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We present a rather simple proof of the existence of resonant frequencies for the direct
scattering problem associated to a system of elastic wave equations with Dirichlet boundary
condition. Our approach follows techniques similar to those in Cortés-Vega (2003). The
proposed technique relies on a stationary approach of resonant frequencies, that is, the
poles of the analytic continuation of the solution.
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1. Introduction. The existence of resonant frequencies (or poles) of the analytic con-

tinuation of the so-called S-matrix (which connects the asymptotic behaviors of the

incident and scattered waves), associated with symmetric hyperbolic systems of first

order in exterior domains and coercive boundary condition and enjoying the unique

continuation property is a problem of significant interest in the time-dependent scat-

tering theory of Lax and Phillips; these complex numbers present resonant properties

for the wave motion. A good discussion of this problem and important results on the

subject may be found in [21, Chapter IV] and the survey articles (see [22, Theorems 5.5

and 5.6]).

Apart from their intrinsic interest, the resonant frequencies are also relevant as a very

rich source of interesting problems. For instance, in the so-called inverse problems the

existence and location in the complex plane should give some information about the

fashion and size of the obstacle. This kind of results for perturbations of the scalar

wave equation appears in [19, 20, 25, 27] and the references therein.

Subsequently, extensive attention in this and other aspects for the direct scattering

problems associated to the system of elastic waves and the scalar wave equation ap-

pears in [2, 4, 6, 7, 15, 16, 17, 25, 29, 30, 33]; see also [1, 3, 4, 5, 8, 11, 12, 13, 20, 23,

26, 27, 29, 30] for recent results.

In this context, our goal in this work is to develop a rather simple proof of the ex-

istence of resonant frequencies associated with a phenomenon described by a system

of elastic waves with prescribed Dirichlet operator on the boundary ∂Ω ∈ C2 of an

arbitrary domain Ω =R3/D:

b2∆v(x)+(a2−b2)∇(∇x ·v(x))+σ 2v(x)= h(x), x ∈Ω,
v(x)= 0, x ∈ ∂Ω, (1.1)
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and the Kupradze-Sommerfeld radiation conditions [18]

(
KupL

)
vL(x)= o(1), as |x| �→∞,
∂
∂|x|v

L(x)−iσLvL(x)= o
(

1
|x|

)
, as |x| �→∞,

(
KupT

)
vT (x)= o(1), as |x| �→∞,
∂
∂|x|v

T (x)−iσTvT (x)= o
(

1
|x|

)
, as |x| �→∞,

(1.2)

uniformly for all directions x̂ = (1/|x|)x, where v= vL+vT is a sum of an irrotational

(lamellar) vector vT and a solenoidal vector vL. Here the variable σL ∈ C is the longitudi-

nal (dilational) wave number, σL = σ/b, transverse (shear) wave number σT = σ/a∈ C,

with a2 > (4/3)b2 > 0, and D is an open bounded region in R3.

In this context, a resonant frequency is a complex number σ for which system (1.1)

and (1.2) with h ≡ 0 has a nontrivial solution v. Our proof follows similar lines to

the arguments in [6, 7], the analysis is based on a stationary approach of resonant

frequencies, that is, the poles of the analytic continuation of the solution operator.

In my view, the technique combines the attributes of both simplicity and flexibility.

Indeed, as pointed out in [6], this method can be used in situations not included in the

time-dependent theory of Lax and Phillips [21], for instance, the impedance problem

with absorbing boundary conditions [20] or acoustic resonators [11].

The linearized system equations of the time-dependent problem from which one

obtains (1.1) and (1.2) are the following (a mathematical formulation of this problem in

terms of semigroups of linear operators is studied in [2]):

vtt−b2∆v−(a2−b2)∇(∇x ·v)= eiσth, t ∈R, x ∈Ω,
v(x,t)= 0, (x,t)∈ ∂Ω×R,

v(x,0)= f0(x), vt(x,0)= f1(x), x ∈Ω,
(1.3)

where v(x,t) = (v1(x,t),v2(x,t),v3(x,t)) is the displacement at the time t and loca-

tion x ∈ R3 scattered by the obstacle D, f = (f0,f1) is the initial value for this Cauchy

problem, h= (h1,h2,h3) is a given function, and σ ∈ C.

