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We investigate stagnation zones of flows of ideal incompressible fluid in narrow and long
bands. With the bandwidth being much less than its length, these flows are almost sta-
tionary over large subdomains, where their potential functions are almost constant. These
subdomains are called s-zones. We estimate the size and the location of these s-zones.
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1. Introduction. In this work, we investigate the flows of ideal incompressible fluid

in narrow and long bands on surfaces with almost Liouville line element. The inves-

tigation is motivated in part by the fact that, with the recent increasing interest in

areas such as microelectromechanical systems (MEMS) and nanoscale physiological pro-

cesses, there is a greater need to improve our understanding of fluid flows in the mi-

croscale and nanoscale regimes.

When the width of the band is much smaller than the length, the zones inside which

the flows are almost stationary, and consequently their potential functions are almost

constant, will be of sufficiently large size. Here, we study the size and location of these

stagnation zones, which we will call s-zones of ideal flows. At first sight, it seems that

the situation is of little interest. However, by remembering that minute change in poten-

tial function value occurs over a very long interval, it is clear that a better understanding

of such s-zones may allow one to better organize calculations and possible minimize

the amount of computation.

First, we define the following concept which will be key in this article.

Definition 1.1. Let f : D→R be a continuous function. Fix a subdomain U ⊂D and

a constant s > 0. The subdomain U is said to be an s-zone of f if the oscillation of f
on U does not exceed the preassigned constant s.

For any given continuous function f : D→R, and for arbitrary s > 0, it is easy to see

that every point in D will have a neighborhood which is an s-zone. Here, we are mainly

interested in s-zones that are sufficiently large; intuitively, we are interested in s-zones

whose sizes or measures are of the same order as the size of D. The presence of such

s-zones can be an obstacle in numerical computation when, for example, the order s is

comparable with machine epsilon in the floating point system. A priori knowledge of the

size and location of s-zones in D allows one to better organize and focus computational

effort on regions where the solution is rapidly varying. It may also lead to significant
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reduction in the computational requirements of numerical solution of the boundary

value problem.

In this paper, we consider ideal incompressible flows in long and narrow bands over

surfaces with an almost Liouville line element (see, e.g., [5, Section 5.7.5]). Similar prob-

lems were studied over surfaces with line elements in [7, 8]. In these works, the s-zones

were shown to be related to some problems in the construction of conformal mappings

from long rectangles to a unit disk [4, 6, 11] and to some problems arising in econom-

ics [2, Chapter I]. In this paper, we provide estimates for the size of s-zones. The main

results are given in Section 3 and some examples are provided in the last section.

2. Boundary value problems. To begin our study, we first introduce some nota-

tions to define long and narrow bands and almost Liouville line elements and discuss

the boundary value problem associated with ideal incompressible flows in bands over

surfaces with almost Liouville line elements.

Let θ : R2 → R be a given Lipschitz function. Let D be a domain in R2 consisting of

points (x,y) such that 0 < θ(x,y) < 1, and with the property that for any bounded

subdomain D′ whose closure is contained in D,

essinf
D′
∣∣∇θ(x,y)∣∣> 0. (2.1)

For 0≤ τ ≤ 1, let

Γτ =
{
(x,y)∈D : θ(x,y)= τ}. (2.2)

We will assume the boundary curves Γ0 and Γ1 connected and of unlimited extent.

Let γ(τ) denote the connected component of the set

{
(x,y)∈D :y = τ}, −∞< τ <+∞, (2.3)

which separates the subregion of D with y ≈−∞ from the subregion of D with y ≈∞.

This would ensure the band described below to be well defined. For t > 0, a band of

width t is defined as the subdomain D(t) of D bounded by Γ0, Γ1, γ(−t) and γ(t). The

band is long and narrow when the width is small compared to its length, that is, t	 1.

Let Γs(t)= Γs∩D(t), 0≤ s ≤ 1. In what follows, let β > 0 be a given parameter.

The model boundary value problems that we are interested in consist of an equa-

tion describing harmonic functions on surfaces with almost Liouville line elements and

either Dirichlet, Neumann, or mixed boundary conditions. Let D ⊂ R2 be a domain at

two-dimensional Euclidean plane with a coordinate system (x,y), and let A, B, and Q
be some functions on D. Suppose that A,B,Q > 0 everywhere on D. A line element of

the form

ds2 =Q2(x,y)
(
A2(x)dx2+B2(y)dy2), (x,y)∈D, (2.4)

is called an almost Liouville line element. An area element on the surface � = (D,ds2)
is given by

dσ =Q2(x,y)A(x)B(y)dxdy. (2.5)
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In the case whereQ(x,y) has the special formQ2(x,y)=α(x)−β(y), with α, β being

arbitrary functions such that α > β, we recover the standard definition of a Liouville

line element (see, e.g., [5, Section 5.7.5]). An example of surfaces defined by an almost

Liouville line element is given by the class of second-order confocal surfaces [5, Section

3.7.3]. Further examples of almost Liouville line elements will be given in Section 7.

