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TIME-DELAY SYSTEMS

M. DE LA SEN and NINGSU LUO

Received 24 September 2003

This paper deals with the global uniform exponential stability independent of delay of time-
delay linear and time-invariant systems subject to point and distributed delays for the ini-
tial conditions being continuous real functions except possibly on a set of zero measure
of bounded discontinuities. It is assumed that the delay-free system as well as an auxiliary
one are globally uniformly exponentially stable and globally uniform exponential stability
independent of delay, respectively. The auxiliary system is, typically, part of the overall
dynamics of the delayed system but not necessarily the isolated undelayed dynamics as
usually assumed in the literature. Since there is a great freedom in setting such an auxil-
iary system, the obtained stability conditions are very useful in a wide class of practical
applications.
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1. Introduction. The stability and feedback stabilization of time-delay systems sub-

ject to constant point and distributed delays as well as time-varying ones has received

important attention in the last years (see, e.g., [1, 2, 4, 5, 6, 8, 10, 11, 13]). A key

point is that a system exhibiting stability in the absence of delays may lose that prop-

erty for small delays and, in contrast, a stable delayed system may lose the prop-

erty in the absence of delay (see, e.g., [1, 6, 8]). This paper deals with the global uni-

form exponential stability independent of delay (g.u.e.s.i.d.) of a class of homogeneous

time-delay systems subject to combined point and distributed delays as well as in-

tegrodifferential Volterra-type delayed dynamics. The global stability is investigated

for any function of initial conditions being everywhere continuous on its definition

domain, a real interval [−h,0], where h is the maximum delay in the system, except

possibly on a set of zero measure where the function possesses bounded disconti-

nuities. Necessary and sufficient global uniform stability conditions independent of

delay are obtained if the delay-free system is globally uniformly exponentially stable

(g.u.e.s.) and an auxiliary system is g.u.e.s.i.d. The obtained results are then applied

to a number of particular cases of interest by setting different auxiliary systems in-

cluding the standard delay-free one. The mathematical proofs are based on condi-

tions which guarantee that a linear operator in a Banach space is compact within a

domain that contains the closed complex right half-plane provided that another one

defined for the auxiliary system is also compact within a (non necessarily identical)

domain that contains the closed complex right half-plane. The auxiliary system may

be a delay-free one or, in general, any particular parametrization of the whole system
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under study where part of the delayed dynamics is deleted. Some sufficient condi-

tions for the system to be g.u.e.s. dependent on delay are also obtained by using the

same mathematical outlines. Extensions are given for the case when the system is

forced by impulsive inputs and also by considering the closed-loop stabilization of

time-delay systems of the given class. The paper is organized as follows. Section 2

deals with the class of homogeneous delayed systems under study and with the def-

inition of the auxiliary system. Section 3 is devoted to the main uniform stability re-

sult and the related ones for some particular auxiliary systems of interest. Some of

those systems are defined by considering only delay-free dynamics or either point-

delayed, distributed-delayed, or even Volterra-type delayed dynamics together with a

delay-free dynamics. Section 4 extends the above results to the presence of impulsive

forcing functions. Section 5 is devoted to the stabilization of closed-loop systems of

the given class under linear state or output-feedback controllers which can include de-

lays. Some simple examples are discussed in Section 6 and, finally, conclusions end the

paper.

Notation. (a) For the delayed system, T : [0,∞)→ L(X) is the inverse Laplace trans-

form of the resolvent mapping T̂ (s), which is holomorphic where it exists, with X being

the real Banach space of n-vector real functions endowed with the supremum norm on

their definition domain. T̂−1(s) takes the form (T̂−1
JM(s)−∆T̂ JM(s)), where T̂JM(s) is de-

fined similarly as T̂ (s) for the auxiliary system, whose delay-free dynamics is defined

by a square n-matrix M , and ∆T̂ JM(s) = T̂−1
JM(s)− T̂−1(s). For all complex s such that

T̂JM(s) exists, T̂ (s)= (I− T̂JM(s)∆T̂ JM(s))−1T̂JM(s)= ˆ̃T−1
JM(s)T̂JM(s).

The subindex J = (J1,J2,J3) denotes a triple for sets of indices referred to as the

particular subsets of real constants describing point delays (J1), infinitely distributed

Volterra-type delays (J2), and finitely distributed delays (J3) of the system which are

also present in the auxiliary system. For instance, 1 ∈ J1 ⇒ h1 > 0 is a point delay of

the time-delay system which is also present in the auxiliary system, and so on. Also,

Card(J1) ≤m, Card(J2) ≤m′ +1, Card(J3) ≤m′′. If a pure convolution Volterra-type

dynamics
∫ t
0dα0(τ)Aα0x(t−τ) is present, then it is described by a fictitious delay h′0 =

0. If such a term is not present, then Card(J2)≤m′. The remaining infinitely distributed

delays give contributions
∫ t
0dαi(τ)Aαix(t−τ−h′i), with finite real constantsh′i > 0 with

i= 1,2, . . . ,m′, to ẋ(t) which are point delays under the integral symbol. It is said that

the delays are infinitely distributed because the contribution of the delayed dynamics is

made under an integral over [0,∞) as t→∞, that is, x(t−τ−h′i) acts on the dynamics

of x(t) from τ = 0 to τ = t for finite t and as t→∞.

(b) T̂ ′−1(s,ϕ) = T̂ ′−1
JM (s,ϕ)−∆T̂ ′JM(s,ϕ) is a complex operator-valued function with

domain in C× [−π,π]m+m′+m′′+1 ⊂ C×Rm+m′+1 with [−π,π]m+m′+m′′+1 being the

cross product of [−π,π] by itself (m +m′ +m′′ + 1) times, ϕT = (ϕ1,ϕ2, . . . ,
ϕm+m′+m′′+1), ϕm+1 = 0 (since h′0 = 0), and range in Cn.

(c) N(s,ĥ) = NJM(s,ĥ)[I − N−1
JM(s,ĥ)∆NJM(s,ĥ)] = NJM(s,ĥ) · ÑJM(s,ĥ) is an

operator-valued function with domain in C×Rm+m′+m′′+1, where ĥ = (ĥ′T1 , ĥ′T2 )T and

h′0 = 0 for s = jω, any ĥ with ϕm+1 = 0, and remaining components ϕi in [−π,π]
whose values depend on hi (i≤m) or h′i (i≥m′ +2). Similarly,
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NJM
(
jω,ĥ

)= T̂ ′−1
JM (jω,ϕ)= T̂ ′−1

JM (jω),

∆NJM
(
jω,ĥ

)=∆T̂ ′JM(jω,ϕ)=∆T̂JM(jω),
ÑJM

(
jω,ĥ

)= ˆ̃T ′−1
JM (jω,ϕ)= ˆ̃T ′−1

JM (jω),

Ñ
(
jω,ĥ

)= ˆ̃T ′−1(jω,ϕ)= ˆ̃T−1(jω),

(1.1)

for the above ĥ and ϕ.

Note that T̂ , T̂ ′, and N−1 are distinct mathematical objects but, however, they take

identical values for all pure imaginary s = jω and a corresponding ϕi ∈ [−π,π] such

that e−jωi = e±jϕi withϕm+1 = h′0 = 0. The same applies to the related objects referred

to as the auxiliary system.

2. Problem statement. Consider the following linear and time-invariant system sub-

ject to point and distributed dynamics and to an impulsive function:

ẋ(t)=
n∑
i=0

Aix
(
t−hi

)+m′∑
i=0

∫ t
0
dαi(τ)Aαix

(
t−τ−h′i

)

+
m′+m′′∑
i=m′+1

∫ t
t−h′i

dαi(t−τ)Aαix(τ)+
∑
i∈I

biδ
(
t−ti

)
,

(2.1)

where A0 and Ai, Aαk (i = 1,2, . . . ,m; k = 0,1, . . . ,m′ +m′′) belong to the spaces of

unbounded and bounded operators, respectively, on a Banach space of n-vector real

functions x ∈ X endowed with the supremum norm where the vectors of point and dis-

tributed constant delays are ĥ= (0,h1,h2, . . . ,hm) and ĥ′ = (ĥ′T1 :
: ĥ′T2 )T = (0,h′1,h′2, . . . ,

h′m′ :
: h′m′+1,h

′
m′+2, . . . ,h

′
m′+m′′)T , respectively, with hi ≥ 0 and h′k ≥ 0 (i = 1,2, . . . ,m′ +

m′′) and h0 = h′0 = 0, A0 ≡A, Aα0 ≡Aα, and α0(·)≡α(·). The functions αi : [0,∞)→R
and αk : [0,h′k]→ R are continuously differentiable real functions within their defini-

tion domains except possibly on sets of zero measure where the time-derivatives have

bounded discontinuities. All or some of the αi(·) and αk(·)may be alternatively matrix

functions, αi : [0, t]→ Rn×n for t ∈ R+ and αi : [0,h′k]→ Rn×n. We will not make any

explicit difference between both possibilities in the notation for the sake of simplicity.

