be written as

p2k = βa1ak+R1p2+
k−1∑
i=2

a1aiSi
(
a2, . . . ,ak−1

)+R3
(
a2, . . . ,ak−1

)
. (4.9)

By induction assumption, a1ai = p2i−αi, so (4.9) can be written in the form

p2k = βa1ak+R1p2+
k−1∑
i=2

Sip2i+Q
(
a2, . . . ,ak−1

)
, (4.10)

where Q(a2, . . . ,ak−1) is a polynomial and can be written as Q(a2, . . . ,ak−1) = κ +
Q2(a2, . . . ,ak−1), where Q2 is a polynomial such that Q2(0, . . . ,0) = 0 and κ is a con-

stant.

On the other hand, p2 = (π/12)(4a2
1−9), which implies that µp2+γa2

1 = 1, where

µ = −4/3π , γ = 4/9. Therefore, by induction hypothesis, for each aj (2 ≤ j ≤ k−1),

we have

aj = µajp2+γa1
(
a1aj

)= µajp2+γa1p2j+τja1, (4.11)

where τj = −γαj is a constant. Thus, for any monomial aj22 ···ajk−1
k−1 with m := j2+

···+ jk−1 > 0, after reducing modulo the ideal generated by p2, . . . ,p2(k−1), it equals

τam1 for some constant τ . Since Q2(a2, . . . ,ak−1) is a combination of such type of

monomials, it is clear that, after reducing modulo the ideal generated by p2, . . . ,p2(k−1),

Q2(a2, . . . ,ak−1) = Q̃(a1), a polynomial of a1. Combining this with (4.10), it is obvious

that, after reducing modulo the ideal generated byp2, . . . ,p2(k−1),p2k = βa1ak+Q̃(a1)+
κ. Similar to the argument above, Q̃(a1) is a polynomial of a2

1. Hence, it can be writ-

ten in the form Q̃(a1)= Q̂(a1)p2+ ι, where ι is a constant and Q̂(a1) is a polynomial.

Therefore, the reduced p2k is p2k = βa1ak+ ι+κ = β(a1ak+αk), where αk = (ι+κ)/β
is a constant. If we omit the constant factor, then p2k = a1ak+αk. It is trivial to show

that αk is nonzero: just set p2 = 0 and a2 = ··· = an = 0, simple computation shows

that p4, . . . ,p2n, which are multiples of α2, . . . ,αn, are all nonzeros.

Now consider p2(n+1), it can be written as

p2(n+1) = V1
(
a1, . . . ,an

)
p2+a1V2

(
a2, . . . ,an

)+V3
(
a2, . . . ,an

)
, (4.12)
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where V1, V2, V3 are polynomials. Following the same reasoning as above, we can prove

that the reduced p2(n+1) is a nonzero constant αn+1. Since p2(n+1) reducing modulo the

ideal generated by p2, . . . ,p2n is a nonzero constant, it is clear that whenever k >n+1,

p2k is reduced to zero. It follows that p2k ∈ (p2, . . . ,p2(n+1)) for any k ≥ 1. The lemma

is thus proved.

From Lemma 4.4, we have the following theorem.

Theorem 4.5. If the origin is a weak center of type IIB , then it cannot be an

isochronous center and it is a weak center of order at most n. At most n local criti-

cal periods can bifurcate from the weak center of order n and there are perturbations

to produce exactly j critical periods for each j ≤n. Here all perturbations of parameters

are within SBII .

Proof. For a weak center of type IIB , it suffices to consider system (4.3). We have

proved in Lemma 4.3 that the origin cannot be an isochronous center. From Lemma 4.4,

it is easy to see that the origin is a weak center of order at most n. Now, set a1 = 3/2 or

a1 = −3/2, then p2 = 0. If we set ak = −αk/a1 for 2 ≤ k ≤ n, where αk is the nonzero

constant stated in Lemma 4.4, then we have p2 = ··· = p2n = 0 and p2(n+1) ≠ 0. Thus,

there exists a weak center of order n. By finite order bifurcation theorem, at most n
critical periods can bifurcate from the weak center of order n.