On surfaces with almost Liouville line elements, we consider the following Laplace-

Beltrami equation in a band D(β):

B(y)
∂
∂x

(
A(x)−1 ∂f

∂x

)
+A(x) ∂

∂y

(
B(y)−1 ∂f

∂y

)
= 0, (2.6)

and one of the following boundary conditions:

f |Γi(β) = 0 (i= 0,1); (2.7)

or

A−1Bf ′x cosν+AB−1f ′y sinν|Γi(β) = 0 (i= 0,1); (2.8)

or

f |Γ0(β) = 0, A−1Bf ′x cosν+AB−1f ′y sinν|Γ1(β) = 0. (2.9)

Here, ν is an angle between a unit normal vector to ∂D(β) and the x-axis, and A, B are

given functions related to the underlying line elements.

Note that on γ(−β)∪γ(β), the solution value of f is not specified. We assume that

additional boundary conditions will be given so that the boundary value problem is

well posed.

3. Main results. We now state our main results. The proof will be given in Section 6.

The first theorem shows that, if the bandwidth is sufficiently small relative to its length,

the solution f to the boundary value problem discussed in the previous section will

have sufficiently large s-zones. By “solution” here we mean generalized local Lipschitz

solution, with the precise meaning to be stated in Section 4.

Let f be a Lipschitz function on a band D(β). For an arbitrary t ∈ (1,β), β > 1, we set

Ω = oscγ(−β)∪γ(β)f (x,y), (3.1)

e(t)=
∫ ∫

D(t)

(
B
A
θ′2x+

A
B
θ′2y

)
dxdy, (3.2)

µ(t)=max
{∫ ∫

D∗
A
B
dxdy,

∫ ∫
D∗∗

A
B
dxdy

}
, (3.3)

where D∗ =D∩{−t < y <−t+1} and D∗∗ =D∩{t < y < t+1},

I(p,q)=min
{∫ −p

−q
Bdy∫

γ(y)Adx
,
∫ q
p

Bdy∫
γ(y)Adx

}
, 0<p < q ≤ β. (3.4)
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Theorem 3.1. Let f be a solution of (2.6) on D(β) with one of conditions (2.7), (2.8),

or (2.9). For any given s > 0, if there exists t such that 1< t < β and

3
2

(
e(t)+µ(t)) Ω2

I(t,β)
≤ s2, (3.5)

then the region D(t−1) is an s-zone of f .

Now, we denote

κ(t)=min
{
B(−t)
L(−t) ,

B(t)
L(t)

}
, L(t)=

∫
γ(t)
A(x)dx. (3.6)

We also have the following related result not involving Ω and I(t,β).

Theorem 3.2. Let f be a solution of (2.6) on D(β) satisfying either the boundary

condition (2.7) or (2.9), and let s > 0 be a given number. The region D(t−2) is an s-zone

of f if there exists t such that 2< t < β and

3
2I(β−1,β)

(
e(t−1)+µ(t−1)

)
exp

{
−Cπ

∫ β−1

t−1
κ(τ)dτ

}
≤ s2, (3.7)

where C = 2 for the Dirichlet condition (2.7) and C = 1 for the mixed boundary condition

(2.9).

These theorems provide estimates for the size, or more specifically, the width, of an

s-zone when the inequality (3.5) or (3.7) is satisfied.

4. Oscillation estimates. For an arbitrary subdomain U ⊂R2, let LipU be the set of

functions f satisfying the Lipschitz condition

∣∣f(x′′,y ′′)−f(x′,y ′)∣∣≤ C√(x′′ −x′)2+(y ′′ −y ′)2 (4.1)

for all (x′,y ′),(x′′,y ′′)∈U with a constant C = C(f ,U).
Technically, it is convenient to use the following definition of solutions of (2.6) with

(2.7), (2.8), or (2.9). A function f ∈ LipD(β) is said to be the generalized solution of (2.6)

with boundary condition (2.7), (2.8), or (2.9) if, for any arbitrary bounded subdomain ∆,

contained in D(β), with a rectifiable boundary ∂∆ and any arbitrary functionφ∈ Lip∆,

we have

∫ ∫
∆

(
φ′x
B
A
f ′x+φ′y

A
B
f ′y
)
dxdy =

∫
∂′∆
φ
(
− A
B
f ′y dx+

B
A
f ′x dy

)
, (4.2)

where ∂′∆ = ∂∆\(Γ0(β)∪Γ1(β)). Note that in the above definition, at any point x ∈D,

where ∇f(x) does not exist, we set ∇f(x)= 0.