In general context, the resonant frequencies associated to the model (1.3) are complex

numbers, which are, in some sense, eigenfrequencies of the generator and characterize

the asymptotic behavior of the solutions as time approaches infinity.

To state our main result, we introduce some notations which will be used throughout

the note: let Ω =R3\D be the exterior of D with boundary ∂Ω∈ C2. Also, we denote by

∇ the gradient, by ∇x×v the rotational vector of v, ∇x ·v is the usual divergence of v

(see, above), and

∆v= (�v1,�v2,�v3
)
, (1.4)

where � is the usual Laplacian operator. For any positive integer p and 1 ≤ s ≤∞, we

consider the Sobolev space Wp,s(Ω) of (classes of) functions in Ls(Ω) which together

with their derivatives up to order p belong to Ls(Ω). The norm of Wp,s(Ω) will be
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denoted by ‖ · ‖p,s in the case s = 2. We write Hp(Ω) instead of Wp,2(Ω). If E is a

vector space, then we denote [E]3 =⊕3
i=1E and the norm of a vector v which belongs to

[E]3 will be denoted by ‖·‖[E]3 . C∞0 (R3) denotes the space of all C∞ functions defined

on R3 with compact support. If E is a Banach space, we consider the space B(E,E)
of linear bounded operators in E. If h : R3 → R3, h = (h1,h2,h3), then we denote by

supph=∩3
i=1 supphi the support of h and∫

R3
hdx =

(∫
R3
h1dx,

∫
R3
h2dx,

∫
R3
h3dx

)
. (1.5)

If R > 0, then B(R) is the ball centered at zero and of radius R. Also, we denote by

∂B(R)= {x ∈R3 : |x| = R} and by [L2
R(R3)]3 the space[

L2
R
(
R3)]3 = {v∈ [L2(R3)]3

: v= 0, if |x| ≥ R}. (1.6)

For any two vectors A and B of R3, we denote by A·B the usual inner product between

A and B. If v :R3 →R has partial derivatives and x �= 0, then ∂v/∂|x| denotes the radial

derivative of v , that is,

∂v
∂|x| =

x
|x| ·∇v. (1.7)

Now, if w :R3 →R3 is such that each component has partial derivatives, then

∂w
∂|x| =

(
∂w1

∂|x| ,
∂w2

∂|x| ,
∂w3

∂|x|
)
,

∇x ·w= ∂w1

∂x1
+ ∂w2

∂x2
+ ∂w3

∂x3
,

∇x×w=
(
∂w3

∂x2
− ∂w2

∂x3
,
∂w1

∂x3
− ∂w3

∂x1
,
∂w2

∂x1
− ∂w1

∂x2

)
.

(1.8)

Outline of the work. In Section 2, we present the formulation of the main re-

sult. Section 3 contains the proof of the main theorem. Finally, in Section 4, we present

the meromorphic extension of the solution for every σ ∈ C with (σ) ≤ 0. With the

notations above, we establish our main theorem.

2. Formulation of result. In this section, we will establish the existence and unique-

ness of the solution to a system of elastic waves that is presented in (1.1) and by the

radiation conditions (KupL) and (KupT ) in (1.2).

This will be done based on [6, 7]. Our starting point is the following lemma whose

proof appears in [6, 18].

Lemma 2.1. Let σ ∈ C with (σ) > 0 and take v ∈ [H2(R3)]3 the solution of system

b2∆v(x)+(a2−b2)∇(∇x ·v(x))+σ 2v(x)= 0, x ∈R3, (2.1)

satisfying the Kupradze-Sommerfeld radiation condition for a2 > (4/3)b2 > 0. Then∫
|x|=R

v·Tx̂vds = 0, as R �→∞, (2.2)
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where “·” is the inner product in R3 and Tx̂ is the stress vector calculated on the surface

element

Tx̂v= 2b2 ∂v
∂|x| +

(
a2−2b2)x̂(∇·v)+b2x̂×(∇×v). (2.3)

Lemma 2.2. Let σ ∈ C with (σ) > 0. Then, for any g ∈ [L2
R(R3)]3, the system

b2∆v(x)+(a2−b2)∇(∇x ·v(x))+σ 2v(x)= g(x), x ∈R3, (2.4)

admits a solution v ∈ [H2(R3)]3 and v =A(σ)g, where

A(σ) :
[
L2
R
(
R3)]3

�→ [
H2(R3)]3

(2.5)

is a linear continuous operator. In particular, if v1 and v2 solve (2.4) and satisfy the

Kupradze-Sommerfeld radiation condition, then v1(x)= v2(x) for all x ∈R3. See [6] for

the proof.

