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An alternate generalized Korteweg-de Vries system is studied here. A procedure for gen-
erating solutions is given. A theorem is presented, which is subsequently applied to this
equation to obtain a type of Bäcklund transformation for several specific cases of the power
of the derivative term appearing in the equation. In the process, several interesting, new,
ordinary, differential equations are generated and studied.
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There has been considerable interest recently in the study of generalized nonlinear

Korteweg-de Vries (KdV) equations. One in particular has been investigated in a number

of papers [4, 5, 8], and recently many explicit solutions to the equation have been

produced [1]. The exact form of this equation is given as

wt+a
(
wp)

x+b
(
wq)

xxx = 0, (1)

where a and b are real, nonzero constants. When p = q = 1, the equation becomes a

linear equation, and when p = 2 and q = 1, the classical KdV equation results [2]. The

symmetry group has been determined and group invariant solutions have been pro-

duced as well [1]. The interest in this type of equation resides in the fact that nonlinear

dispersion is taken into account, and moreover, it has been realized that nonlinear dis-

persion can act to compactify solitary waves and generate solitons which have a finite

wavelength. This new type of soliton has been referred to as a compacton, and it can be

thought of as a soliton which has a finite wavelength. It is likely that this type of equa-

tion will find many applications in the areas of condensed matter physics and statistical

mechanics.

It is the intent here to investigate a related set of equations which are of interest and

given in the form

wt+wxxx+g′
(
wx

)= 0, (2)

where g(t) is a differentiable function of a single variable, in this case, a polynomial.

Equation (2) can be thought of as a type of extension of the KdV equation when g is

selected appropriately. The equation can also manifest nonlinear dispersion depending

on the form of g as in the equation above. The intention here is to show that a class

of solutions for (2) can be generated by integration. Then, it will be shown that for a

particular form of the function g, a type of Bäcklund transformation can be obtained.
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This is still a relatively new subject now, and what will be presented here is meant to

initiate further work.

Consider a pair of partial differential equations, which can be expressed in the form

∆(u)= 0, Σ(v)= 0, (3)

where u, v denote the functions to be determined, while ∆ and Σ represent particular

differential operators inm independent variables. Here, the case in which there are two

independent variables which will be referred to as t and x will be treated. A Bäcklund

transformation would constitute a system of relations which involve u, v , and their

corresponding derivatives such that they ensure that v satisfies the second equation

in (3) when u satisfies the first, and conversely [3]. Suppose that the equation ∆(u)= 0

is the Euler-Lagrange equation of a variational principle corresponding to a particular

Lagrangian L(u). In addition, suppose there is a relation between u and v and their

derivatives which imply that L(v)−L(u) is a divergence. Then,∆(v)= 0 holds whenever

∆(u) = 0 and conversely. From this, it follows that these relations would possess the

Bäcklund property just defined for the pair of equations in (3). In this instance, (3) are

referred to as a variational Bäcklund transformation [6, 7]. In the case of the generalized

form (2), these are closely related to Euler-Lagrange equations, but are not identical.

Let the Euler-Lagrange equations be written as Ej(u) = 0, j = 1, . . . ,n, which if the

Lagrangian depends on second derivatives takes the form

Ej(u)= d
dxα

[
∂L
∂ujα

− d
dxβ

(
∂L
∂ujαβ

)]
− ∂L
∂uj

, (4)

where xα are the independent variables and uj the dependent variables and the sub-

script on uj indicates partial differentiation. However, another transformation, which

will be referred to as a simple Bäcklund transformation, can be defined by requiring

that it guarantees the difference E(v)−E(u) vanishes. The idea here is to show that

explicit solutions to (2) can be determined. Next, we give a simple but clear proof of a

theorem which can be used to produce a simple Bäcklund transformation for equations

of the form (2). For a particular choice of the function g(z) in (2), namely,

g(z)= α
n(n+1)

zn+1, (5)

it will be shown how to obtain specific transformations explicitly by applying Theorem 1

for several values of the power n in (5). This method is of interest in itself, and in

developing it, leads to other types of ordinary differential equations which must be

integrated to produce the transformation and are themselves of interest. A straightfor-

ward transformation procedure is found, which leads to results, and it is hoped that

this will stimulate further work in formulating generalizations of the procedure which

is presented here.