LetA, B be functions of C1(D(β)) and let f ∈ C2(D(β)) be a solution of (2.6) onD(β).
By Green formula for any bounded domain ∆⊂D(β) with the rectifiable boundary and
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any function φ∈ Lip∆, we have

∫ ∫
∆
φ
((
B
A
f ′x
)′
x
+
(
A
B
f ′y
)′
y

)
dxdy+

∫ ∫
∆

(
φ′x
B
A
f ′x+φ′y

A
B
f ′y
)
dxdy

=
∫
∂′∆
−φA

B
f ′y dx+φ

B
A
f ′x dy.

(4.3)

From here, by (2.6), we obtain (4.2).

Lemma 4.1. If f is a generalized solution of (2.6) with boundary condition (2.7), (2.8),

or (2.9) on D(β), then for any t, 0≤ t ≤ β,

max
D(t)

f (x,y)= max
γ(−t)∪γ(t)

f (x,y). (4.4)

Proof. Suppose there exists a point (x0,y0)∈D(t) such that

f
(
x0,y0

)
> max
γ(−t)∪γ(t)

f (x,y)=M. (4.5)

Choose ε such that f(x0,y0) > ε > M . Consider a connected component ∆ of the set

{(x,y)∈D(t) : f(x,y) > ε}. By (4.2) with φ= f(x,y)−ε, we can write

∫ ∫
∆

(
B
A
f ′2x +

A
B
f ′2y

)
dxdy =

∫
∂′∆
(f −ε)

(
− A
B
f ′y dx+

B
A
f ′x dy

)
= 0. (4.6)

As A, B > 0 everywhere on ∆, we obtain

∇f(x,y)= 0 everywhere on ∆, (4.7)

and thus f ≡ const on ∆, which is a contradiction.

Lemma 4.2. Let t be a fixed number, 0< t ≤ β, and let f be a generalized solution of

(2.6) with boundary condition (2.7), (2.8), or (2.9) on D(β). Then,

inf
0≤s≤1

osc2
Γs (t) f ≤

∫ ∫
D(t)

�(∇θ)dxdy
∫ ∫

D(t)
�(∇f)dxdy. (4.8)

Proof. Fix s ∈ (0,1), and t ∈ (0,β). Let (x0,y0) ∈ Γs(t) be a fixed point. At this

point, the vector

τ =
(
− θ′y
|∇θ| ,

θ′x
|∇θ|

)
(4.9)

is a unit tangent to Γs(t) vector, and

∂f
∂τ

= 〈∇f ,τ〉 (4.10)

is a derivative with respect to the direction τ .

Because the function f is locally Lipschitz and almost all level curves Γs(t), 0 <
s < 1, of the Lipschitz function θ are rectifiable [3, Theorem 3.2.15], the function f is
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absolutely continuous along Γs(t) for almost all s ∈ (0,1). From

�(∇f)�(∇θ)−∣∣∇θ2
∣∣∣∣∣∣∂f∂τ

∣∣∣∣
2

=
(
B
A
f ′2x +

A
B
f ′2y

)(
B
A
θ′2x +

A
B
θ′2y

)

−((f ′xθ′y−f ′yθ′x))2

=
(
B
A
f ′xθ′x+

A
B
f ′yθ′y

)2

≥ 0,

(4.11)

we see that at (x0,y0),

∣∣∣∣∂f∂τ
∣∣∣∣

2

≤ 1
|∇θ|2 �(∇f)�(∇θ). (4.12)

Next, denoting
√
dx2+dy2 by d
, we note that

oscΓs (t) f ≤
∫
Γs (t)

∣∣∣∣∂f∂τ
∣∣∣∣d
 ≤

∫
Γs (t)

�1/2(∇f)�1/2(∇θ) d
|∇θ| . (4.13)

Using the Cauchy inequality, we obtain

osc2
Γs (t) f ≤

∫
Γs (t)

�(∇f) d
|∇θ|
∫
Γs (t)

�(∇θ) d
|∇θ| . (4.14)

This inequality implies

∫ 1

0

osc2
Γs (t) f∫

Γs (t)�(∇θ)
(
d
/|∇θ|)ds ≤

∫ 1

0

∫
Γs (t)

�(∇f) d
|∇θ|ds. (4.15)

The condition (2.1) makes possible to use the coarea formula [3, Theorem 3.2.12].

We have

∫ 1

0

∫
Γs (t)

�(∇f) d
|∇θ|ds =
∫ ∫

D(t)
�(∇f)dxdy. (4.16)

Thus, we arrive at the following relation:

inf
0≤s≤1

osc2
Γs (t) f

∫ 1

0

ds∫
Γs (t)�(∇θ)

(
d
/|∇θ|) ≤

∫ ∫
D(t)

�(∇f)dxdy. (4.17)

Next, from the Cauchy inequality, it follows that

1=
∫ 1

0
ds ≤

∫ 1

0

ds∫
Γs (t)�(∇θ)

(
d
/|∇θ|)

∫ 1

0

∫
Γs (t)

�(∇θ) d
|∇θ|ds. (4.18)
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Again, applying the coarea formula, we find

1≤
∫ 1

0

ds∫
Γs (t)�(∇θ)

(
d
/|∇θ|)

∫ ∫
D(t)

�(∇θ)dxdy. (4.19)

From here, with (4.17), we obtain (4.8).