Let f ∈ [L2(Ω)]3 and take f0 given by

f0(x)=
ψ(x)f(x) if x ∈Ω,

0 if x ∈D, (2.6)

where ψ is the function

ψ(x)=
1 if x ∈ΩR,

0 if x ∉ΩR,
(2.7)

and ΩR = {x ∈Ω : |x|<R}.
Lemma 2.3. Let g ∈ [H1/2(∂Ω)]3 and suppose ∂Ω ∈ C2. Then the system of elastic

waves

b2∆w(x)+(a2−b2)∇x(∇x ·w(x))= 0, x ∈ΩR,
w(x)= g(x), x ∈ ∂Ω,
w(x)= 0, x ∈ ∂B(R),

(2.8)

has a (unique) solution on [H2(ΩR)]3. See [6] for the proof. For future reference the

well-known result given, for example, in [24] is also needed.

Lemma 2.4. Let w∈ [H2(B(R))]3 be a solution of the system

b2∆w(x)+(a2−b2)∇(∇x ·w(x))= 0, x ∈ B(R),
w(x)= 0, x ∈ ∂B(R). (2.9)

Then w(x)= 0 for every x ∈ B(R). See [24] or [6] for the proof.

At this point, we derive from the above lemmas the proof of the main theorem.
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Theorem 2.5. Letσ ∈ Cwith(σ) > 0. Then, for any h∈ [L2(Ω)]3 with supph⊂ΩR ,

the system of elastic waves

b2∆v(x)+(a2−b2)∇x(∇x ·v(x))+σ 2v(x)= h(x), x ∈Ω,
v(x)= 0, x ∈ ∂Ω, (2.10)

with radiation conditions (KupL) and (KupT ), has a unique solution v ∈ [H2(Ω)]3. Fur-

thermore, v can be extended in a meromorphic way to σ ∈ C with (σ) ≤ 0 except for

some countable number of poles (resonant frequencies) in Ξ= {σ ∈ C : (σ)≤ 0}.

3. Proof of Theorem 2.5. The proof of Theorem 2.5 is divided into two steps.

Step 3.1 (uniqueness). The uniqueness of the only solution to (2.10) can be estab-

lished by a standard argument. For the precise details we refer to the appendix.

Step 3.2 (existence). Here, we study the existence of solutions for the system (2.10);

to this end, we assume that ∂Ω ∈ C2 for the use of the Betti-Green formula. Let R > 0

and R0 > 0 be such that B(R0) ⊂ D, ∂Ω ⊂ B(R). We start with an arbitrary function

ζ ∈ C∞0 (R3) satisfying

(ζ1) suppζ ⊂ B(R)/B(R0),
(ζ2) ζ = 1 in a neighborhood of ∂Ω.

In order to analyze our existence problem, we introduce here the following function:

v(x)= v0(x)+ζ(x)ũ(x), x ∈R3, (3.1)

where ũ ∈ [H2(R3)]3 is the Calderón extension to R3 of a solution w ∈ [H2(ΩR)]3 of

the system (see Lemma 2.3)

(w1) b2∆w(x)+(a2−b2)∇(∇x ·w(x))= 0, x ∈ΩR ,

(w2) w(x)= g(x), x ∈ ∂Ω,

(w3) w(x)= 0, x ∈ ∂B(R).
Here, g =−v0 ∈ [H1/2(∂Ω)]3 and v0 satisfies (see Lemma 2.2) the system

b2∆v0(x)+
(
a2−b2)∇(∇x ·v0(x)

)+σ 2v0(x)= f0(x) on R3, (3.2)

and the Kupradze-Sommerfeld radiation conditions. From (3.1) and (w2) we obtain

v(x)= 0, x ∈ ∂Ω. (3.3)

Furthermore, it is easy to see from (ζ1) and (3.1) that v(x) = v0(x), for every x ∈
R3/B(R). Now, the function v0 satisfies the Kupradze-Sommerfeld radiation conditions