Denote ν∗ = (δ,−α2/δ, . . . ,−αn/δ), where δ= 3/2 or δ=−3/2. Then, p2(ν∗)= ··· =
p2n(ν∗) = 0 and p2(n+1)(ν∗) ≠ 0. For any neighborhood W ⊂ Rn of ν∗, let ν′ ∈ W ,

ν′ = (a′1, . . . ,a′n), such that p2(ν′) = ··· = p2n−2(ν′) = 0. Then, p2n(ν′) = a′1a′n+αn
and p2n+2(ν′) = αn+1. Obviously, we can always pick a′1 near δ and a′n near −αn/δ
such that p2n(ν′)p2n+2(ν′) < 0. Thus, the system satisfies condition (�k) with k = n.

by finite order bifurcation theorem, there are perturbations to produce exactly j critical

periods for each j ≤n.

4.2. Weak center of type IIC . For a weak center of type IIC , we again scale system

(4.1) so that b2 = 1/2. So, system (4.1) has the following form:

ẋ =−y+
n∑
k=1

ak
(
x2+b1x3+ x

4

2

)k
, ẏ = x+ 3

2
b1x2+x3. (4.13)

Clearly, G(x) = ∫ x0 g(ξ)dξ =M/2. In [6], Christopher and Devlin proved that if F(x) =
f1M +···+ frMr and G(x) = g1M +···+gpMp , then a necessary condition for the

origin to be an isochronous center is that p = 2r . From this result, we immediately

have the following lemma.

Lemma 4.6. A weak center of type IIC cannot be an isochronous center.

It is much harder to describe the ideal generated by the period coefficients. Based

on computation for n ≤ 6, we believe that for any k ≥ 1, the period coefficient p2k ∈
(p2, . . . ,p2(n+2)), the ideal of the polynomial ring R[b1,a1, . . . ,an]. Although we are un-

able to rigorously prove this, we are able to estimate the lower bound of the maximum

number of local critical periods. First, we have the following lemma.
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Lemma 4.7. For system (4.13), the period coefficientsp2k (k≥ 1) are polynomials of b2
1 .

Proof. Performing the coordinate change (x,y)� (x,y−F(x)), system (4.13) can

be rewritten into the form

ẋ =−y,

ẏ = x+ 3
2
b1x2+x3+(2x+3b1x2+2x3) n∑

k=1

kak
(
x2+b1x3+ x

4

2

)k−1

y,
(4.14)

where

F(x)=
n∑
k=1

ak
(
x2+b1x3+ x

4

2

)k
. (4.15)

The coordinate change is nonsingular near the origin and it does not change the periods

of the closed orbits near the origin.

Let T(ξ,b1,a1, . . . ,an) be the minimum period of the closed orbit of (4.13) passing

through (ξ,0). Then, T(ξ,−b1,a1, . . . ,an) is the minimum period of the closed orbit of

the following system passing through (ξ,0):

ẋ =−y,

ẏ = x− 3
2
b1x2+x3+(2x−3b1x2+2x3) n∑

k=1

kak
(
x2−b1x3+ x

4

2

)k−1

y.
(4.16)

But (4.16) can be transformed to (4.14) via (x,y)� (−x,−y). Thus, T(ξ,b1,a1, . . . ,an)=
T(ξ,−b1,a1, . . . ,an). Hence, T(ξ,b1,a1, . . . ,an) is a function of b2

1; namely, the period

coefficients are polynomials of b2
1.

Note that for b1 = 0, system (4.13) is the same as system (4.3). We have the following

theorem.

Theorem 4.8. The maximum number of local critical periods which can bifurcate

from a weak center of type IIC is at least n.