Lemma 4.3. Let f be a generalized solution of (2.6) with boundary condition (2.8),

(2.9), or (2.7) on D(β) and let τ , t, 0< τ < t < β, be some arbitrary numbers. Then,

inf
y∈(τ,t)

osc2
γ(y) f + inf

y∈(−t,−τ)
osc2

γ(y) f

≤ 1
(t−τ)2 max

{∫ ∫
D′
A
B
dxdy,

∫ ∫
D′′
A
B
dxdy

}∫ ∫
D(t)\D(τ)

�(∇f)dxdy,
(4.20)

where D′ =D(β)∩{−t < y <−τ} and D′′ =D(β)∩{τ < y < t}.
Proof. We will show that Lemma 4.3 may be obtained as a corollary of Lemma 4.2.

Choosing θ0 = (y−τ)/(t−τ) in (4.8), we find that

inf
y∈(τ,t)

osc2
γ(y) f ≤

∫ ∫
D′′

�
(∇θ0

)
dxdy

∫ ∫
D′′

�(∇f)dxdy. (4.21)

Now, we note that

∇θ0 =
(
0,

1
t−τ

)
, (4.22)

and therefore

∫ ∫
D′′

�
(∇θ0

)
dxdy = 1

(t−τ)2
∫ ∫

D′′
A
B
dxdy. (4.23)

Consequently,

inf
y∈(τ,t)

osc2
γ(y) f ≤

1
(t−τ)2

∫ ∫
D′′
A
B
dxdy

∫ ∫
D′′

�(∇f)dxdy. (4.24)

Analogously,

inf
y∈(−t,−τ)

osc2
γ(y) f ≤

1
(t−τ)2

∫ ∫
D′
A
B
dxdy

∫ ∫
D′

�(∇f)dxdy. (4.25)

Finally,

inf
y∈(τ,t)

osc2
γ(y) f + inf

y∈(−t,−τ)
osc2

γ(y) f

≤ 1
(t−τ)2 max

{∫ ∫
D′
A
B
dxdy,

∫ ∫
D′′
A
B
dxdy

}∫ ∫
D′∪D′′

�(∇f)dxdy,
(4.26)

which proves the lemma.
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5. Energy estimates. First, we need to prove a few auxiliary statements. We let

E(t)=
∫ ∫

D(t)

(
B
A
f ′2x+

A
B
f ′2y

)
dxdy. (5.1)

Lemma 5.1. Let f be a generalized solution of (2.6) with (2.8), (2.9), or (2.7) in D(β).
Then, for any t ∈ (0,β),

E(t)≤ 1∫−t
−β B(y)dy/

∫
γ(y) f 2(x,y)A(x)dx

+ 1∫ β
t B(y)dy/

∫
γ(y) f 2(x,y)A(x)dx

.

(5.2)

Proof. Fix a Lipschitz function

ψ(y)=




0, if β <y,

h+(y), if t ≤y ≤ β,
1, if −t < y < t,
h−(y), if −β≤y ≤−t,
0, if y <−β.

(5.3)

Here, h− and h+ are arbitrary functions for which ψ∈ Lip(R).
Since fψ2 = 0 everywhere on γ(−β)∪γ(β), by (4.2) with φ = fψ2 and ∆ = D(β),

we have

∫ ∫
D(β)

((
fψ2)′

x
B
A
f ′x+

(
fψ2)′

y
A
B
f ′y
)
dxdy

=
∫
γ(−β)∪γ(β)

fψ2
(
− A
B
f ′y dx+

B
A
f ′x dy

)

= 0.

(5.4)

From here, we find

∫ ∫
D(β)

ψ2
(
B
A
f ′2x +

A
B
f ′2y

)
dxdy =−2

∫ ∫
D(β)\D(t)

fψ
(
ψ′x
B
A
f ′x+ψ′y

A
B
f ′y
)
dxdy.

(5.5)

Because

2fψ
(
ψ′x
B
A
f ′x+ψ′y

A
B
f ′y
)
≤ 2|fψ|�1/2(∇ψ)�1/2(∇f)≤ f 2�(∇ψ)+ψ2�(∇f), (5.6)

we obtain

∫ ∫
D(β)

ψ2�(∇f)dxdy ≤
∫ ∫

D(β)\D(t)
f 2�(∇ψ)dxdy+

∫ ∫
D(β)\D(t)

ψ2�(∇f)dxdy.
(5.7)



STAGNATION ZONES OF IDEAL FLOWS IN LONG AND NARROW BANDS 3347

It is easy to see that ψ′x = 0 on D(β) and ψ′y = h′−(y) for −β < y < t, ψ′y = h′+(y) for

t < y < β. So, we have

∫ ∫
D(t)

�(∇f)dxdy ≤
∫ ∫

D∩{t<y<β}
f 2h′2+

A
B
dxdy

+
∫ ∫

D∩{−β<y<−t}
f 2h′2−

A
B
dxdy ≡ I1

(
h+
)+I2(h−).