(KupL) and (KupT ). In view of this, the function v has this property. Thus, for any

h∈ [L2(Ω)]3 with supph⊂ΩR and σ ∈C with (σ) > 0, the function

v(x)= v0(x)+ζ(x)ũ(x), x ∈R3, (3.4)
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will be a solution of the system (2.10) if and only if, for every x ∈Ω, we obtain

h(x)= b2∆v(x)+(a2−b2)∇(∇x ·v(x))+σ 2v(x)

= f0(x)+b2∆ζ(x)ũ(x)+(a2−b2)∇(∇x · ũ(x)ζ(x))+σ 2ζ(x)ũ(x).
(3.5)

It is simple to see from (ζ1), (ζ2), (2.6), and (2.7) that (3.5) is valid on the set ΩR =
{x ∈Ω : |x| ≥ R}, since supph⊂ΩR . Thus,

v(x)= v0(x)+ζ(x)ũ(x), x ∈R3, (3.6)

will be solution of the system (2.10) if and only if, for every x ∈ΩR , we have

h(x)= f(x)+b2∆ζ(x)w(x)+(a2−b2)∇(∇x ·w(x)ζ(x))+σ 2ζ(x)w(x). (3.7)

Applying to ∇x ·w the operator ∇ on ΩR we find

∇x×
(∇x×w(x)

)=−∆w(x)+∇(∇x ·w(x)). (3.8)

Now, w on ΩR solves

b2∆w(x)+(a2−b2)∇(∇x ·w(x))= 0. (3.9)

Therefore, the ansatz (3.5) takes the form

h= f+Gζ(σ)w, (3.10)

where Gζ(σ) is a continuous linear operator

Gζ(σ) :
[
H2(ΩR)]3

�→ [
H1(ΩR)]3

(3.11)

given by the formula

Gζ(σ)w= (a2+b2)[(∇ζ ·∇)w]+[b2�ζ+σ 2ζ
]
w

+(a2−b2)[(w·∇)∇ζ+∇ζ×(∇x×w
)+∇ζ(∇x ·w)]. (3.12)

On the other hand, the solution operator P(σ) associated with the system (w1), (w2),

and (w3), that is, P(σ)g =w, where g = −v0 ∈ [H1/2(∂Ω)]3, is well defined, of course;

P(σ) is a continuous linear operator

P(σ) :
[
H1/2(∂Ω)

]3
�→ [

H2(ΩR)]3. (3.13)

In a similar fashion, the trace

Λn :
[
H2(ΩR)]3

�→ [
H1/2(∂Ω)

]3, (3.14)

where Λnv0 = g is a continuous linear operator. Thus, with this operator and taking

into account the fact that v0 = v0|ΩR on ΩR , (3.10) can be written in the form

h= f−Gζ(σ)P(σ)ΛnFR(σ)Ã(σ)f, (3.15)
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where FR(σ)v0 = v0|ΩR ,

FR(σ) :
[
H2(R3)]3

�→ [
H2(ΩR)]3

(3.16)

is a restrictive, continuous linear operator. Also,

Ã(σ) :
[
L2(ΩR)]3

�→ [
H2(R3)]3

(3.17)

is a continuous linear operator given by the composition

Ã(σ)r=A(σ)Mψr, (3.18)

where A(σ) is the solution operator of the system

b2∆v0(x)+
(
a2−b2)∇(∇x ·v0(x)

)+σ 2v0(x)= f0(x), x ∈R3 (3.19)

(see Lemma 2.2), and Mψ is the multiplication operator

(
Mψr

)
(x)=

r(x) if x ∈ΩR,
0 if x ∉ΩR.

(3.20)

Note that

∥∥Mψr
∥∥2
[L2(R3)]3 = ‖ψr‖2

[L2(R3)]3 =
∫
R3
|ψ|2‖r‖2dx =

∫
ΩR
‖r‖2dx <∞. (3.21)

Therefore, Mψ is a continuous linear operator

Mψ :
[
L2(ΩR)]3

�→ [
L2
R
(
R3)]3, (3.22)

since Mψr = 0 if |x| ≥ R. Thus, Mψr ∈ [L2
R(R3)]3 for every r ∈ [L2(ΩR)]3. Let Bζ(σ) be

the operator defined by

Bζ(σ)f =−Gζ(σ)P(σ)ΛnFR(σ)Ã(σ)f. (3.23)

Thus, (3.17) can be written as

h= f+Bζ(σ)f. (3.24)

From these considerations we see that the theorem will be proved if

(I) the set of operators {Bζ(σ)}, σ ∈ C, with (σ) > 0, given in (3.23) is a family of

compact operators of [L2(ΩR)]3 onto itself, and the homogeneous equation

f+Bζ(σ)f = 0 (3.25)

has only the trivial solution.
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Proof (I). We denote by Sv0 ⊂ [H2(ΩR)]3 the space (g = −v0 ∈ [H1/2(∂Ω)]3) of

solutions of the system

b2∆w(x)+(a2−b2)∇(∇x ·w(x))= 0, x ∈ΩR,
w(x)= g(x), x ∈ ∂Ω,
w(x)= 0, x ∈ ∂B(R).

