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CONTROLLING THE DYNAMICS OF BURGERS EQUATION
WITH A HIGH-ORDER NONLINEARITY
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We investigate analytically as well as numerically Burgers equation with a high-order
nonlinearity (i.e., ut = νuxx−unux+mu+h(x)). We show existence of an absorbing ball
in L2[0,1] and uniqueness of steady state solutions for all integer n ≥ 1. Then, we use an
adaptive nonlinear boundary controller to show that it guarantees global asymptotic stabil-
ity in time and convergence of the solution to the trivial solution. Numerical results using
Chebychev collocation method with backward Euler time stepping scheme are presented
for both the controlled and the uncontrolled equations illustrating the performance of the
controller and supporting the analytical results.
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1. Introduction. The viscous Burgers equation

∂v
∂t
= ν ∂

2v
∂x2

−2v
∂v
∂x
, (1.1)

introduced by Burgers [4, 5] as a simple model for a turbulent flow through a channel,

has received a lot of attention in recent years from both the mathematical and control

communities [1, 2, 3, 6, 7, 8, 9, 10, 11, 14, 15, 16, 18, 19, 20, 21]. In [4], Burgers proposed

a mathematical model for turbulence given by

L
dU
dt

= P− νU
L
− 1
L

∫ L
0
v2dx, (1.2)

∂v
∂t
= ν ∂

2v
∂x2

−2v
∂v
∂x

+ U
L
v, (1.3)

where U and v are velocities connected with the primary and secondary motions, re-

spectively. The quantities P and ν are positive constants representing the external force

and the kinematic viscosity, respectively. The space variable x is the coordinate in the

direction of the cross dimension of the channel and extends from 0 to L. When v differs

from zero, it is said that there is turbulence in the system.

If the turbulence is not activated by energy transmission from a primary motion (i.e.,

U = 0), (1.3) simplifies to the viscous Burgers equation (1.1). However, when there is

a constant transmission of energy from the primary motion to the secondary motion

(i.e., U ≠ 0), Burgers equations simplify to the original Burgers equation given by

∂v
∂t
= ν ∂

2v
∂x2

−2v
∂v
∂x

+ 1
L
Uv. (1.4)
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Equation (1.4) can be easily transformed to the generalized Burgers equation,

∂u
∂t
= ν ∂

2u
∂x2

−u∂u
∂x

+mu+h(x), (1.5)

where h(x) is a forcing term. The cases m = 0 and m = 1 in (1.5) subject to peri-

odic boundary conditions were analyzed by the author [19, 20] and the author and

Nicolaenko [21]. In [19, 21], the existence of inertial manifold was established through

the use of Kwak transformation [17], and in [20], adaptive and nonadaptive nonlinear

boundary control of the generalized Burgers equation was investigated.

In this paper, we consider Burgers equation,

∂u
∂t
= ν ∂

2u
∂x2

−un ∂u
∂x

+mu+h(x), (1.6)

subject to Dirichlet boundary conditions on [0,1] and with a high-order nonlinearity,

that is, whenn is an integer greater than or equal to 1,m∈R, and h∈ L2(0,1). It should

be noted that (1.6) was also used to model traffic flows for different values of n (see

Haberman [13], and Farlow [12]). Furthermore, using an adaptive nonlinear boundary

control, we are able to control the dynamics of (1.6) subject to a generalized form of

boundary conditions.

2. Existence of an absorbing ball in L2. In this section, we show that (1.6) with

Dirichlet boundary conditions admits an absorbing ball in L2(0,1), and show unique-

ness of steady state solutions for all integers n≥ 1.

Proposition 2.1. Let m< ν/2, and let ν ∈ R+ be the viscocity, u0 ∈ L2(0,1) be the

initial condition, and h∈ L2(0,1) be the forcing term. Every generalized solution to

ut = νuxx−unux+mu+h(x); 0<x < 1, (2.1)

subject to

u(0, t)=u(1, t)= 0, (2.2)

satisfies the inequality

‖u‖ ≤
√

2
ν(ν−2m)

‖h‖, ∀t ≥ t0, (2.3)

with

t0 = 1
ν−2m

ln
(
ν(ν−2m)

∥∥u0

∥∥2

‖h‖2
+1

)
. (2.4)

Proof. Multiplying (2.1) by u and integrating, we obtain

d
dt

(
1
2

∫ 1

0
u2dx

)
= ν

∫ 1

0
uuxxdx−

∫ 1

0
un+1uxdx+m

∫ 1

0
u2dx+

∫ 1

0
uhdx. (2.5)
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The term
∫ 1
0 un+1uxdx =