(5.8)

In order to prove the lemma, we seek the infimum of the integral I1(h+) over all func-

tions h+, h+(y) = 1 for y ≤ t and h+(y) = 0 for y ≥ β. By the coarea formula [3,

Theorem 3.2.12],

I1
(
h+
)=

∫ β
t
h′2+ (y)B−1(y)dy

∫
γ(y)

f 2(x,y)A(x)dx. (5.9)

Denote

Φ(y)= B−1
∫
γ(y)

f 2(x,y)A(x)dx. (5.10)

But, by the Cauchy inequality,

1≤
(∫ β

t
h′+dy

)2

≤
∫ β
t
h′2+Φdy

∫ β
t

dy
Φ
. (5.11)

Now, we find

1∫ β
t Φ−1dy

≤
∫
t<y<β

h′2+Φdy = I1
(
h+
)
. (5.12)

This inequality holds for any h+, and therefore,

1∫ β
t Φ−1dy

≤ inf
h+

∫
t<y<β

h′2+Φdy. (5.13)

Choosing

h+(y)=
∫ β
y Φ−1(τ)dτ∫ β
t Φ−1(τ)dτ

for t ≤y ≤ β, (5.14)

we find

inf
h+
I1
(
h+
)= 1∫ β

t Φ−1dy
. (5.15)

Analogously,

inf
h−
I2
(
h−
)= 1∫−t

−βΦ−1dy
. (5.16)

Combining (5.8), (5.15), and (5.16), we arrive at (5.2).
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Next, we prove a result which may be regarded as a variant of the well-known Saint

Venant’s principle about a decreasing speed of energy E(t) of a deformed solid (see,

e.g., [9, 10, 12]).

Lemma 5.2. If f is a generalized solution of (2.6) in D(β), then for an arbitrary t,
0< t < β,

E(t)≤ E(β)exp
{
−Cπ

∫ β
t
κ(t)dt

}
, (5.17)

where C = 1 with boundary condition (2.9) and C = 2 with boundary condition (2.7).

Proof. Fix t, 0< t < β. By (4.2), we can write

∫
∂′D(t)

f
(
− A
B
f ′ydx+

B
A
f ′xdy

)
=
∫ ∫

D(t)

(
B
A
∣∣f ′x∣∣2+ A

B
∣∣f ′y∣∣2

)
dxdy. (5.18)

From (2.9), we have

−
∫
γ(−t)∪γ(t)

f
A
B
f ′ydx =

∫ ∫
D(t)

(
B
A
∣∣f ′x∣∣2+ A

B
∣∣f ′y∣∣2

)
dxdy, (5.19)

that is,

E(t)≤ B−1(−t)
∫
γ(−t)

|f |∣∣Af ′y∣∣dx+B−1(t)
∫
γ(t)

|f |∣∣Af ′y∣∣dx. (5.20)

We estimate the first term in the right side of this inequality. By the Hölder inequality,

∫
γ(−t)

|f |∣∣Af ′y∣∣dx ≤
(∫

γ(−t)
A|f |2dx

)1/2(∫
γ(−t)

A
∣∣f ′y∣∣2dx

)1/2
. (5.21)

For an arbitrary t ∈ (−β,β), we set

λ1(t)= inf
φ

(∫
γ(t) A−1(x)

∣∣φ′(x)∣∣2dx∫
γ(t) A(x)φ2(x)dx

)1/2

, (5.22)

where the infimum is taken over all Lipschitz on γ(t) functions φ, φ= 0, at Γ0∩γ(t).
The function f(x,−t) vanishes at Γ0∩γ(−t). From (5.22), it follows that

∫
γ(−t)

A(x)
∣∣f(x,−t)∣∣2dx ≤ 1

λ2
1(−t)

∫
γ(−t)

A−1(x)
∣∣f ′x∣∣2dx. (5.23)

Now, we obtain

∫
γ(−t)

∣∣f(x,−t)∣∣A
B
∣∣f ′y∣∣dx ≤ B−1(t)

λ1(−t)
(∫

γ(−t)
B
A
∣∣f ′x∣∣2dx

)1/2(∫
γ(−t)

A
B
∣∣f ′x∣∣2dx

)1/2
.