The impulsive input v(t) =∑i∈Ibiδ(t−ti) is built with the finite or infinite sequence

of Dirac impulses δ(t−ti) at the sequence of time instants {ti; i∈ I} with ti+1 > ti for

some totally ordered proper or improper numerable subset I ⊆ N. If Card(I) = p <∞,

then v(t) :=∑p
i=1biδ(t−ti) and I := {i∈N : i≤ p}. Note that system (2.1) is very general

since it includes point-delayed dynamics like, for instance, in typical war/peace models

or the so-called Minorski’s problem appearing when controlling the lateral dynamics of

a ship. It also includes real constants h′i (i = 0,1, . . . ,m′), with h′0 = 0, associated with

infinitely distributed delayed contributions to the dynamics through integrals, related

to the αi(·), i= 0,1, . . . ,m′. Such delays are relevant, for instance, in viscoelastic fluids,

electrodynamics, and population growth [1, 4, 6]. In particular, an integrodifferential
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Volterra-type term is also included through h′0 = 0. Apart from those delays, the action

of finite distributed delays characterized by real constants h′i (i= 0,1, . . . ,m′ +m′′) is

also included in (2.1). That kind of delays is well known, for instance, in econometric

models related to production rate [4]. Finally, the impulsive input v(t)=∑i∈Ibiδ(t−ti)
generates bounded discontinuities of the solution trajectory x(t) at t = ti (i ∈ I), see,

for instance, [10, 11, 12]. The following technical hypothesis are made.

(H1) All the operators Ak (0≤ k≤m), Aαk (0≤ k≤m′ +m′′) are in L(X) := L(X,X),
the set of linear operators on X of dual X∗, and hk and h′� (k = 1,2, . . . ,m; � =
0,1, . . . ,m′ + m′′) are nonnegative constants with h0 = h′0 = 0 and h =
Max(Max1≤i≤n(hi), Max1≤i≤m′+m′′(h′i)).

(H2) The initial conditions of (2.1) are real n-vector functions φ ∈ C(h), where

Ce(h) := {φ=φ1+φ2 :φ1 ∈ C(h), φ2 ∈ B0(h)} with C(h) := {C0([−h,0];X)};
that is, the set of continuous mappings from [−h,0] into the Banach spaceX with

norm φ̄ := |φ| = Sup{‖φ(t)‖ : −h ≤ t ≤ 0}, ‖·‖ denoting the Euclidean norm of

vectors in Rn and matrices in Rn×n and B0(h) := {φ : [−h,0]→ X}, is the set of

real bounded vector functions on X endowed with the supremum norm having

support of zero measure. Roughly speaking, φ∈ B0(h) if and only if it is almost

everywhere zero except at isolated points within [−h,0] where it is bounded.

Thus, φ ∈ Ce(h) if and only if it is almost everywhere continuous in [−h,0]
except possibly on a set of zero measure of bounded discontinuities. Ce(h) is

also endowed with the supremum norm since φ = φ1 +φ2, some φ1 ∈ C(h),
φ2 ∈ B0(h) for each φ∈ Ce(h). In the following, the supremum norms on L(X)
are also denoted with |·|.

(H3) The linear operators Aαi ∈ L(X), with abbreviated notation Aα0 =Aα, are closed

and densely defined linear operators with respective domain and range D(Aαi)
and R(Aαi)⊂X (i= 0,1, . . . ,m′+m′′). The functions αi belong to C0([0,∞);R)∩
BVloc(R+) (i= 0,1, . . . ,m′) and C0([−h,0);R) (i= 0,1, . . . ,m′+m′′) being every-

where differentiable with possibly bounded discontinuities on subsets of zero

measure of their definition domains with
∫∞
0 evt|dαi(t)|<∞ and some nonnega-

tive real constant v (i= 0,1, . . . ,m′). If αi(·) is a matrix function αi : [0,∞)×X∗
→ L(X,X∗), then it is in C0([0,∞);Rn×n)∩BV loc(Rn×n+ ) with

∫∞
0 evt|dαi(t)|<∞

and its entries being everywhere time-differentiable with possibly bounded dis-

continuities on a subset of zero measure of their definition domains.

The integrability of the αi(·)-functions (or matrix functions) on [t−h′i,t], m′ +1 ≤
i ≤ m′ +m′′, follows since their definition domain is bounded. The above technical

hypotheses (H1), (H2), and (H3) guarantee the existence and uniqueness of the solu-

tion of the homogeneous system (2.1) (i.e., v ≡ 0) for each initial condition φ∈ Ce(h).
Take Laplace transforms in (2.1) by using the convolution theorem and the relations

dα(τ) = α̇(τ)dτ . It follows that dα̂i(s) = sα̂i(s) − αi(0), where f̂ (s) denotes the

Laplace transform of f(t). Thus, one gets from (2.1)

x̂(s)= T̂ (s)
(
x
(
0+
)+∑

i∈I

bie−tis
)
, (2.2)



ON THE UNIFORM EXPONENTIAL STABILITY . . . 3449

where

T̂ (s)=
[
s
(
I−α̂(s)Aα−

m′∑
i=1

α̂i(s)Aαie
−h′is−

m′+m′′∑
i=m′+1

α̂i(s)Aαi
(
1−e−h′is)

)

−A−
m∑
i=1

Aie−hisα(0)Aα+
m′∑
i=1

αi(0)Aαie
−h′is+

m′+m′′∑
i=m′+1

αi(0)Aαi
(
1−e−h′is)

]−1

.

(2.3)

Note that (2.1) is guaranteed to be g.u.e.s.i.d. if and only if T̂ (s) exists within some

region including properly the right complex plane, in other words, if it is compact for

Res >−α0, for some constantα0 ∈R+, since then all the entries of its Laplace transform

T(t) decay with exponential rate on [0,∞) for φ∈ Ce(h), and then |x(t)| decays with

exponential rate on R+. The unique solution of the homogeneous system (2.1) for each

φ∈ Ce(h)may be equivalently written in infinitely many cases by first rewriting (2.1) by

considering different “auxiliary” reference homogeneous systems plus additional terms

considered as forcing actions. The next arrangements lead to conditions guaranteeing

that the homogeneous system (2.1) is g.u.e.s.i.d. if it is g.u.e.s. in the absence of delay

(i.e., for h = 0). Through this arrangement, it is not necessarily requested for ż(t) =
Az(t), which is in fact one of the possible auxiliary homogeneous systems for (2.1), to

be g.u.e.s.i.d. for any φ∈ Ce(h). Thus, note that (2.1) may be compactly written as

ẋ(t)= Lxt+v(t)= LJMxt+
(
L̄JMxt+v(t)

)
, (2.4)

where L = LJM + L̄JM is a linear operator in L(X) defined by Lxt equalized by the un-

forced right-hand side of (2.1), where xt denotes the string x : [t −h,t] → X of the

solution to (2.1) for φ ∈ Ce(h) for all t ≥ 0, and LJM and L̄JM are also linear operators

in L(X) which define a nonunique additive decomposition of L that depends on M , an

n-square arbitrary real matrix, and J, a triple J = (J1,J2,J3) of indices Ji (i = 1,2,3).
The M-matrix and the J-triple define the subsequent g.u.e.s.i.d. auxiliary system. That

property is the starting point to derive conditions for the current delayed system (2.1)

to be g.u.e.s.i.d. as well. The auxiliary system is

ż(t)= LJMzt
=Mz(t)+(A−M)z(t)+

∑
i∈J1

Aix
(
t−hi

)