To demonstrate the feasibility of generating at least some explicit solutions to (2), we

look for a class of solutions to (2) of the form w(x,t) =w(x−ct). Introduce the new

variable ξ = x−ct into (2) so that the derivatives with respect to t and x are replaced
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by derivatives with respect to ξ. In terms of the new variable ξ, (2) takes the form

−cwξ+wξξξ+g′
(
wξ
)= 0. (6)

Set τ =wξ in (6) so that the order is reduced by one and it becomes

−cτ+τξξ+g′(τ)= 0. (7)

Multiplying both sides of (7) by τξ , it can be written in the form

−c
2

(
τ2)

ξ+
1
2

(
τ2
ξ
)
ξ+

(
g(τ)

)
ξ = 0. (8)

Integrating (8) once, we obtain

−cτ2+τ2
ξ +2g(τ)= C. (9)

Solving (9) for τξ , we obtain that τ2
ξ = cτ2−2g(τ)+C , hence (9) can be separated and

written as a quadrature

∫
dτ√

cτ2−2g(τ)+C
= εξ+K, ε=±1. (10)

Integrating on the left for particular g, we obtain something which depends on τ . Solv-

ing this resulting expression, τ is obtained as a function of ξ explicitly. This gives

preciselywξ . Integrating a final time, we obtain w(ξ). If g is given in the form (5), then

the quantity under the radical in (10) is a polynomial of degree n+1 in the variable τ .

In fact, the integral in (10) takes the form

∫
dτ√

cτ2−(2α/n(n+1)
)
τn+1+C

= εξ+K. (11)

Of course, (11) can be integrated easily in the case in which c = 0 and C = 0, but giving

only static solutions. This can be integrated explicitly for certain values of n and the

constants to give nontrivial solutions as well. For example, suppose n = 3, α = −6,

c = 2, and C = 1, then the solution to (2) is given by

w(x,t)= ln
(
sec(x−2t+K))+C1. (12)

If we simply put n= 3 and C = 0 into (11), the following solution to (2) is obtained

w(x,t)= 2

√
6
α

arctan

(√
2
3
αc exp

(√
c(x−ct+K))

)
. (13)

These solutions can be verified by direct substitution into (2). Elliptic function solutions

could also be obtained from (11) as well.

Consider a general Lagrangian of the form

L= 1
2
utux− 1

2
u2
xx+g

(
ux
)
, (14)
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where u represents the dependent function. The Euler-Lagrange expression in this case

reduces to

E(u)= d
dt

(
∂L
∂ux

− d
dx

(
∂L
∂uxx

))
+ d
dt

(
∂L
∂ut

)

=utx+uxxxx+ d
dx

g′
(
ux
)

= d
dx

(
ut+uxxx+g′

(
ux
))= d

dx
�(u).

(15)

A criterion for the existence of a simple Bäcklund transformation associated with the

equation �(u)= 0 is given in the following theorem.

Theorem 1. The partial differential equation (2) possesses a simple Bäcklund trans-

formation relating w and z, if for the given function g(wx), there exist functions ϕ(v),
θ(v) where θ′(v)≠ 0 such that the following condition is satisfied:

g′
(
zx
)−g′(wx

)=−θ′′′(v)
θ′(v)

v3
x−2

ϕ′(v)
θ′(v)

vx, (16)

and w and z are related to u and v by the linear transformation

w =u−v, z =u+v. (17)

Under these conditions, the corresponding simple Bäcklund transformation has the form

ux = θ(v),

ut =−θ′(v)vxx+ 1
2
θ′′(v)v2

x+ϕ(v).
(18)

Proof. Setting 2χ = �(z)−�(w), where �(w)=wt+wxxx+g′(wx), we can write

2χ = zt+g′
(
zx
)+zxxx−wt−g′

(
wx

)−wxxx

=ut+vt−ut+vt+uxxx+vxxx−uxxx+vxxx+g′
(
zx
)−g′(wx

)
= 2

(
vt+vxxx

)+g′(zx)−g′(wx
)
.