(5.24)

By the inequality

2ab ≤ a2+b2, (5.25)
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we find

∫
γ(−t)

|f |A
B
∣∣f ′y∣∣dx ≤ B−1(−t)

2λ1(−t)
∫
γ(−t)

(
B
A
∣∣f ′x∣∣2+ A

B
∣∣f ′y∣∣2

)
dx. (5.26)

Analogously,

∫
γ(t)

|f |A
B
∣∣f ′y∣∣dx ≤ B−1(t)

2λ1(t)

∫
γ(t)

(
B
A
∣∣f ′x∣∣2+ A

B
∣∣f ′y∣∣2

)
dx. (5.27)

Adding both inequalities, we get

∫
η(t)

|f |A
B
∣∣f ′y∣∣dx ≤max

{
B−1(−t)
2λ1(−t) ,

B−1(t)
2λ1(t)

}∫
η(t)

(
B
A
∣∣f ′x∣∣2+ A

B
∣∣f ′y∣∣2

)
dx, (5.28)

where

η(t)= γ(−t)∪γ(t). (5.29)

The quantity λ1(t) in (5.22) is easily computable. Let x0 ∈ γ(t) be the left end of γ(t)
and let

u=
∫ x
x0

A(t)dt. (5.30)

We have

∫
γ(t)
A(x)φ2(x)dx =

∫ L(t)
0

φ̃2(u)du, (5.31)

where

φ̃(u)=φ(x−1(u)
)
, L(t)=

∫
γ(t)
A(x)dx. (5.32)

Because

φ̃′(u)=φ′(x−1(u)
) 1
A
(
x(u)

) , (5.33)

we find

∫
γ(t)

1
A(x)

∣∣φ′(x)∣∣2dx =
∫ L(t)

0
φ̃′2(u)du. (5.34)

Thus, from (5.22), we obtain

λ1(t)= inf
φ

(∫ L(t)
0

∣∣φ′(u)∣∣2du∫ L(t)
0 φ2(u)du

)1/2

, (5.35)

where the infimum is taken over all Lipschitz functions φ defined on (0,L(t)) with

φ(0)= 0.
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If f satisfies (2.6) with (2.7), these arguments remain unchanged if we replace λ1(t)
by

λ2(t)= inf
ψ

(∫
γ(t)A−1(x)

∣∣ψ′(x)∣∣2dx∫
γ(t) A(x)ψ2(x)dx

)1/2

, (5.36)

where the infimum is taken over all functions ψ that are Lipschitz on γ(t) such that ψ
equals to 0 on both ends of γ(t).

As (5.35) may be rephrased as

λ2(t)= inf
ψ

(∫ L(t)
0

∣∣ψ′(u)∣∣2du∫ L(t)
0 ψ2(u)du

)1/2

, (5.37)

where the infimum is taken over all functions ψ Lipschitz on (0,L(t)) and ψ(0) =
ψ(L(t)) = 0. So, by the Wirtinger inequality (e.g., see, [1, Theorem 7, Chapter V]), we

have the well-known relation

λ2(t)= π
L(t)

. (5.38)

Analogously, for calculation of λ1(t) at first, we extendφ(x) on (0,2L(t)) by symmetry

such that

φ∗(x)=φ∗(2L−x), φ∗(x)|(0,L(t)) =φ(x). (5.39)

Now, we have φ∗(0)=φ∗(2L(t))= 0 and as (5.38), we establish

λ1(t)= π
2L(t)

. (5.40)

We note

E′(t)=
∫
γ(−t)∪γ(t)

(
B
A
∣∣f ′x∣∣2+ A

B
∣∣f ′y∣∣2

)
dx. (5.41)

In the case (2.9), using (5.20), (5.28), and (5.40), we arrive at

E(t)≤ 1
πκ(t)

E′(t). (5.42)

Integrating (5.42), we have the inequality

log
E(β)
E(t)

≥ 2
∫ β
t
πκ(t)dt, (5.43)

which implies (5.17) with C = 1.

In the case (2.7) from (5.35) and (5.38) as above, we prove (5.17) with C = 2.

6. Proof of main theorems. First, we consider the proof of Theorem 3.1. We note

that the proof of Theorem 3.2 follows easily from Theorem 3.1 and Lemma 5.2.
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Let m =minγ(−β)∪γ(β) f and M =maxγ(−β)∪γ(β) f . Consider a new function f∗ = f −
(m+M)/2. It is easy to see that the function f∗ satisfies (2.9) and

max
γ(−β)∪γ(β)

∣∣f∗(x,y)∣∣≤ 1
2

oscγ(−β)∪γ(β) f (x,y)= Ω
2
. (6.1)

Without loss of generality, we may assume that the solution f also satisfies the above

inequality and, consequently, by Lemma 4.1,

max
D(β)

∣∣f(x,y)∣∣≤ Ω
2
. (6.2)

Fix arbitrarily ε > 0. Choose τ = t−1 in (4.20) and let y1 ∈ (−t,−t+1), y2 ∈ (t−1, t)
such that

osc2
γ(y1) f ≤ inf

y∈(−t,−t+1)
osc2

γ(y) f +
ε
3
, osc2

γ(y2) f ≤ inf
y∈(t−1,t)

osc2
γ(y) f +

ε
3
, (6.3)

and s0 ∈ (0,1) such that

osc2
Γs0 (t)

f ≤ inf
0≤s≤1

osc2
Γs (t) f +

ε
3
. (6.4)