+
∑
i∈J2

∫ t
0
dαi(τ)Aαx

(
t−h′i−τ

)+ ∑
i∈J3

∫ t
t−h′i

dαi(t−τ)Aαix(τ)
(2.5)
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subject to initial conditions z(t) = φ(t) for t ∈ [−h,0] with φ ∈ Ce(h), some given

matrix M ∈Rn×n, and

J1 =
{
i∈N : 1≤ i≤m,hi is a point delay in ż(t)= LJMzt

}
,

J2 =
{
i∈N : 0≤ i≤m′, h′i is a constant defining an infinitely

distributed delay in ż(t)= LJMzt
}
,

J3 =
{
i∈N :m′ +1≤ i≤m′ +m′′, h′i is a finitely

distributed delay in ż(t)= LJMzt
}

(2.6)

are respective proper or improper subsets of N1 = {1,2, . . . ,m}, N2 = {0,1, . . . ,m′},
and N3 = {m′ +1,m′ +2, . . . ,m′ +m′′} that define the J-triple. J̄i = Ni/Ji denotes the

complement of Ji in Ni (i = 1,2,3). Then i ∈ J1 if and only if the point delay hi is

explicit in the auxiliary system (2.5), and i∈ J2,3 if and only if the distributed delay h′i
is explicit in (2.5). In particular, Ji =∅ (the empty set) for some i ∈ {1,2,3} if there is

no delay of the corresponding class in (2.5). Thus, (2.1) may be compactly rewritten as

ẋ(t)= Lxt+v(t)= LJMxt+
(
L̄JMxt+v(t)

)
(2.7a)

with x(t)=φ(t) for t ∈ [−h,0),φ∈ Ce(h), where

Lxt =Ax(t)+
m∑
i=1

Aix
(
t−hi

)

+
m′∑
i=0

∫ t
0
dαi(τ)Aαix

(
t−τ−h′i

)m′+m′′∑
i=m′+1

∫ t
t−h′i

dαi(τ)Aαix(τ),

(2.7b)

LJMxt =Mx(t)+
∑
i∈J1

Aix
(
t−hi

)+ ∑
i∈J2

∫ t
0
dαi(τ)Aαix

(
t−τ−h′i

)

×
∑
i∈J3

∫ t
t−h′i

dαi(t−τ)Aαix(τ), t ≥ 0,

(2.7c)

L̄JMxt ≡
(
L−LJM

)
xt

= (M−A)xt+
∑
i∈J̄1

Aix
(
t−hi

)+ ∑
i∈J̄2

∫ t
0
dαi(τ)Aαix

(
t−τ−h′i

)

×
∑
i∈J̄3

∫ t
t−h′i

dαi(t−τ)Aαix(τ), t≥ 0.

(2.7d)
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In view of (2.7), the unique solution of (2.1) for any φ∈ Ce(h) is

x(t,φ)= T(t)φ(0+)+ m∑
i=1

∫ 0

−hi
T(t−τ)φ(τ)dτ

+
m′+m′′∑
i=1

∫ 0

−h′i
T (t−τ)φ(τ)dτ+

∑
i∈I

T
(
t−ti

)
biU

(
t−ti

) (2.8a)

= TJM(t)φ
(
0+
)+ ∑

i∈J1

∫ 0

−hi
TJM(t−τ)φ(τ)dτ+

∑
i∈J2∪J3

∫ 0

−h′i
TJM(t−τ)φ(τ)dτ

×
∫ t

0
TJM(t−τ)

[
(A−M)x(τ)+

∑
i∈J̄1

Aix
(
τ−hi

)

+
∑
i∈J̄2

∫ τ
0
TJM

(
τ′
)
α̇i
(
τ′
)
Aαix

(
τ−τ′ −h′i

)
dτ′

×
∑
i∈J̄3

∫ τ
τ−h′i

TJM
(
τ−τ′)α̇i(τ−τ′)Aαix(τ′)dτ′

]
dτ

+
∑
i∈I

T
(
t−ti

)
biU

(
t−ti

)
,

(2.8b)

where T(t) satisfies Ṫ (t) = LTt for t > 0 with T(0) = I (the n-identity matrix) and

T(t)= 0 for t < 0 with T(t) being the inverse Laplace transform of T̂−1(s), T̂ (s) defined

in (2.3), and TJM(t) satisfies ṪJM(t)= LJM(TJM)t for t > 0 with TJM(0)= I and TJM(t)= 0

for t < 0.U(t)= 1(t) is the unity Heaviside function. Thus, TJM(t) is the inverse Laplace

transform of the holomorphic (where it exists) mapping T̂JM(s) with

T̂JM(s)=
[
s
(
I−

∑
i∈J2

α̂i(s)Aαie
−h′is−

∑
i∈J3

α̂i(s)Aαi
(
1−e−h′is)

)
−M−

∑
i∈J1

Aie−his

×
∑
i∈J2

αi
(
0+
)
Aαi+

∑
i∈J3

αi
(
0+
)
Aαi

(
1−e−h′is)

]−1

.

(2.9)

Note that T(t) (≡ TJM(t) if J = (N1,N2,N3)) and TJM(t) for any J-triple are C0-

semigroups on Ce(h) of operators of L(X). In particular, if Ji = ∅ (i = 1,2,3), then

LJMzt = Mz(t), TJM(t) = eAt is an analytic semigroup if J1 and J3 are empty, and

J2 = {0} (i.e., h′0 = 0) is the unique contribution to a Volterra-type integral term, then

LJMzt = Mz(t)+
∫ t
0dα(τ)Aαx(t−τ) and TJM(t) is a transition operator if T̂JM(s) is

compact for Res >−γJM (γJM ∈R+).
Remark 2.1. Note that the compactness of the operator-valued functions T̂ (s) and

T̂JM(s) for all Res > −γ and Res > −γJM , some γ ∈ R+ and γJM ∈ R+, respectively,

if ẋ(t) = Lxt , ż(t) = Lzt , respectively, are g.u.e.s.i.d for all φ ∈ Ce(h), holds directly

if they are bounded provided that X is considered as a Hilbert space endowed with

the usual inner product norm. The stability properties of the operator-valued func-

tion T : [0,∞) → L(X) are independent of the use of any of both alternative formal
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characterizations. Thus, if X is a Hilbert space, then there exist dense injective map-

pings X → X∗(dual of X)→X∗∗(dual of X∗) ≡ X, instead of the generic result which

may include in some cases proper inclusion X∗∗ ⊃X ≠X∗∗ so that X is a reflexive lin-

ear space and any operator in L(X∗∗,X) (≡ L(X,X) = L(X) in this case) is compact if

and only if it is completely continuous (i.e., if it maps any weakly convergent sequence

into a strongly convergent one with respect to the norm topology). Thus, T̂ (s) is com-

pact (or completely continuous) where it exists since (T̂ )∗ ·T̂ is bounded for Res >−γ.

The same property holds for any T̂JM for Res >−γJM .

Note that T̂ (s) = [T̂JM(s)−∆T̂JM(s)]−1 = T̂JM(s)[I − T̂−1
JM(s)∆T̂JM(s)]−1 in the defi-

nition domain of T̂JM for any auxiliary system defined from some given J-triple. The

following special cases are of interest.

Special cases. (1) The auxiliary system is delay-free: J = (J1,J2,J3) with Ji = ∅
(i= 1,2,3) so that the auxiliary system is ż(t)=Mz(t). This is the case usually treated

in the literature (see, e.g., [4, 6]). Thus, J̄i =Ni (i= 1,2,3) and TJM(t)= eMt is an analytic

semigroup.