∫ 1
0 (un+2/(n+2))xdx = 0, sinceu(0, t)=u(1, t)=0. Therefore,

(2.5) becomes

d
dt

(
1
2

∫ 1

0
u2dx

)
= ν

∫ 1

0
uuxxdx+

∫ 1

0
mu2dx+

∫ 1

0
uhdx. (2.6)

Integrating by parts the term
∫ 1
0 uuxxdx, (2.6) becomes

d
dt

(
1
2

∫ 1

0
u2dx

)
=−ν

∫ 1

0
u2
xdx+

∫ 1

0
mu2dx+

∫ 1

0
uhdx. (2.7)

Using Poincaré inequality on (2.7), we get

d
dt

(
1
2

∫ 1

0
u2dx

)
≤ (m−ν)

∫ 1

0
u2dx+

∫ 1

0

√
νu

1√
ν
hdx. (2.8)

Using Cauchy-Schwartz inequality on (2.8), we get

d
dt

(
1
2

∫ 1

0
u2dx

)
+(ν−m)

∫ 1

0
u2dx ≤

(∫ 1

0
νu2dx

)1/2(∫ 1

0

1
ν
h2dx

)1/2

. (2.9)

Using Young’s inequality, we obtain

1
2
d
dt
‖u‖2+(ν−m)‖u‖2 ≤ ν

2
‖u‖2+ 1

2ν
‖h‖2 (2.10)

or

d
dt
‖u‖2+(ν−2m)‖u‖2 ≤ 1

ν
‖h‖2. (2.11)

Now, applying Grownwall’s inequality on (2.11), we obtain

‖u‖2 ≤ e−(ν−2m)t∥∥u0

∥∥2+
∫ t

0

1
ν
‖h‖2e−(ν−2m)(t−s)ds. (2.12)

Since ∫ t
0

1
ν
‖h‖2e−(ν−2m)(t−s)ds = 1

ν(ν−2m)
‖h‖2(1−e−(ν−2m)t), (2.13)

equation (2.12) becomes

‖u‖2 ≤ e−(ν−2m)t∥∥u0

∥∥2+ 1
ν(ν−2m)

(
1−e−(ν−2m)t)‖h‖2. (2.14)

Given ‖u0‖2, if we choose t ≥ t0 with

t0 = 1
(ν−2m)

ln

(
ν(ν−2m)

∥∥u0

∥∥2

‖h‖2
+1

)
, (2.15)

then

‖u‖<
√

2
ν(ν−2m)

‖h‖. (2.16)
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It follows from (2.16) that (1.6) admits an absorbing ball in L2(0,1).

Proposition 2.2. Let us be the steady state solution or the attractor of (1.6) with

Dirichlet’s boundary conditions, then us satisfies the following inequalities:

(a)

∥∥us∥∥≤ 1√
ν(ν−2m)

‖h‖, (2.17)

(b)

∥∥usx∥∥≤ 1
ν−m‖h‖. (2.18)

Proof. (a) Since us is a steady state solution, then from (2.11),

(ν−2m)
∥∥us∥∥2 ≤ 1

ν
‖h‖2, (2.19)

or

∥∥us∥∥2 ≤ 1
ν(ν−2m)

‖h‖2. (2.20)

Therefore,

∥∥us∥∥≤ 1√
ν(ν−2m)

‖h‖. (2.21)

To prove part (b), we know from (2.7) that the steady state solution satisfies

ν
∫ 1

0

(
usx
)2dx =m

∫ 1

0

(
us
)2dx+

∫ 1

0
ushdx. (2.22)

Using the Poincaré inequality and the Cauchy-Schwartz inequality on (2.22), we get

(ν−m)∥∥usx∥∥2 ≤ ∥∥us∥∥·‖h‖. (2.23)

Finally, using the Poincaré inequality on (2.23), we obtain the desired result.

Theorem 2.3. Let n= 1. Then, the steady state solution of (1.6), satisfying the Dirich-

let boundary conditions, is unique if m<ν/2 and ‖h‖< (2/3)(ν−m)2.