Using Lemma 4.1, we have

oscD(t−1) f ≤ osc∂D(t−1) f ≤ oscγ(−t+1)∪γ(t−1) f

≤ oscγ(y1) f +oscγ(y2) f +oscΓs0 (t) f ,
(6.5)

or

osc2
D(t−1) f ≤ 3

(
osc2

γ(y1) f +osc2
γ(y2) f +osc2

Γs0 (t)
f
)
. (6.6)

Hence,

osc2
D(t−1) f ≤ 3

(
inf

y∈(−t,−t+1)
osc2

γ(y) f + inf
y∈(t−1,t)

osc2
γ(y) f + inf

0≤s≤1
osc2

Γs (t) f +ε
)
. (6.7)

Now, from (4.8) and (4.20), it follows that

osc2
D(t−1) f ≤ 3

(
max

{∫ ∫
D∗
A
B
dxdy,

∫ ∫
D∗∗

A
B
dxdy

}∫ ∫
D(t)\D(t−1)

�(∇f)dxdy

+
∫ ∫

D(t)
�(∇θ)dxdy

∫ ∫
D(t)

�(∇f)dxdy+ε
)
.

(6.8)

Since ε > 0 is arbitrary,

osc2
D(t−1) f ≤ 3

(
max

{∫ ∫
D∗
A
B
dxdy,

∫ ∫
D∗∗

A
B
dxdy

}
+
∫ ∫

D(t)
�(∇θ)dxdy

)
E(t),

(6.9)

or

osc2
D(t−1) f ≤ 3

(
e(t)+µ(t))E(t). (6.10)
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The estimate (5.2) implies

E(t)≤ 2

min
{∫ β
t B(y)dy/

∫
γ(y) f 2(x,y)A(x)dx,

∫−t
−β B(y)dy/

∫
γ(y) f 2(x,y)A(x)dx

} .
(6.11)

Consequently, by (6.2)

E(t)≤ Ω2

2min
{∫ β
t B(y)dy/

∫
γ(y)A(x)dx,

∫−t
−β B(y)dy/

∫
γ(y)A(x)dx

} , (6.12)

and we find

E(t)≤ Ω2

2I(t,β)
. (6.13)

Combining (6.10) and (6.13), we arrive at the following estimate:

osc2
D(t−1) f ≤

3
2

(
e(t)+µ(t)) Ω2

I(t,β)
. (6.14)

Thus, the assumption (3.5) implies from (6.14) that

oscD(t−1) f ≤ s, (6.15)

that is, the subdomain D(t−1) is an s-zone, which is the result of Theorem 3.1.

To prove Theorem 3.2, we combine the estimate (6.10) with estimates (5.17) in Lemma

5.2. We obtain, in the case of the condition (2.9),

osc2
D(t−2) f ≤ 3

(
e(t−1)+µ(t−1)

)
E(β−1)exp

{
−π

∫ β−1

t−1
κ(τ)dτ

}
(6.16)

or, if f satisfies (2.7),

osc2
D(t−2) f ≤ 3

(
e(t−1)+µ(t−1)

)
E(β−1)exp

{
−2π

∫ β−1

t−1
κ(τ)dτ

}
. (6.17)

As in (6.13), we find

E(β−1)≤ Ω2

2I(β−1,β)
. (6.18)

Estimates (6.16), (6.17), and (6.18) imply, respectively,

osc2
D(t−2) f ≤

3
2I(β−1,β)

(
e(t−1)+µ(t−1)

)
exp

{
−π

∫ β−1

t−1
κ(τ)dτ

}
,

osc2
D(t−2) f ≤

3
2I(β−1,β)

(
e(t−1)+µ(t−1)

)
exp

{
−2π

∫ β−1

t−1
κ(τ)dτ

}
.

(6.19)

From assumptions (3.7), we conclude that D(t−2) is an s-zone.
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7. Examples. To illustrate our results, we will describe some examples of surfaces

defined by almost Liouville line elements and then consider the application of the main

theorems to a boundary value problem over conic belts.

Consider an almost Liouville line element defined as follows. Let � = (D,ds2) be a

surface obtained by rotation of the graph of a function u = ρ(w) around the w-axis.

We assume that ρ(w) is defined on a segment 0≤w ≤ ρ0, nonnegative and belongs to

C2[0,ρ0].
We set y = ξ(w) to be the arc length function

y = ξ(w)=
∫w

0

√
1+ρ′2(τ)dτ, (7.1)

and let w = ξ−1(y)= η(y) be its inverse function.