(2) The auxiliary system is subject to delay-free and all point delays: J1 = N1 and

J2∪ J3 = ∅ so that J̄1 = ∅ and J̄i = Ni (i = 2,3). Then, ż(t) = Mz(t)+∑m
i=1Aiz(t−

hi) with initial conditions z(t) = φ(t), φ ∈ Ce(h), for t ∈ [max1≤i≤0(−hi),0] so that

ṪJM(t) =MTJM(t)+
∑m
i=1AiTJM(t−hi) with TJM(0) = I and TJM(t) = 0 (t < 0) yields a

unique solution TJM(t)= eMt(I+
∑m
i=1

∫ t
hie

−MτAiTJM(τ−hi)dτ) for t ≥ 0.

(3) The auxiliary system is subject to delay-free dynamics and Volterra-integral-

type dynamics: J1 ∪ J3 = ∅, J̄i = Ni, and J̄2 = {1,2, . . . ,m′}. Thus, ż(t) = Mz(t) +∫ t
0dα(τ)Aαz(t−τ). In particular, TJM(t) is ensured to be a transition operator with

|TJM(t)| ≤Ke−ρt , for some positive real constants K and ρ and all t ≥ 0 (see, e.g., [1, 9])

if

T̂−1
JM(s)=

[
s
(
I−α̂(s)Aα

)+α(0)Aα−M]−1
(2.10)

is compact for Res > −ρ, any real constant ρ < γJM , and |di(T̂−1
JM(s))/dsi| < |K/(s+

p)i−1| (for i= 1,2,3).

(4) The auxiliary system has delay-free dynamics and all the infinitely distributed de-

lays: now, J = (J1,J2,J3) with Ji =∅ (i= 1,3) and J2 =N2 so that J̄i =Ni (i= 1,3) and

J̄2 =∅, what leads to

ż(t)=Mz(t)+
m′∑
i=0

∫ t
0
dαi(τ)z

(
t−τ−h′i

)
(2.11)

under initial conditions φ∈ Ce(h). Thus, one gets

ṪJM(t)=MTJM(t)+
m∑
i=0

∫ t
0
dαi(τ)AαiTJM

(
t−τ−h′i

)
(2.12)
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for t > 0 with TJM(0)= I, TJM(t)= 0 for t < 0, whose unique solution for all t > 0 is

TJM(t)= eMt
(
I+

m′∑
i=0

∫ t
0

∫ τ
0
e−Mτdαi(τ)AαiTJM

(
τ−τ′ −h′i

)
dτ′

)
. (2.13)

(5) The auxiliary system has delay-free dynamics and all the finitely distributed de-

lays: now, J = (J1,J2,J3) with Ji = ∅ (i = 1,2) and J3 = N3 so that J̄i = Ni (i = 1,2)
and J̄3 = ∅. Under the same initial conditions as in the above case, one gets ż(t) =
Mz(t)+∑m′+m′′

i=m′+1

∫ t
t−h′idαi(t−τ)Aαiz(τ) for t > 0, which is also satisfied by the tran-

sition operator of the auxiliary system whose unique solution under the same initial

conditions as in case (4) is

TJM(t)= eMt
(
I+

m′+m′′∑
i=m′+1

∫ t
0

∫ τ
τ−h′i

e−Mτ
′
dαi

(
τ−τ′)AαiTJM(τ′)dτ′

)
. (2.14)

3. Uniform stability of the homogeneous system

Theorem 3.1. Assume that (2.1) is g.u.e.s. for ĥ= 0 and that ż(t)= LJMzt is g.u.e.s.i.d.

for allφ∈ Ce(h). Thus, the homogeneous equation (2.1), ẋ(t)= LJMxt , is g.u.e.s.i.d. (i.e.,

for all φ∈ Ce(h)) if and only if the operator-valued function

ˆ̃T
′−1

JM (jω,ϕ)=
(
I− T̂ ′JM(jω,ϕ)∆T̂ ′JM(jω,ϕ)

)−1
(3.1)

exists for all real ω∈ (0,∞) and all ϕiki ∈ [−π,π] (i= 1,2,3) (ϕ21 = 0); ki = 1,2, . . . ,p
with p =m if i= 1, p =m′ +1 if i= 2, and p =m′′ if i= 3.

Proof. First note that the argument ω = 0 for the above operator-valued function

is excluded from the conditions since (2.1) is g.u.e.s. for ĥ= 0. System (2.1) is g.u.e.s.i.d.

if and only if N−1(s,ĥ) exists for Res >−γ (some γ ∈R+) for any sets of delays. Since

N−1
JM(s)(s,ĥ)N(s,ĥ) = [I −N−1

JM(s,ĥ)∆NJM(s,ĥ)] and NJM(s,ĥ) has an inverse Res >
−γJM (some γJM ∈ R+) for all the sets of delays explicit in the auxiliary system (2.5),

N−1(s,ĥ) exists for a pair (s,ĥ) if and only if Ñ−1(s,ĥ) exists for (s,ĥ), where

ÑJM
(
s,ĥ

)=N−1
JM
(
s,ĥ

)
N
(
s,ĥ

)= [I−N−1
JM
(
s,ĥ

)
∆NJM

(
s,ĥ

)]
. (3.2)

Proof of necessity. The rank condition cannot fail for ω = 0 since system

(2.1) is g.u.e.s. and then N(j0, ĥ) is full rank for any set of delays. Assume that

rank[ ˆ̃T ′JM(jω,ϕ)] < n for some ω ≠ 0, then rank[ÑJM(jω,ĥ)] < n and the set of

delays hi = ϕi/ω is the ith component of ϕ. This is a contradiction and necessity

follows.

Proof of sufficiency. Since T̂ (s), T̂JM(s) (and N−1(s,ĥ)) are compact wherever

they exist, any possible singularities of T̂ (s) and T̂JM(s) are poles [6, 9]. Since NJM(s,ĥ)
has an inverse for Res > −γJM , then, if ÑJM(s,ĥ) has an inverse in Res > −γ′JM , it fol-

lows that the operator-valued functionN(s,ĥ) has an inverse in Res >Min(−γJM,−γ′JM)
by construction of N(s,ĥ). T̂ (s) has a pole with Res0 >Min(−γJM,−γ′JM) if and only if
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the operator-valued function N(s,ĥ) has an eigenvalue one at s = s0 so that N−1
JM(s0, ĥ),

ÑJM(s0, ĥ), and N(s0, ĥ) are not full rank. Define the vector function of delays f(ĥ) :=
Sup(Res : ÑJM(s,ĥ) has an eigenvalue one). This function is continuous on its defini-

tion domain R0+. Since the delay-free system (2.1) is g.u.e.s., then f(0) < 0 so that

(2.1) is not (is) g.u.e.s.i.d. if and only if f(ĥ0) > 0 for some vector of delays ĥ0 with

h0,m+1 = 0 and h0,i > 0 for i ≠m+1 (if and only if f(ĥ) < 0 for all ĥ with h0,m+1 = 0

and h0,i > 0 for i ≠ m+1). Furthermore, there is a domain properly included in R0+
such that ˆ̃T ′JM(jω,ϕ0) has an eigenvalue one if f(ĥ0)= 0 since ÑJM(jωĥ0) is not full

rank for some real ω, where ϕ0i =ωh0i (i = 1,2, . . . ,m+m′ +1) with h0,m+1 = 0. But

then, from the definition of T̂ ′(jω,ϕ0), [−π,π] always exists such that the ranks of

T̂ ′(jω,ϕ0) and T̂ ′JM(jω,ϕ0) are less than n and the result has been proved. Note that

the test for negativeω is unnecessary since eventual complex poles appear in conjugate

pairs.

Theorem 3.1 may be used in particular for the special cases of Section 2 as follows.

Corollaries. Assume, in the following corollaries, that ẋ(t) = Lxt is g.u.e.s. for

ĥ= 0 for all φ∈ Ce(h).
Corollary 3.2 (delay-free dynamics). If M is strictly Hurwitzian, then ẋ(t)= Lxt is

g.u.e.s. for all ĥ ∈ [0,∞), that is, g.u.e.s.i.d. if and only if the operator-valued function

(3.1) exists, where

T̂ ′JM(jω)=
(
jωI−M)−1,

∆T̂ ′JM(jω,ϕ)=M−A+
m∑
i=1

Aiejϕ1i

+jω
(m′∑
i=0

α̂i(jω)Aαie
jϕ2i+

m′+m′′∑
i=m′+1

α̂i(jω)Aαi
(
1−ejϕ3i

))

×
(m′∑
i=0

αi(0)Aαie
jϕ2i+

m′+m′′∑
i=m′+1

αi(0)Aαi
(
1−ejϕ3i

))
.