Proof. We will prove the case for n = 1; the case n ≥ 2 is similar. Suppose there

are two steady state solutions or attractors u and υ such that

νuxx−uux+mu+h(x)= 0,

νυxx−υυx+mυ+h(x)= 0.
(2.24)

Let w =u−υ. Then,

νwxx−uwx−υxw+mw = 0. (2.25)
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Multiplying the above equation by w, integrating from 0 to 1, and using the Dirichlet

boundary conditions leads to

ν
∫ 1

0
w2
xdx+

∫ 1

0
u
(
w2

2

)
x
dx+

∫ 1

0
υxw2dx−m

∫ 1

0
w2dx = 0. (2.26)

Again, using integration by parts on
∫ 1
0 u(w2/2)xdx, we obtain

ν
∫ 1

0
w2
xdx−

∫ 1

0
w2

(
ux
2
−υx+m

)
dx = 0. (2.27)

Equation (2.27) can be written as

ν
∥∥wx

∥∥2 ≤ ∥∥w2
∥∥(1

2

∥∥ux∥∥+∥∥υx∥∥+m
)
. (2.28)

Now, by using part (b) of Proposition 2.2, we obtain

ν
∥∥wx

∥∥2 ≤ ∥∥w2
∥∥( 1

2(ν−m)‖h‖+
1

ν−m‖h‖+m
)

(2.29)

or

∥∥wx
∥∥2 ≤ ∥∥w2

∥∥( 3
2ν(ν−m)‖h‖+

m
ν

)
. (2.30)

Since

∥∥w2
∥∥
L2(0,1) ≤ ‖w‖2

L∞(0,1) ≤
∥∥wx

∥∥2

L2(0,1)
, (2.31)

it follows that

∥∥wx
∥∥2 ≤

(
3

2ν(ν−m)‖h‖+
m
ν

)∥∥wx
∥∥2. (2.32)

If

3
2ν(ν−m)‖h‖+

m
ν
< 1 (2.33)

or

‖h‖< 2
3
(ν−m)2, (2.34)

then w =wx = 0, which implies u= υ.

3. Controlling the dynamics. In this section, we construct an adaptive regulator

design for Burgers equation with a high-order nonlinearity,

∂u
∂t
= ν ∂

2u
∂x2

−un ∂u
∂x

+mu, (3.1)
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subject to the following boundary conditions:

a
∂u
∂x
(0, t)+bu(0, t)=u1(t),

c
∂u
∂x
(1, t)+du(1, t)=u2(t),

(3.2)

where a, b, c, and d are arbitrary constants. It should be noted that the boundary

conditions used in this section are general, and can be reduced to Neumann, Dirichlet,

or Robin conditions. Before showing the global asymptotic stability of (3.1) and (3.2),

we first prove the following lemmas.

Lemma 3.1. Let

F(t) :=
∫ t

0
eβ(t−τ)f (τ)dτ, β < 0. (3.3)

If f ∈ L1(0,∞), then F(t)→ 0 as t→∞.

Proof.

∣∣F(t)∣∣≤ eβt/2‖f‖L1+
∫∞
t/2

∣∣f(τ)∣∣dτ. (3.4)

Lemma 3.2. Let β < 0 and n∈N. For any u(0, t)∈ L2(0,∞)∩L2(n+1)(0,∞),
(a)

∫ t
0 eβ(t−τ)|u(0,τ)|dτ → 0 as t→∞,

(b)
∫ t
0 eβ(t−τ)|un+2(0,τ)|dτ → 0 as t→∞.

Proof. We use Cauchy-Schwartz inequality and Lemma 3.1 to proof this lemma.

∫ t
0
eβ(t−τ)

∣∣u(0,τ)∣∣dτ ≤ (
∫ t

0
eβ(t−τ)dτ

)1/2(∫ t
0
eβ(t−τ)u2(0,τ)dτ

)1/2

≤
√
−1
β

(∫ t
0
eβ(t−τ)u2(0,τ)dτ

)1/2
.

(3.5)

Using Lemma 3.1, part (a) is obtained. To prove part (b),

∫ t
0
eβ(t−τ)

∣∣un+2(0,τ)
∣∣dτ

≤
(∫ t

0
eβ(t−τ)

∣∣u2(0,τ)
∣∣dτ)1/2(∫ t

0
eβ(t−τ)

∣∣u2(n+1)(0,τ)
∣∣dτ)1/2

.
(3.6)

Thus, if u(0, t)∈ L2(0,∞)∩L2(n+1)(0,∞), the desired result is obtained.