We introduce special coordinates (x,y) of a point (u,v,w) on � by setting

x = tan−1 v
u
, y = ξ(w). (7.2)

If we denote r(y)= ρ◦η(y), then it is easy to see that

u= r(y)cosx, v = r(y)sinx, w = η(y). (7.3)

Clearly, the lines x = const and y = const on � are orthogonal to each other. Therefore,

for the length element ds on �, we have

ds2 = r 2(y)dx2+dy2. (7.4)

Consequently, we have

Q(x,y)= r(y), A(x)= 1, B(y)= 1
r(y)

, (7.5)

and so � belongs to the class of surfaces defined by almost Liouville line elements.

We set by

∣∣∇�f
∣∣2 =Q−2(x,y)

(f ′2x
A2

+ f
′2
y

B2

)
(7.6)

the square of the gradient of a function f on �, and, next,

�(∇f)= B
A
f ′2x +

A
B
f ′2y . (7.7)

With the aid of (2.5) and (7.6), the basic variational problem

min
f

∫ ∫
D

∣∣∇�f
∣∣2dσ (7.8)
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to be investigated may be written as

min
f

∫ ∫
D

�(∇f)dxdy, (7.9)

and the corresponding Laplace-Beltrami equation on �= (D,ds2) has the form (2.6).

Since Q = r(y), A = 1, and B = 1/r(y) for the surface of revolution considered

above, the corresponding Laplace-Beltrami equation has the form

1
r(y)

∂
∂x

(
∂f
∂x

)
+ ∂
∂y

(
r(y)

∂f
∂y

)
= 0. (7.10)

By choosing ρ = 1+w, 0≤w ≤√2β, we have

r(y)= 1+ky, k= 1√
2
. (7.11)

Fix α, 0 < α < 2π . The resulting surface of revolution is a conic belt defined by the

parametric equations

u= (1+ky)cosx,

v = (1+ky)sinx,

w = ky,
(7.12)

where 0<x <α, 0≤y ≤ 2β.

Set the rectangle

∆= {0<x <α, 0<y < 2β}, (7.13)

and consider the following boundary problem.

(P) Find the solution of (7.10) subject to (2.8), ((2.9) or (2.7)) on vertical parts of ∆
and

f |y=0 = 1, f |y=2β = 2 (7.14)

on horizontal parts.

Introducing new variables

x̃ = x
α
, ỹ =y−β, (7.15)

if (x,y)∈∆, then rescaling to (x̃, ỹ), we have

D(β)= {(x̃, ỹ) : 0< x̃ < 1, −β < ỹ < β}. (7.16)

Here, θ = x̃, so,

Γ0(β)=
{
(x̃, ỹ)∈ ∂D(β) : x̃ = 0

}
, Γ1(β)=

{
(x̃, ỹ)∈ ∂D(β) : x̃ = 1

}
,

γ(−β)= {(x̃, ỹ)∈ ∂D(β) : ỹ =−β}, γ(β)= {(x̃, ỹ)∈ ∂D(β) : ỹ = β}. (7.17)
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From (3.1) and (7.14), we have Ω = 1. Consequently, for the boundary value problem

(7.10)–(7.14), we have from Theorem 3.1, (3.2), (3.3), (3.4),

e(t)= 1
αk

log
1+kβ+kt
1+kβ−kt ;

µ(t)=α
(

1+ k
2
+kβ+kt

)
;

I(t,β)= 1
αk

log
1+2kβ

1+kβ+kt ;

(7.18)

and thus, according to Theorem 3.1, for any given s > 0, if t ∈ (1,β) is such that

1
αk

log
1+kβ+kt
1+kβ−kt +α

(
1+ k

2
+kβ+kt

)
≤ 3

2
s2

αk
log

1+2kβ
1+kβ+kt , (7.19)

then the band D(t−1) is an s-zone.

Similarly, from (3.2), (3.3), (3.4), (3.6),

e(t−1)= 1
αk

log
1+kβ+k(t−1)
1+kβ−k(t−1)

;

µ(t−1)=α
(

1+ k
2
+kβ+k(t−1)

)
;

I(β−1,β)= 1
αk

log
1+2kβ

1+kβ+k(β−1)
;

L(t)=α, κ(t)= 1
1+kβ+kt ;

∫ β−1

t−1
κ(τ)dτ =

∫ β−1

t−1

1
1+kβ+kτ dτ =

1
k

log
1+kβ+k(β−1)
1+kβ+k(t−1)

;

(7.20)

we see from Theorem 3.2 that for any given s > 0, if t ∈ (2,β) is such that

(
1
αk

log
1+kβ+k(t−1)
1+kβ−k(t−1)

+α
(

1+ k
2
+kβ+k(t−1)

))

·exp
(
−Cπ 1

k
log

1+kβ+k(β−1)
1+kβ+k(t−1)

)
≤ 2

3
s2

αk
log

1+2kβ
1+kβ+k(β−1)

,
(7.21)

then D(t−2) is an s-zone.
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