(3.3)

Corollary 3.3 (delay-free and point-delayed dynamics). If ż(t)= LJMzt ≡Mz(t)+∑m
i=1Aiz(t−hi) is g.u.e.s.i.d. for some given real square n-matrix M , then ẋ(t)= Lxt is

g.u.e.s.i.d. if and only if (3.1) exists, where

T̂ ′JM(jω,ϕ)=
[
jωI−M−

m∑
i=1

Aiejϕ1i

]−1

,

∆T̂ ′JM(jω,ϕ)=M−A+jω

m′∑
i=0

α̂i(jω)Aαie
jϕ2i+

m′+m′′∑
i=m′+1

α̂i(jω)Aαi
(
1−ejϕ3i

)

×

m′∑
i=0

αi(0)Aαie
jϕ2i+

m′+m′′∑
i=m′+1

αi(0)Aαi
(
1−ejϕ3i

) .

(3.4)

Corollary 3.4 (delay-free and convolution Volterra-type dynamics). If ż(t)= LJMzt
≡ Mz(t)+ ∫ t0dα(τ)Aαz(t−τ) is g.u.e.s. for all bounded z(0)∈Rn for some given real
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square n-matrix M , then ẋ(t)= Lxt is g.u.e.s.i.d. if and only if (3.1) exists, where

T̂ ′JM(jω,ϕ)=
[
jω

(
I−α̂(jω)Aα

)−M+α(0)Aα]−1,

∆T̂ ′JM(jω,ϕ)=M−A+
m∑
i=1

Aiejϕ1i

+jω
(m′∑
i=1

α̂i(jω)Aαie
jϕ2i+

m′+m′′∑
i=m′+1

α̂i(jω)Aαi
(
1−ejϕ3i

))

×
(m′∑
i=1

αi(0)Aαie
jϕ2i+

m′+m′′∑
i=m′+1

αi(0)Aαi
(
1−ejϕ3i

))
.

(3.5)

Corollary 3.5 (delay-free and infinitely-distributed delayed dynamics). If ż(t) =
LJMzt ≡Mz(t)+

∑m′
i=0

∫ t
0dαi(τ)Aαiz(t−τ−h′i) is g.u.e.s. for all bounded φ∈ Ce(h) for

some given real square n-matrix M , then ẋ(t) = Lxt is g.u.e.s.i.d. if and only if (3.1)

exists, where

T̂ ′JM(jω,ϕ)=
[
jω

(
I−

m′∑
i=0

α̂i(jω)Aαie
jϕ2i

)
−M

]−1

,

∆T̂ ′JM(jω,ϕ)=M−A+
m∑
i=1

Aiejϕ1i+jω
(m′+m′′∑
i=m′+1

α̂i(jω)Aαi
(
1−ejϕ3i

))

×
(m′+m′′∑
i=m′+1

αi(0)Aαi
(
1−ejϕ3i

))
.

(3.6)

Corollary 3.6 (delay-free and finitely-distributed delayed dynamics). If ż(t) =
LJMzt ≡ Mz(t)+

∑m′+m′′
i=m′+1

∫ t
t−h′idαi(t−τ)Aαiz(τ) is g.u.e.s. for all bounded φ ∈ Ce(h)

for some given real square n-matrix M , then ẋ(t) = Lxt is g.u.e.s.i.d. for all bounded

φ∈ Ce(h) if and only if (3.1) exists, where

T̂ ′JM(jω,ϕ)=
[
jω

(
I−

m′+m′′∑
i=m′+1

α̂i(jω)Aαi
(
1−ejϕ3i

))−M
]−1

,

∆T̂ ′JM(jω,ϕ)=M−A+
m∑
i=1

Aiejϕ1i+jω
(m′∑
i=0

α̂i(jω)Aαie
jϕ2i

)

×
(m′∑
i=0

αi(0)Aαie
jϕ2i+

m′+m′′∑
i=m′+1

αi(0)Aαi
(
1−ejϕ3i

))
.

(3.7)

The global uniform exponential stability of (2.1) may be investigated provided that

each group of delayed dynamics (like, for instance, all point delays, infinitely distributed

delays, or finitely distributed ones) is successively introduced in the system as ad-

dressed as follows. Note, for instance, that the system with combined delay-free and

point-delayed dynamics ż(t) = LJMzt ≡ Az(t)+
∑m
i=1Aiz(t −hi) is g.u.e.s.i.d. for all

boundedφ∈ Ce(h) if and only if (I−(jωI−A)−1
∑m
i=1Aiejϕ1i )−1 exists for allω∈ (0,∞)

and all ϕ1i ∈ [−π,π], i = 1,2, . . . ,m, provided that A is strictly Hurwitzian (i.e., if the

undelayed auxiliary system is g.u.e.s. so that Corollary 3.2 holds).
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Corollary 3.7 (delay-free, point-delayed, and infinitely distributed-delayed dynam-

ics). If ż(t) = LJMzt ≡ Az(t) +∑m
i=1Aiz(t − hi) +

∑m′
i=0

∫ t
0dαi(τ)Aαiz(t − τ − h′i) is

g.u.e.s.i.d. for all bounded φ∈ Ce(h) if and only if

[
I−(jωI−A)−1

( m∑
i=1

Aiejϕ1i+
m′∑
i=0

(
jωα̂i(jω)−αi(0)

)
ejϕ2i

)]−1

(3.8)

exists for all ω ∈ (0,∞) and all ϕki ∈ [−π,π], ki ∈ Ni, i = 1,2, provided that A is

strictly Hurwitzian (i.e., provided that the undelayed auxiliary system is g.u.e.s. so that

Corollary 3.2 holds with M = A), it is also true that ż(t) = LJMzt is g.u.e.s.i.d. for all

bounded φ∈ Ce(h) if and only if

(
I−

(
jωI−A−

m∑
i=1

Aiejϕ1i

)−1)[m′∑
i=0

(
jωα̂i(jω)−αi(0)

)
ejϕ2i

]−1

(3.9)

exists for all ω ∈ (0,∞), ϕ21 = 0, and all ϕki ∈ [−π,π], ki ∈Ni, i = 1,2, provided that

A is strictly Hurwitzian (i.e., provided that the auxiliary system with both undelayed and

point delayed dynamics is g.u.e.s. so that Corollary 3.3 holds with M =A).

We might proceed in that way by giving conditions that ensure that each added group

of delays maintains the uniform stability independent of delay provided that it was

g.u.e.s.i.d. before adding those delays. It is also interesting to derive conditions for

losing or ensuring uniform stability dependent on delay as follows.

Theorem 3.8. Assume that (2.1) is g.u.e.s. for ĥ = 0. Thus, ẋ(t) = Lxt is not (resp.,

is) g.u.e.s. for all sets of delays that satisfy simultaneously hi = ϕ1i/ω, h′k = ϕ2k/ω,

and h′� = ϕ3k/ω with ϕ21 = 0 for some ω ∈ R+, ϕik ∈ [−π,π], i = 1,2, . . . ,m, k =
1,2, . . . ,m′, and l =m′ +1,m′ +2, . . . ,m′ +m′′ provided that (3.1) does not exist (resp.,

exists).

Proof (outline). The proof follows directly since for such sets of delays, the proof of

Theorem 3.1 fails since there is some pole of T̂ (s), so that it is not holomorphic,

on Res ≥ 0 since T̂ ′(jω,ϕ) does not have an inverse for some ω ∈ R+ and ϕ =
(ϕT

1 ,ϕ
T
2 ,ϕ

T
3 )T of components in the real interval [−π,π].