Theorem 3.3. Let m< ν/2 and let n ≥ 1 be an integer. Let u(x,t) be a solution of

(3.1) with arbitrary initial conditions in L2(0,1) and satisfying the boundary conditions

(3.2), where a,b,c,and d are arbitrary constants and a 
= 0, c 
= 0. If u(0, t), u(1, t) are

locally existing in L2n+2(0,∞) and the control functions u1, u2 are given by

u1(t)= k1(t)u2n+1(0, t)+k2(t)un+1(0, t)+k3(t)u(0, t),

u2(t)= k4(t)u2n+1(1, t)+k5(t)un+1(1, t)+k6(t)u(1, t),
(3.7)
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where kn(t), n= 1, . . . ,6, are bounded for any t ≥ 0 with

k̇1(t)= r1u2n+2(0, t), r1 > 0,

k̇2(t)= r2un+2(0, t), r2 > 0,

k̇3(t)= r3u2(0, t), r3 > 0,

k̇4(t)=−r4u2n+2(1, t), r4 > 0,

k̇5(t)=−r5un+2(1, t), r5 > 0,

k̇6(t)=−r6u2(1, t), r6 > 0,

(3.8)

then

∥∥u(·, t)∥∥ �→ 0 as t �→∞. (3.9)

Proof. Let

V(t)= 1
2

∫ 1

0
u2(x,t)dx. (3.10)

Taking the time derivative of V(t), we obtain

V̇ (t)= ∂
∂t

(
1
2

∫ 1

0
u2(x,t)dx

)
= 1

2

∫ 1

0
2u(x,t)ut(x,t)dx

=
∫ 1

0
u(x,t)

{
νuxx(x,t)−un(x,t)ux(x,t)+mu(x,t)

}
dx

= ν
∫ 1

0
u(x,t)uxx(x,t)dx−

∫ 1

0

(
1

n+2
un+2(x,t)

)
x
dx+m

∫ 1

0
u2(x,t)dx.

(3.11)

Using integration by parts on the first term of the right-hand side of (3.11), we get

V̇ (t)= νu(1, t)ux(1, t)−νu(0, t)ux(0, t)− 1
n+2

un+2(1, t)

+ 1
n+2

un+2(0, t)+m
∫ 1

0
u2(x,t)dx−ν

∫ 1

0
u2
x(x,t)dx.

(3.12)

Also, using the Poincaré inequality on the last term of the right-hand side of (3.12),

that is,

∫ 1

0
u2(x,t)dx ≤ 2u2(0, t)+2

∫ 1

0
u2
x(x,t)dx, (3.13)

we get

V̇ (t)≤
(
m− ν

2

)∫ 1

0
u2(x,t)dx+νu(1, t)ux(1, t)−νu(0, t)ux(0, t)

− 1
n+2

un+2(1, t)+ 1
n+2

un+2(0, t)+νu2(0, t).
(3.14)
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Now, using the boundary conditions stated in (3.2), that is,

ux(0, t)= 1
a
(
u1(t)−bu(0, t)

)
, ux(1, t)= 1

c
(
u2(t)−du(1, t)

)
, (3.15)

and the control law illustrated in (3.7), the above inequality (3.14) becomes

V̇ (t)≤
(
m− ν

2

)∫ 1

0
u2(x,t)dx+νu2(0, t)− 1

n+2
un+2(1, t)+ 1

n+2
un+2(0, t)

−νu(0, t)
(

1
a
{
k1(t)u2n+1(0, t)+k2(t)un+1(0, t)+k3(t)u(0, t)

}− b
a
u(0, t)

)

+νu(1, t)
(

1
c
{
k4(t)u2n+1(1, t)+k5(t)un+1(1, t)+k6(t)u(1, t)

}− d
c
u(1, t)

)
.

(3.16)

Therefore, V̇ (t) can be rewritten as

V̇ (t)≤
(
m− ν

2

)∫ 1

0
u2(x,t)dx− νk1(t)

a
u2n+2(0, t)−

(
νk2(t)
a

− 1
n+2

)
un+2(0, t)

−
(
νk3(t)
a

−ν− νb
a

)
u2(0, t)+ νk4(t)

c
u2n+2(1, t)

+
(
νk5(t)
c

− 1
n+2

)
un+2(1, t)+

(
νk6(t)
c

− dν
c

)
u2(1, t).

(3.17)

Now, we introduce a nonnegative energy function E(t) as follows:

E(t)= V(t)+
(

ν
2ar1

)(
k1(t)

)2+
(

a
2νr2

)(
νk2(t)
a

− 1
n+2

)2

+
(

a
2νr3

)(
νk3(t)
a

−ν− νb
a

)2

+
(
ν

2cr4

)(
k4(t)

)2

+
(

c
2νr5

)(
νk5(t)
c

− 1
n+2

)2

+
(

c
2νr6

)(
νk6(t)
c

− dν
c

)2

.