(19)

Substituting (16) into (19), we obtain

θ′(v)χ = θ′(v)vxxx− 1
2
θ′′′(v)v3

x−ϕ′(v)vx+θ′(v)vt

= ∂
∂x

[
θ′(v)vxx− 1

2
θ′′(v)v2

x−ϕ(v)
]
− ∂
∂t
[
θ(v)

]
.

(20)

By definition, the existence of a simple Bäcklund transformation which relates the func-

tions w and z must imply that χ = 0. The result for θ′(v)χ in (20) then implies the

existence of a function U such that

Ux = θ(v), Ut =−θ′(v)vxx+ 1
2
θ′′(v)v2

x+ϕ(v). (21)
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The identification of u with U immediately gives rise to the relations in (18), which

specifies the transformation. Also, differentiating ux in (18) with respect to t and ut
with respect to x, the compatibility condition obtained by subtracting utx and uxt is

found to be

uxt−utx = θ′(v)vxxx− 1
2
θ′′′(v)v3

x−ϕ′(v)vx+θ′(v)vt. (22)

This vanishes precisely when χ = 0 from (20), and so the compatibility condition uxt =
utx holds.

The theorem can now be applied to obtain the coefficient functions θ(v) and ϕ(v)
which appear explicitly in the Bäcklund transformation (18). This can be done by solving

a set of auxiliary differential equations for the case in which the function g has the form

(5). In this case, the differential equation takes the form

wt+wxxx+ αn
(
wx

)n = 0. (23)

It will be shown that the cases n = 2,3, and 4 can be treated in the context of the

formalism described in Theorem 1 and presented in (18).

(1) Consider the case in which n= 2 so that we can write

g′
(
zx
)−g′(wx

)= α
2
z2
x−

α
2
w2
x = 2αuxvx. (24)

This expression has exactly the form given by (16), however, there is no term pro-

portional to v3
x . To match (24) to this form, it suffices to suppose that θ′(v) is not

identically zero, since vx appears in (25), but require that θ′′′(v) = 0 to prevent the

appearance of the v3
x term. This forces the coefficient of v3

x to vanish, and implies that

θ(v) is quadratic in v ,

θ(v)= a+bv− α
6
v2. (25)

The coefficient of vx is then given by 2αux = 2αθ(v), and so ϕ(v) is determined by

the first-order equation

−2
ϕ′(v)
θ(v)

= 2uux. (26)

Substituting for ux in terms of θ, this is equivalent to

ϕ′(v)=−αθ(v)θ′(v)=−1
2
α
(
θ(v)2

)′. (27)

Therefore, ϕ(v) is obtained in the form

ϕ(v)=−1
2
αθ(v)2. (28)
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The Bäcklund transformation which is specified by Theorem 1 can be written explicitly

as

ux = θ(v)= a+bv− α
6
v2,

ut =−
(
b− α

3
v
)
vxx− α

6
v2
x−

α
2

(
a+bv− α

6
v2
)2

.
(29)

As an example, to show that the compatibility condition for (29) holds in this case,

differentiate ux with respect to t and ut with respect to x to obtain the pair

uxt = bvt− α
3
vvt, utx =−bvxxx+ α

3
vvxxx−αux

(
bvx− α

3
vvx

)
. (30)

Now, the defining constraint χ = 0 implies that vt =−vxxx−αuxvx , which allows the

elimination of vt from uxt giving

uxt =−bvxxx−αbuxvx+ α
3
vvxxx+ α

2

3
uxvvx. (31)

Subtractinguxt andutx , the difference results in zero identically, and the compatibility

condition is satisfied as expected.