Remark 3.9. Note that in Theorem 3.8 the rank of an the operator-valued function

(3.1) has to be tested in order to ensure the existence of its inverse within an appropriate

stability domain. If the auxiliary system is not g.u.e.s.i.d., the test directly fails. On

the other hand, since the eigenvalues of the operator-valued function are continuous

functions of the arguments and since such a function is continuously differentiable

with respect to its arguments, the implicit function theorem ensures that if the test

does not fail at a set of delays (or constants h′(·) characterizing distributed delays), it

does not fail either within open neighborhoods of such delays (or constants). Thus, the

system is g.u.e.s for delays in some open neighborhoods of the h(·)- and h′(·)-constants

where the system is g.u.e.s.
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4. Uniform stability under impulsive forcing terms. The stability under impulsive

forcing terms in (2.1) may be formulated under a direct extension of the basic results

of Section 3 as follows.

Theorem 4.1. Assume that ẋ(t)= Lxt is g.u.e.s.i.d., which holds if Theorem 3.1 holds

with T̂ ′(jω,ϕ) = [I− T̂ ′JM(jω,ϕ)∆T̂ ′JM(jω,ϕ)]−1T̂ ′JM(jω,ϕ) existing within some ap-

propriate domain with T̂ ′JM(jω,ϕ) defining any g.u.e.s.i.d. auxiliary system defined for

some J-triple, and, thus, ∆T̂ ′JM(jω,ϕ) = T̂ ′−1
JM (jω,ϕ)− T̂ ′−1(jω,ϕ). Assume also that

the forcing impulsive vector function v : [0,∞)→Rn satisfies |bi| ≤Kie−iρ with ti+1−ti ≥
Tmin ≥ (ρ−ρ′)/γ, some real constant ρ′ ∈ (0,ρ), and Ki ∈R+ being bounded constants

for all i∈ I. Thus, the solution of (2.1), x(t,φ), is bounded on R+ and x(t,φ)→ 0 expo-

nentially as t→∞ for any φ∈ Ce(h).
Proof. Let x0(t,φ) be the unique solution of the homogeneous ẋ(t)= Lxt for t ≥ 0

for any given φ ∈ Ce(h). Thus, the unique solution x(t,φ) for t ≥ 0 for identical φ ∈
Ce(h) of the forced ẋ(t)= Lxt+u(t), with v(t)=∑i∈Ibie−(t−ti), is bounded on R+ and

satisfies

∥∥x(t,φ)−x0(t,φ)
∥∥≤

∥∥∥∥∥
∑
i∈I

T
(
t−ti

)
bi

∥∥∥∥∥≤
∣∣∣∣∣
∑
i∈I

Ke−γ(t−ti)bi

∣∣∣∣∣ (4.1)

since ‖T(t)‖ ≤ Ke−γt (γ ∈ R+). If Card(I) < ∞, the x(t) is bounded and x(t) → 0

exponentially as t→∞ if x0(t)→ 0 exponentially as t→∞. It only remains to consider

the case when Card(I)=∞. Since |bi| ≤Kie−iρ , γti−iρ ≥−iρ′ for some real ρ′ ∈ (0,ρ)
since ti =

∑i
k=1Tk ≥ iTmin ≥ i(ρ−ρ′)/γ with Ti ≥ Tmin = (ρ−ρ′)/γ, for all i ∈ I. Thus,

since
∑∞
i=0e−iρ

′ <∞,

∥∥x(tk,φ)−x0
(
tk,φ

)∥∥≤KK̄ k∑
i=0

e−iρ
′
e−γ(tk−ti)

≤KK̄
∞∑
i=0

e−γtke−i(ρ
′−ρ) ≤KK̄e−γtk ε

1−ε �→ 0

(4.2)

as tk→∞ and x ∈ L∞([0,∞);Rn), with ε = e−(ρ−ρ′) < 1 for all φ∈ L∞([0,∞);Rn). Then,

it is also exponentially continuous over I. Since the solutionx(t,φ) of (2.1) is continuous

over the finite intervals of nonzero measures [tk,tk+1),k ∈ I, it cannot diverge within

such intervals. Thus, x(t,φ) is bounded and converges exponentially to zero as t→∞.

Remark 4.2. Note that x(t+i )−x(t−i )= bi with bi vanishing exponentially as i→∞
in Theorem 4.1. Assume that at discontinuity points the solution trajectory satisfies

x(t+i ) = (I + Bi)‖x(t−i )‖ with Bi ∈ Rn×n for all i ∈ I; that is, bi = Bix(t−i ) for i ∈ I.

Thus, ‖x(t+i ,φ)−x(t−i ,φ)‖ ≤ Supi∈I(‖Bi‖)‖x(t−i ,φ)‖ ≤ K̄‖x(t−i ,φ)‖, where 0 ≤ K̄ =
Supi∈I(‖B−i ‖) <∞; that is, the variation function at the discontinuity points of the tra-

jectory is bounded and the increments converge asymptotically to zero provided that

‖x(t−i ,φ)‖→ 0 as ti→∞.
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Theorem 4.3. Assume that the homogeneous system (2.1) is g.u.e.s.i.d. for all φ ∈
Ce(h). Thus, it is g.u.e.s.i.d. for all φ ∈ Ce(h) and any impulsive v(t) =∑i∈Ibiδ(t− ti)
with Card(I) being finite or infinite if any of the subsequent conditions holds for all

i(≥ i0)∈ I, some arbitrary i0 ∈N:

(i) Mini∈I(t�+1−t�)≥ Tmin > (1/iγ)
∑i
k=1 ln(‖I+Bk‖);

(ii) if T0 = t1 and Ti = ti+1−ti, for all i∈ I, then
∑i
k=1Tk ≥

∑i
k=1 ln(‖I+Bk‖)1/γ ;

(iii) Ti ≥ ln(‖I+Bi‖)1/γ for all i= i0, i0+1, . . . ,Card(I)−1.

Proof. Let Ti be Ti = ti+1−ti, for all i∈ I, and τ ∈ [0,Ti). Thus, from (2.1),

x
(
ti+1+τ,φ

)= T(τ)x(t+i )+
∫ 0

−h
T
(
τ−τ′)x(ti+1+τ,φ

)
dτ′,

x
(
t+i ,φ

)= (I+Bi)x(t−i ,φ)

= (I+Bi)
[
T
(
ti
)
φ
(
0+
)+ i−1∑

k=1

T
(
ti−tk

)
Bkx

(
t−k ,φ

)]

= (I+Bi)
[
T
(
ti−ti−1

)
x
(
t+i−1,φ

)

+
∫ 0

−h
T
(
ti−ti−1−τ′

)
x
(
ti−1+τ′,φ

)
dτ′

]
.

(4.3)

Taking Euclidean norms in the above relations, one gets

∥∥x(t+i ,φ)∥∥≤ γ+1−e−γh
γ

∥∥(I+Bi)T(ti−ti−1
)∥∥ Sup

0≤τ≤t−i

(∥∥x(τ,φ)∥∥)

≤Ke−γ(ti−ti−1)
∥∥I+Bi∥∥ Sup

t−i−1−h≤τ≤t−i

(∥∥x(τ,φ)∥∥),
∥∥x(ti+τ,φ)∥∥≤ ∥∥T(τ)∥∥

[∥∥x(t+i ,φ)∥∥+
∫ 0

−h

∥∥R(τ′)∥∥∥∥x(ti+τ′,φ)∥∥dτ′
]

× γ+1−e−γh
γ

∥∥T(τ)∥∥ Sup
t+i +τ−h≤τ′≤t+i+1

(∥∥x(τ′,φ)∥∥)

≤Ke−γt Sup
t+i +τ−h≤τ′≤t+i+1

(∥∥x(τ′,φ)∥∥)

(4.4)

with R : [0,∞)→Rn×n being a matrix function that defines the factored representation

T(t−τ)= T(t)R(τ) so that ‖R(τ)‖ ≤ e−γτ since ‖T(t−τ)‖ ≤Ke−γ(t−τ) for all t ≥ τ ≥ 0.