(3.26)

Now, note that

Gζ(σ) : Sv0 ⊂
[
H2(ΩR)]3

�→ [
H1(ΩR)]3,

P(σ) :
[
H1/2(∂Ω)

]3
�→ Sv0 ⊂

[
H2(ΩR)]3,

Λn :
[
H2(ΩR)]3

�→ [
H1/2(∂Ω)

]3,

FR(σ) :
[
H2(R3)]3

�→ [
H2(ΩR)]3,

Ã(σ) :
[
L2(ΩR)]3

�→ [
H2(R3)]3

(3.27)

are continuous applications. Therefore, item (I) is a simple consequence of (3.23) and

of the compactness of i : [H1(ΩR)]3 → [L2(ΩR)]3. See the operators in the following

diagram:

[
L2
(
ΩR
)]3 A(σ) [

H2
(
R3
)]3 FR(σ) [

H2
(
ΩR
)]3

Λn
Bζ(σ)
�

[
H1
(
ΩR
)]3

i

[
H2
(
ΩR
)]3 ⊃ Sv0

Gζ(σ) [
H1/2(∂Ω)

]3P(σ)

(3.28)

We are now ready to prove (II).

Proof (II). Take f ∈ [L2(ΩR)]3 such that

f+Bζ(σ)f = 0. (3.29)

Then, (3.24) yields h = 0. Therefore, the function v is a solution of the homogeneous

system

b2∆v(x)+(a2−b2)∇(∇x ·v(x))+σ 2v(x)= 0, x ∈Ω,
v(x)= 0, x ∈ ∂Ω, (3.30)

with radiation conditions (KupL) and (KupT ). This implies that v= 0 on Ω (see unique-

ness in the appendix). Hence, in particular, we obtain

−ζũ= v0, on Ω. (3.31)

Now, from (3.31) we can conclude that

v0 = 0 on ΩR = {x ∈R3 : |x| ≥ R}, (3.32)
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since suppζ ⊂ B(R)/B(R0). Moreover, ζ = 0 on ∂B(R) implies v0 = 0 on ∂B(R). We now

introduce on B(R) the following function:

ϑ(x)= χ(x)v0(x)+
(
1−χ(x))ũ(x), (3.33)

where

χ(x)=
1 if x ∈D,

0 if x ∈ΩR∪∂B(R).
(3.34)

We note that ϑ ∈ [H2(B(R))]3. Furthermore,

b2∆ϑ(x)+(a2−b2)∇(∇x ·ϑ(x))=−σ 2χ(x)v0(x) on B(R). (3.35)

Note also that ϑ(x)= 0 on ∂B(R), because v0(x)= ũ(x)= 0 on ∂B(R). Now, using the

Betti-Green formula on B(R), we obtain∫
B(R)

ϑ·∆̃ϑdx+
∫
B(R)

e
(
ϑ,ϑ

)
dx =

∫
∂B(R)

ϑ·Tnϑds = 0. (3.36)

So ∫
B(R)

e
(
ϑ,ϑ

)
dx = σ 2

∫
B(R)

χ(x)
∥∥v0

∥∥2dx. (3.37)

This yield

0= 2�(σ)(σ)
∫
B(R)

χ(x)
∥∥v0

∥∥2dx, (3.38)∫
B(R)

e
(
ϑ,ϑ

)
dx = [�(σ)2−(σ)2]∫

B(R)
χ(x)

∥∥v0

∥∥2dx. (3.39)