(2) Consider the case in which n= 3. In this case,

g′
(
zx
)−g′(wx

)= 2α
3
v3
x+2αu2

xvx. (32)

The coefficient of v3
x is a constant, and θ(v) must satisfy

θ′′′(v)
θ′(v)

=−2α
3
. (33)

Setting σ(v)= θ′(v), the order of this equation is reduced by one and a second-order

equation results, namely,

σ ′′(v)+ 2α
3
σ(v)= 0. (34)

This equation has trigonometric or hyperbolic function solutions depending on whether

α is positive or negative. When α> 0, the function θ(v) can be taken from the set

θ(v)= asin(βv), θ(v)= acos(βv), β=
√

2α
3
, (35)

and if α< 0, we can take θ(v) from the set

θ(v)= asinh(βv), θ(v)= acosh(βv), β=
√
−2α

3
. (36)

Here, a is an arbitrary constant. First, ϕ(v) will be determined for the case in which

θ(v) = asin(βv) so that ux = asin(βv). To obtain ϕ(v), we compare with the coeffi-

cient of vx , that is,

−2
ϕ′(v)
θ′(v)

= 2αa2 sin2(βv). (37)
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This implies that

ϕ′(v)=−αa3βsin2(βv)cos(βv), (38)

and hence

ϕ(v)=−αa
3

3
sin3(βv). (39)

In this case, the Bäcklund transformation can be written in the form

ux = asin(βv), ut =−a
[
βcos(βv)vxx+ α

3

(
v2
x+u2

x
)
sin(βv)

]
, β=

√
2α
3
, α > 0.

(40)

This can be repeated for the other functions given in (35) and (36). The results for the

hyperbolic sine when α< 0 are presented as well:

ux = asinh(βv), ut =−a
[
βcosh(βv)vxx+ α

3

(
v2
x+u2

x
)
sinh(βv)

]
, β=

√
−2α

3
.

(41)

(3) Finally, consider the case in which n= 4 so that

g′
(
zx
)−g′(wx

)= 2α
(
u3
xvx+uxv3

x
)
, (42)

withux = θ(v) (16) implies that the function θ(v)must satisfy the third-order equation

θ′′′(v)+α(θ(v)2)′ = 0. (43)

Integrating this equation, we obtain

θ′′(v)+αθ(v)2 = κ, (44)

where κ is a constant of integration. Multiplying both sides of this by θ′, another inte-

gration can be carried out to give the first-order result

θ′(v)2 =−2α
3
θ3+Cθ+C1. (45)

The equation can now be written in the form of a quadrature as follows:

∫
dθ√

C1+Cθ−(2α/3)θ3
= εv+C2, ε=±1. (46)

This will generate a large class of transformations upon integration and then solving

for θ as a function of v . The integral can be calculated easily when C = C1 = 0 to give

θ(v)=− 6
α
v−2. (47)
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Then, ϕ(v) is determined by the equation

ϕ′(v)=−αθ3(v)θ′(v)=− 2592
α3v9

, (48)

from which it follows that

ϕ(v)= 64

4α3v8
= α

4
u4
x. (49)

Corresponding to this solution, there exists the following transformation:

ux = θ(v)=− 6
α
v−2, ut =−12

α
v−3vxx+ 18

α
v−4v2

x+
α
4
u4
x. (50)

Of course, when C does not vanish, the equation

θ′(v)2+ 2α
3
θ(v)3−Cθ(v)−C1 = 0 (51)

has the more complicated solution

θ(v)=−�
(√

α
6
v+β

)
. (52)

Here, � denotes the Weierstrass elliptic function with the invariants g2 = 6α−1C and

g3 = 6C1α−1, β a constant. It therefore follows that the corresponding simple Bäcklund

transformation is given by

ux =−�
(√

α
6
v+β

)
,

ut =
√
α
6

�′
(√

α
6
v+β

)
vxx− α

4
�4
(√

α
6
+β

)
− α

12
�′′
(√

α
6
v+β

)
v2
x.

(53)

At this point, the process cannot be continued for this equation when n ≥ 5. For

example, when n = 5, the quantity g′(zx)−g′(wx) contains a term proportional to

v5
x , and does not match the form given in (16). However, possible generalizations of

Theorem 1 could lead to results for more general forms of the function g which appears

in (2).
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