Proof. Let T(ξ,b1,a1, . . . ,an) be the minimum period of the closed orbit passing

through (ξ,0). By Lemma 4.7,

T
(
ξ,b1,a1, . . . ,an

)= T(ξ,0,a1, . . . ,an
)+b2

1T̃
(
ξ,b2

1,a1, . . . ,an
)
, (4.17)

where T̃ (ξ,b2
1,a1, . . . ,an) is an analytic function. Clearly, T(ξ,0,a1, . . . ,an) is identical

to the period function of system (4.3). Let

P
(
ξ,b1,a1, . . . ,an

)= T(ξ,b1,a1, . . . ,an
)−2π, (4.18)
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then

P
(
ξ,b1,a1, . . . ,an

)= P(ξ,0,a1, . . . ,an
)+b2

1T̃
(
ξ,b2

1,a1, . . . ,an
)
,

Pξ
(
ξ,b1,a1, . . . ,an

)= Pξ(ξ,0,a1, . . . ,an
)+b2

1T̃ξ
(
ξ,b2

1,a1, . . . ,an
)
.

(4.19)

By Theorem 4.5, the function ξ � Pξ(ξ,0,a1, . . . ,an) can have at most n zeros near

ξ = 0 and there exists a′1, . . . ,a′n such that Pξ(ξ,0,a′1, . . . ,a′n) hasn zeros near ξ = 0. Fur-

thermore, following exactly the same line as in the proof of the finite order bifurcation

theorem given in [3] (i.e., [3, Theorem 2.1]), we may select a′1, . . . ,a′n and construct the n
zeros ξ1, . . . ,ξn such that 0< ξ1 < ···< ξn < η for some η and on each pair of the open

intervals (ξi−1,ξi), (ξi,ξi+1) (1≤ i≤n), Pξ(ξ,0,a′1, . . . ,a′n) has different signs. Here, we

set ξ0 = 0 and ξn+1 = η. Thus, there exists ξ′0, . . . ,ξ′n such that 0< ξ′0 < ···< ξ′n < η and

for any 1≤ i≤n, Pξ(ξ′i−1,0,a
′
1, . . . ,a′n)Pξ(ξ

′
i ,0,a

′
1, . . . ,a′n) < 0. Since T̃ξ(ξ,b2

1,a
′
1, . . . ,a′n)

is continuous (actually analytic) on [0,η], it is easy to see that for sufficiently small

|b1|, Pξ(ξ′i−1,b1,a′1, . . . ,a′n)Pξ(ξ
′
i ,b1,a′1, . . . ,a′n) < 0. Hence, there exists ξ̃i ∈ (ξ′i−1,ξ

′
i)

such that Pξ(ξ̃i,b1,a′1, . . . ,a′n)= 0. So, Pξ(ξ,b1,a′1, . . . ,a′n) has at least n zeros.

By finite order bifurcation theorem, no more than q local critical periods can bifurcate

from a weak center of order q. Hence, we immediately obtain the following corollary to

Theorem 4.8.

Corollary 4.9. There are weak centers of type IIC with order at least n.

If our conjecture that p2k ∈ (p2, . . . ,p2(n+2)) is true, then since the origin cannot be

an isochronous center, the origin is a weak center of order at most n and there are at

most n local critical periods that can bifurcate from the weak center of order n. By

Theorem 4.8, the maximum number of critical periods can be attained.

5. Proof of Theorem 1.5

Proof of Theorem 1.5. By Theorems 3.2, 3.6, 4.2, 4.5, and Lemma 4.6, system

(1.4) has a nonlinear isochronous center at the origin if and only if b0 = (4/9)a2
0 and

b1 = b2 = a1 = ··· = an = 0 and a0 ≠ 0. If a0 = 0, then the origin is a linear isochronous

center. For a nonlinear isochronous center, b0 ≠ 0. Since we only consider small per-

turbation of parameter values, any perturbation of the parameters corresponding to

the isochronous center remains in SBI . Thus, assertion (1) of Theorem 1.5 is true by

Theorem 3.6.

Note that under small perturbation of parameter values, a weak center of type IA
(resp., IB) is still a weak center of type IA (resp., IB). Thus, assertion (2) of Theorem 1.5

is true by Theorems 3.2 and 3.6. Assertion (3) of Theorem 1.5 is clear by Theorem 4.8.

We remark that a weak center of type II can be perturbed to become a weak cen-

ter of type I, but this will not increase the number of local critical periods by (2) of

Theorem 1.5.
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