Now, �(σ)= 0, σ ∈ C, with (σ) > 0 and the formula (3.39), implies that v0 = 0, on D,

since
∫
B(R) e(ϑ,ϑ)dx ≥ 0. Also, �(σ) �= 0, σ ∈ C, with (σ) > 0 and (3.38) yields v0 = 0,

on D. Therefore, for any σ ∈ C with (σ) > 0, the function ϑ ∈ [H2(B(R))]3 in the

ansatz (3.33) solves the system

b2∆ϑ(x)+(a2−b2)∇(∇x ·ϑ(x))= 0, x ∈ B(R),
ϑ(x)= 0, x ∈ ∂B(R). (3.40)

Now, thanks to Lemma 2.4, we obtain ϑ(x)= 0, for any x ∈ B(R), that is, ũ(x)= 0, on

ΩR . From this together with

−ζ(x)ũ(x)= v0(x), x ∈ΩR ⊂Ω, (3.41)

we get

0= b2∆v0(x)+
(
a2−b2)∇(∇x ·v0(x)

)+σ 2v0(x)= f(x), x ∈ΩR. (3.42)
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Now, from the Fredholm theory, the equation

f+Bζ(σ)f = h (3.43)

is uniquely solvable and the proof is finished.

4. Meromorphic extension. In the previous sections and the appendix, the existence

and uniqueness of the solution for the system that is presented in (1.1) and by the

radiation conditions (KupL) and (KupT ) in (1.2) with σ ∈ C with (σ) > 0 is proved.

Now, the goal of this section is to present the extension of the solution for all σ ∈
C such except for some countable number of complex singularities, called “resonant

frequencies.” Our approach follows the main ideas of the previous sections and the

subject initiated in [6, 7], but it is related to some other works, mainly [1, 3, 2, 4, 8,

9, 11, 25]. The basic tool for the proof is the Steinberg theorem [31] about families of

compact operators depending on a complex parameter (see also [28]). With the same

notations of Sections 2 and 3, we establish the following.

Lemma 4.1. Let σ ∈ C with (σ) > 0. Fix ζ ∈ C∞0 (R3), with properties (ζ1), (ζ2) (see

Section 3). Then for any h∈ [L2(Ω)]3 such that supph⊂ΩR , the function

v(x)= v0(x)+ζ(x)ũ(x), x ∈R3, (4.1)

solves the system (1.1) and (1.2) if only if f ∈ [L2(ΩR)]3 solves

h= f+Bζ(σ)f. (4.2)

Here, Bζ(σ) is given by (3.23) where the operators

Gζ(σ), P(σ), Λn, FR(σ),Ã(σ) (4.3)

are given in (3.13), (3.14), (3.15), (3.16), and (3.17), respectively.

Proof. The proof is implicit in Theorem 2.5.

Lemma 4.2. The set operators {Bζ(σ)}, σ ∈ C, with (σ) > 0, given in (3.23), is an

analytic family of compact operators of [L2(ΩR)]3 onto itself.

Proof. Since the solution v0 from system

b2∆v0(x)+
(
a2−b2)∇(∇x ·v0(x)

)+σ 2v0(x)= f(x), x ∈ΩR, (4.4)

depends analytically on σ ∈ C with (σ) > 0, the operators Gζ(σ), P(σ), Λn, FR(σ),
Ã(σ) given in (3.13), (3.14), (3.15), (3.16), and (3.17) have this property. From this and

(3.23), the operators {Bζ(σ)} depend analytically on σ ∈ C. The compactness follows

from (I).

Theorem 4.3. The inverse operators [I+Bζ(σ)]−1 have an analytic extension from

(σ) > 0 to all the complex plane except for a countable set of poles, called resonant

frequencies. Furthermore, σ is a resonant frequency of the operator [I+Bζ(σ)]−1 if and

only if the system (1.1) and (1.2) with h= 0 has nonzero solutions.
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Proof. From Lemma 4.2, we have that the set {Bζ(σ)} with σ ∈ C and (σ) > 0

is an analytic family of compact operators of [L2(ΩR)]3 onto itself. By the Steinberg

theorem [31], either (a) the operators [I+Bζ(σ)]−1 are never invertible for σ ∈ C, or (b)

there is σ0 ∈ C such that the operator[
I+Bζ

(
σ0
)]−1

(4.5)

is invertible. From Theorem 2.5 we have the existence and uniqueness of the solution

for the system (1.1) and (1.2) for all σ ∈ Cwith (σ) > 0; by the equivalence established

in Lemma 4.2 we are in case (b). In this case, Steinberg’s theorem also states that[
I+Bζ(σ)

]−1
(4.6)

is defined analytically on C except for a countable set of poles. Now, Lemma 4.2 yields

the equivalence statement.