Since
∫ 0
−h‖R(τ)‖dτ ≤ (1−e−γh)/γ, then

∥∥∥∥x(t+i ,φ)+
∫ 0

−h
R
(
τ′
)
x
(
t+i +τ′,φ

)
dτ′

∥∥∥∥
≤ ∥∥x(t+i ,φ)∥∥+ 1

γ
Sup

t−i −h≤τ≤t+i

(∥∥x(τ,φ)∥∥)

≤ γ+1−e−γh
γ

Sup
t−i −h≤τ≤t+i

(∥∥x(τ,φ)∥∥).
(4.5)
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The recursive use of (4.5) for all i ∈ I while relating x(t1,φ) to initial conditions φ :

[−h,0]→Rn of supreme norm φ̄ leads to

Sup
t+i ≤τ≤t−i+1

(∥∥x(τ,φ)∥∥)≤ γ+1−e−γh
γ

∥∥T(τ)∥∥ i∏
k=1

(∥∥I+Bk∥∥)∥∥T(tk−ti+1
)∥∥φ̄

≤Ke−γ(τ+ti)
i∏

k=1

(∥∥I+Bk∥∥)φ̄.
(4.6)

A sufficient condition for global uniform exponential stability independent of delay,

after excluding any finite number of consecutive impulses in (2.1), what is irrelevant

for stability analysis, is e−iγTmin
∏i
k=1(‖I+Bk+�‖) < 1 for any finite integer i≥ 0 provided

that ti+1−ti ≥ Tmin for any integer i≥ �. Thus, it follows that (2.1) is g.u.e.s.i.d. under (i)

by taking logarithms in the above inequality. It is proved that (2.1) is g.u.e.s.i.d. under

(ii) by replacing e−iγTmin by e−ti = e−
∑i−1
k=1Tk . The fact that (2.1) is g.u.e.s.i.d. under (iii) is

direct since the fulfilment of (iii) guarantees that of (ii).

5. Closed-loop uniform exponential stability under linear feedback

5.1. Simple stability tests and stabilization of the closed-loop system. In the sub-

sequent study, consider the unforced system (2.1). The discussion is limited to the case

of delay-free combined point-delayed dynamics in (2.1); that is, m′ =m′′ = 0. The ex-

tension to the general case is direct. The auxiliary system is ż(t)=Mz(t), that is, Ji =∅
(i= 1,2,3), withM strictly Hurwitzian. Thus, (2.1) is g.u.e.s.i.d. From Corollary 3.2, (2.1)

is g.u.e.s.i.d. if and only if

T̂ (jω)=
(
I−(jωI−M)−1

[
M−A+

m∑
i=1

Aix
(
t−hi

)])−1(
jωI−M)−1

(5.1)

exists for all ω∈R+ g.u.e.s. for ĥ= 0, that is, for any bounded x(0)=φ(0)∈Rn. Note

that (jωI−M)−1 exists for all ω∈R+ since M is strictly Hurwitzian. Consider the set

H∞(X) = {x : C0+ → X : SupRe s>0(‖x(s)‖) < ∞}, where C0+ is the complex open right-

hand, side half-plane. A similar H∞ space is defined for the set of linear operators on X
by replacing X→L(X,X). Note that T̂ ∈H∞(L(X,X)) where it exists. Simple calculations

for H∞-norms yield

γM := ∥∥(jωI−M)−1∥∥∞
=Max


γ ∈R+ :HM :=


M

I
γ2
M

−I −MT


has an eigenvalue on the imaginary axis


 .
(5.2)

T̂ (jω) exists for all ω∈R0+ if

1> γM

[∥∥M−A∥∥2+
m∑
i=1

∥∥Ai∥∥2

]
(5.3)
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since Supω∈R0+{‖M−A+
∑m
i=1Aie−jωhi‖2} ≤ ‖M−A‖2+

∑m
i=1‖Ai‖2, whereR0+ :=R+∪{0}

and ‖ · ‖2 denotes the l2-matrix norm for each ω ∈ R+. Now consider the following

feedback system subject to m internal and m′ external (denoted in the sequel as h′i)
point delays:

ẋ(t)=Ax(t)+
m∑
i=1

Aix
(
t−hi

)+Bu(t)+m′∑
i=1

Biu
(
t−h′i

)
(5.4)

with B,Bi ∈ Rq×n (i = 1,2, . . . ,m′), where the control function u : [0,∞) → Rq is con-

tinuous and has range U , that is, u ∈ C(0)([0,∞);U) while being generated from the

control law:

u(t)=KCx(t)+
m∑
i=1

KiCx
(
t−hi

)+m′∑
i=1

K′iu
(
t−h′i

)
(5.5)

with real matrices K,Ki ∈ Rq×r , C ∈ Rr×n. It is assumed that y is an r -measurable

output signal y : [0,∞) → Rr defined by y(t) = Cx(t) for all t ≥ 0. Taking Laplace

transforms in (5.4) with zero initial conditions with s = jω, one directly gets the closed-

loop relations

(
jωI−A−

m∑
i=1

Aie−jωhi
)
x̂(jω)= B0+

m′∑
i=1

Bie−jωh
′
i û(jω), (5.6)

(
I−

m∑
i=1

K′ie
−jωh′i

)
û(jω)=

m∑
i=0

KiCe−jωhi x̂(jω). (5.7)

The substitution of (5.7) into (5.6) yields Ŝc(jω)x̂(jω)= 0 with

Ŝc(jω)= (jωI−M)T̂c(jω),

T̂c(jω)= I−
(
jωI−M)−1

{
M−A−BKC+

m∑
i=1

(
Ai+BKiC

)
e−jωhi

+
(m′∑
i=1

Bie−jωh
′
i

)
S−1
u (jω)

(
KC+

m∑
i=1

KiCe−jωhi
)} (5.8)

with Su(jω)= I−
∑m′
i=1K

′
ie
−jh′iω. The closed-loop system is g.u.e.s.i.d. if T̂−1

c (jω) exists

provided that S−1
u (jω) exists for all ω∈R+. The following result holds.

Theorem 5.1. The closed-loop system is g.u.e.s.i.d. if the following conditions are

fulfilled:

(a) M is strictly Hurwitzian so that the auxiliary system ż(t)=Mz(t) is g.u.e.s.;

(b)
∑m′
i=1‖K′i‖< 1;

(c) the closed-loop system is g.u.e.s. in the absence of delays, that is, for hi = 0, h′k
(i= 1,2, . . . ,m, k= 1,2, . . . ,m′);
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(d)

1> γM


‖M−A−BKC‖2+

m∑
i=1

∥∥Ai+BKiC∥∥2

+
m′∑
i=1

∥∥Bi∥∥2

m′∑
i=1

∥∥Ki∥∥2‖C‖2
1

1−
∥∥∥∑m′

i=1

∥∥K′i∥∥2

∥∥∥

.

(5.9)

The subsequent cases are of interest to address Theorem 5.1.

Case A (C = I (i.e., linear state feedback) and (A,B) is a completely controllable pair).

Thus, the eigenvalues of (A+BKC) and then those of (M−A−BKC)may be prefixed to

arbitrary positions in Res < 0 (see, e.g., [3, 7, 13]) and then any norm of (M−A−BKC)
may be made as small as required. Furthermore, γM may be as small as suitable to fulfil

(5.9) for any sets of controller gains K(·) and K′(·) that fulfil |∑m′
i=1K

′
i|2 < 1. Assume, for

instance, that the eigenvalues of (A+BKC) are chosen identical to those of M located

at Res≤−ρ < 0. Assume also that B and C are full column and row rank, respectively.

Thus, γM ≤ 1/ρn if K is chosen as follows:

K =
[(
B⊗CT )T (B⊗CT )]−1(

B⊗CT )T (mv−av
)

= (BTB⊗CCT )−1(BT ⊗C)(mv−av
)

=
((
BTB

)−1⊗(CCT )−1
)(
BT ⊗C)(mv−av

)
,

(5.10)

where P⊗Q= (pijQ) is the direct Kronecker product of the a×b and c×d matrices P
and Q, respectively, and

mv = Vec(M)= col




m1

m2

...

mn


, av = Vec(A)= col




a1

a2

...

an


, (5.11)

where mv and av are column vectors formed with the consecutive rows mT
(·) of M

and aT(·) of A, respectively, written in order with ordered entries. It has been used that

(P⊗Q)T = PT ⊗QT and that BTB and CCT are both nonsingular since B and C are full

column and row rank, respectively.