(3.18)

If we evaluate the time derivative of E(t), and substitute V̇ (t) from (3.17) and k̇n(t),
n= 1, . . . ,6 from (3.8) into (3.18), we get

Ė(t)≤
(
m− ν

2

)∫ 1

0
u2(x,t)dx. (3.19)

This implies that if m< ν/2, then E(t) ≤ E(0). Since u(0, t) and u(1, t) ∈ L2n+2
loc (0,∞),

it follows from (3.8) that kj(t) can be defined as continuous functions on [0,∞). Then,

(3.18) and (3.19) will imply that kj , j = 1, . . . ,6 are bounded, and then (3.8) will imply

that u(i,t)∈ L2(0,∞)∩L2n+2(0,∞) (i= 0,1).
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Figure 4.1. Time evolution of the uncontrolled Burgers equation (3.1) when
n= 1, m= 0.1, ν = 0.3, and (a,b,c,d)= (1,0,1,0).

Now, to show the global asymptotic stability of (3.1) and (3.2), we use Gronwall’s

inequality on (3.17):

V(t)≤ V(0)e(m−ν/2)t

+ν
∫ t

0

{−k1(τ)
a

u2n+2(0,τ)+
(

1
(n+2)ν

− k2(τ)
a

)
un+2(0,τ)

+
(

1+ b
a
− k3(τ)

a

)
u2(0,τ)

}
e(m−ν/2)(t−τ)dτ

+ν
∫ t

0

{
k4(τ)
c

u2n+2(1,τ)+
(
k5(τ)
c

− 1
(n+2)ν

)
un+2(1,τ)

+
(
k6(τ)
c

− d
c

)
u2(1,τ)

}
e(m−ν/2)(t−τ)dτ.

(3.20)

Then, using Lemmas 3.1 and 3.2, one can deduce that

‖u‖ �→ 0 as t �→∞. (3.21)

4. Numerical results. If we express the discrete solution of (3.1) as the Chebychev

series,

uN(x,t)=
N∑
k=0

ûk(t)Tk(x), (4.1)

where {Tk(x)}Nk=0 are the Chebychev polynomials, then the discretization of (3.1) and

(3.2) is

∂uN

∂t

∣∣∣∣
x=xj

= ν ∂
2uN

∂x2
−(uN)n ∂uN

∂x
+muN

∣∣∣∣
x=xj

, j = 1, . . . ,N−1, (4.2)
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Figure 4.2. Time evolution of the controlled Burgers equation (3.1) when n=
1, m= 0.1, ν = 0.3, (a,b,c,d)= (1,0,1,0), and rj = 10, j = 1, . . . ,6.
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Figure 4.3. Time evolution of the uncontrolled Burgers equation (3.1) when
n= 3, m= 0.1, ν = 0.3, and (a,b,c,d)= (1,0,1,0).

with

a
∂uN

∂x
(0, t)+buN(0, t)=u1(t),

c
∂uN

∂x
(1, t)+duN(1, t)=u2(t),

uN
(
xj,0

)=u0
(
xj
)
, j = 0, . . . ,N.

(4.3)

The purpose of our paper is not to find the best approximation scheme for our prob-

lem, but to demonstrate our theoretical results. Therefore, the Chebychev collocation

method that uses backward Euler method as a temporal scheme, the Gauss-Lobatto

points, and the Chebychev collocation derivative represented in matrix form are used

[9].
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Figure 4.4. Time evolution of the controlled Burgers equation (3.1) when n=
3, m= 0.1, ν = 0.3, (a,b,c,d)= (1,0,1,0), and rj = 10, j = 1, . . . ,6.

Two computer programs that use the Chebychev collocation method with the

backward Euler as a temporal scheme were written to solve (4.2) and (4.3) for both the

controlled and the uncontrolled problems. For the uncontrolled problem, we choose two

different values of n (i.e., n= 1 and n= 3), ν = 0.3,m= 0.1, and (a,b,c,d)= (1,0,1,0).
Figures 4.1 and 4.2 represent their corresponding solutionsu as it evolves in time when

u(x,0)= sinx+sin2x+sin3x. The solution seems to converge to a nontrivial solution,

although it eventually approaches zero, which could be seen only for very very large t,
and this is in accordance with the theory presented in Section 2. In fact, for some ini-

tial data, the numerical solution gets trapped into a nontrivial steady states and never

converges to zero [20]. To remedy this unsatisfactory behavior, an adaptive nonlinear

boundary control, presented by (3.7), is applied to guarantee global asymptotic stabil-

ity and convergence of the solution to the trivial solution as expected from the theory

presented in Section 3 (see Figures 4.3 and 4.4).
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