Final remark. It can be thought that there is a reasonable parallelism between

my former paper [7] and this note, but it is necessary to remark that a complete par-

allelism does not hold if we consider the imposed boundary conditions in both prob-

lems. Indeed, in [7] we studied the system of elastic waves with the Neumann boundary

condition, whereas the condition that we impose here is of Dirichlet type. The results

obtained in [7] and those of this work are analogous (which is a virtue of the technique).

However, the models are different, because it is a known fact that in the Neumann case

an interesting phenomenon related to the existence of surface waves exists (Rayleigh

surface waves, who mathematically predicted the existence of this kind of waves in

1885) ; such waves remain near the border of the obstacle; this fact too stimulated the

interest of many researchers in the influence of surface waves near scattering objects;

see [32, 33]. A first implication of this fact is that the uniform decay (in the local en-

ergy) of the solution is not preserved. As was already proved in [16, 17], for the case

of the isotropic elastic wave with Neumann boundary condition, the solution does not

have uniform local energy decay. Important contributions in this direction appear in

[29, 30] and the references therein. In contrast to the Neumann case, it is a well-known

fact that for the system studied here the phenomenon of Rayleigh is absent, and as a

consequence, the uniform decay of the solutions may be guaranteed; see, for instance,

[14, 15]. Thus, independent of the differences in both models, the method presented

here is still successful.

Appendix. In this appendix, we prove the uniqueness of the solution to the sys-

tem that is presented in (1.1) and by the radiation conditions (KupL) and (KupT ) in

(1.2).

Proof of Uniqueness. Let v be the difference between two solutions v1 and v2 of

(1.1) and (1.2), then v satisfies (1.1) and (1.2) with h = 0. Now, let R > 0 be such that

∂B(R) is contained inΩ and denoted byΩR = {x ∈Ω : |x| ≤ R}; the Betti-Green formula

(see, e.g., [18] or [10]) yields∫
ΩR

v·∆̃vdx+
∫
ΩR
e(v,v)dx =

∫
∂ΩR

v·Tnvds, (A.1)
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where

e(v,v)= 3a2−4b2

3

∣∣∇x ·v∣∣2+ b
2

2

∑
p �=q

∣∣∣∣∣∂vp∂xq + ∂vq∂xp

∣∣∣∣∣
2

+ b
2

3

3∑
p,q=1

∣∣∣∣∣∂vp∂xp
− ∂vq
∂xq

∣∣∣∣∣
2

,

(A.2)

∆̃v= b2∆v+(a2−b2)∇(∇x ·v). (A.3)

Recall that ∆̃v=−σ 2v on ΩR ⊂Ω and ∂ΩR = ∂B(R)∪∂Ω. A direct calculation shows

that

−σ 2
∫
ΩR
‖v‖2dx+

∫
ΩR
e(v,v)dx =

∫
∂B(R)

v·Tnvds+
∫
∂Ω

v·Tnvds. (A.4)

Now, using (A.4) together with Lemma 2.1, the homogeneous boundary condition, and

passing to the limit as R→∞, we get∫
Ω
e(v,v)dx = σ 2

∫
Ω
‖v‖2dx, (A.5)

so ∫
Ω
e(v,v)dx = [(�(σ)2−(σ)2)+2i�(σ)(σ)]∫

Ω
‖v‖2dx. (A.6)

From (A.6) we have that

0= 2�(σ)(σ)
∫
Ω
‖v‖2dx, (A.7)∫

Ω
e(v,v)dx = [�(σ)2−(σ)2]∫

Ω
‖v‖2dx. (A.8)

Thus, we have the following two possibilities.

(a) If �(σ)= 0, from (A.8) we get∫
Ω
e(v,v)dx =−(σ)2

∫
Ω
‖v‖2dx. (A.9)

With the formula above, (σ) > 0, and∫
Ω
e(v,v)dx ≥ 0, (A.10)

it is easy to see that v= 0 on Ω.

(b) If �(σ) �= 0, taking into account the fact that (σ) > 0, from (A.7) we obtain∫
Ω
‖v‖2dx = 0. (A.11)

Hence v= 0 on Ω. Therefore, (a) and (b) imply v1 = v2. The uniqueness is proved for

all σ ∈ C with (σ) > 0.
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