Case B (C = I, (A,B) is stabilizable (but not controllable), and (Ai,B) are completely

controllable for i = 1,2, . . . ,m). Thus, a finite gain γA+BK = ‖(sI−A−BK)−1‖∞ can be

designed for each given A-matrix but it cannot be prefixed. Thus, the controller gain

matrix K may be chosen so that the controllable and observable modes of (A+BK) are

arbitrarily close to those of M [3, 7]. Also, the controller gains Ki may be calculated so
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that (Ai+BiKi) are zero (i= 1,2, . . . ,m) and K′i such that ‖K′i‖ are arbitrarily small for

i= 1,2, . . . ,m′. Thus, condition (d) of Theorem 5.1 may be fulfilled for any finite γA+BK
(i.e., for any K that stabilizes the stabilizable pair (A,B)).

Case C (C ≠ I (i.e., output feedback is used) and the triple (A,B,C) is controllable and

observable with rank(B) = q, rank(C) = r , and max(q,r) ≥ n). Thus, the eigenvalues

of (A+BKC) may be prefixed to positions being arbitrarily close to prescribed ones

inside the closed left-half complex plane, and any norm of (M−A−BKC)may be made

as small as convenient for design purposes. Also, γA+BKC may be made arbitrarily small,

and the design to accomplish with (see, in particular, (5.7)) may be performed similarly

as in Case A.

Case D (C ≠ I (i.e., output feedback is used) and the triple (A,B,C) is stabilizable and

detectable with rank(B)= q, rank(C)= r , and max(q,r)≥ n). Furthermore, (Ai,B,C)
is controllable and observable (i = 1,2, . . . ,m). The design may be performed as in

Case C.

Remark 5.2. Once The global uniform exponential stability of the inhomogeneous

closed-loop system has been achieved, then it may be guaranteed to be g.u.e.s. un-

der impulsive forcing signals by establishing additional conditions as in Theorems 4.1

and 4.3. The above analysis dictates that the absence or presence of controller exter-

nal delays is irrelevant for design purposes. Note, in particular, that condition (c) of

Theorem 5.1 is satisfied directly if the related controller gains are zeroed.

The extensions of the above results in this section to the presence of distributed

delays are not difficult. Assume, for instance, that the state (or only the output) is

available for measurement, that is, C = I (or C ≠ I), and that there are distributed

delays in the system. Thus, the control law (5.7) may be generalized to

u(t)=KCx(t)+
m∑
i=1

KiCx
(
t−hi

)

+
m′∑
i=0

∫ t
0
dαi(τ)Kαix

(
t−τ−h′i

)

+
m′+m′′∑
i=m′+1

∫ t
t−h′i

dαi
(
t−τ)Kαix(τ).

(5.12)

Define β = Max0≤i≤m′+m′′ (βi ∈ R+ such that
∫∞
0 |αi(τ)|dτ < ∞). Thus, α̂i(s) =∫∞

0 αi(τ)e−sτdτ ≤ ∫∞
0 |αi(τ)|eβτdτ < ∞ for Res ≥ −β (i = 0,1, . . . ,m′ + m′′); it

follows that |αi(t)| ≤ Ke(ε−β)t , for all t ≥ 0 and any real constant ε > 0, so that

Max0≤i≤m′+m′′(|α̂i(s)|)≤K/|s+β−ε|<K/|s+β| for Res <−γ. Then,

∥∥sα̂i(s)−αi(0)∥∥∞ ≤K Sup
ω∈R0+

(∣∣∣∣∣ jω√
β2+ω2

∣∣∣∣∣
)

=K+ Max
0≤i≤m′+m′′

(∣∣αi(0)∣∣)≤ 2K.
(5.13)
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Thus, condition (d) of Theorem 5.1 becomes (after substituting (5.12) into (2.1), via

(5.13), and obtaining a relation in Laplace transforms for the closed-loop system de-

scription)

1> γM

{[
‖M−A−BKC‖2+

m∑
i=1

∥∥Ai+BKiC∥∥2

]

+2k
[m′∑
i=0

∥∥Aαi+BKαiC∥∥2+2
m′+m′′∑
i=m′+1

∥∥Aαi+BKαiC∥∥2

]}
.

(5.14)

Very similar considerations as for point-delays (Theorem 5.1) may be used for the case

when (A,B,C) is controllable and observable or for (A,B) being controllable and C = I
with r = n and for that when (A,B,C) is stabilizable and detectable but the triples

(Ai,B,C) and (Aαk,B,C) (i = 1,2, . . . ,m, k = 0,1, . . . ,m′ +m′′) are controllable and ob-

servable, or, if C = I, the pairs (Ai,B) and (Aαk,B) (i = 1,2, . . . ,m, k= 0,1, . . . ,m′ +m′′)
are all controllable.

6. Examples

Example 6.1 (the simple first-order system ẋ(t)=−ax(t)+a1x(t−h) with x(0)=
x0). If a > 0, then Theorem 5.1 yields γa = ‖(s−a)−1‖∞ = 1/|a| and the system is

g.u.e.s.i.d. if 1 > γa|a1|Supω∈R0+(|e−jhω|) = γa|a1| provided that the auxiliary system

ż(t)=−az(t) with z(0)= z0 is g.u.e.s., that is, a > 0. Thus, the system is g.u.e.s.i.d. if

a > |a1| > 0. The same conclusion is obtained by applying Gronwall’s lemma [12], as

follows. Compute the solution to the system of differential equation to obtain

g(t) := ea(t−h)x(t,φ)

= e−ahx0+
∫ h

0
ea(τ−h)φ(τ−h)dτ

+
∫ t
h
ea(τ−h)a1x(τ−h,φ)dτ.

(6.1)

Substituting g(τ −h) = ea(τ−h)x(τ −h,φ), taking modules, and upper-bounding the

absolute value of the last integral by
∫ t
0 |ea(τ−h)x(τ−h,φ)|dτ , one gets

∣∣g(t)∣∣≤ e−ah∣∣x0

∣∣+
∫ h

0

∣∣ea(τ−h)φ(τ−h)∣∣dτ+∣∣a1

∣∣∫ t
h

∣∣g(τ−h)∣∣dτ (6.2)

so that ‖x(t,φ)‖ ≤ v(φ)e−(a+‖a1‖)t for all t ≥ 0, where v = ‖x0‖e−ah+ |a1/a||eah−
1|Sup−h≤τ≤0(‖φ(τ)‖). Thus, exponential stability follows for a > |a1| > 0. Assume,

for instance, that a < 0 so that the auxiliary system is unstable. Thus, use the delay-

free control law u(t) = kx(t) with k > −a. Thus, the above results hold by replacing

a→k−|a| so that the closed-loop uniform exponential stability independent of delay

is ensured if k > |a|+ |a1| still from Theorem 5.1. Note that Theorem 3.1 holds with

T̂ (s)= (s+a−a1e−hs)−1, T̂−1
JM = (s+a)−1, and M = a.

Example 6.2. Consider the multiple point-delay nth-order system under an impul-

sive forcing term ẋ(t) = Ax(t)+∑m
i=1Aix(t −h)+

∑
i∈Ibiδ(t − ti). Thus, the unique
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solution for any admissible n-vector real function φ of initial conditions is

x(t)= eA(t−ti)x(t+i )+
m∑
i=1

∫ t
ti
eA(t−τ)Aix

(
τ−hi

)
dτ

= T(t)φ(0+)+
∫ 0

−h
T(t−τ)φ(τ)dτ+

∑
i∈I

T
(
t−ti

)
U
(
t−ti

)
bi

(6.3)

for t ∈ (ti,ti+1), x(t+i+1) = x(t−i+1)+bi+1 with h = Max1≤i≤m(hi) with T(t) satisfying

Ṫ (t)=AT(t)+∑m
i=1AiT(t−h) with T(0)= I and T(t)= 0 for t < 0.

Several situations are now discussed.

(a) Assume that the auxiliary system ż(t) = Az(t) is uniformly exponentially sta-

ble for all bounded z(0), that is, A is strictly Hurwitzian with stability abscissa −ϑ =
(−ϑi) < 0 and the associated dominant eigenvalue µ = µi. Assume also that there is

no impulsive action, that is, all the bi are zero. Thus, from Theorem 5.1, the current

delayed system is guaranteed to be g.u.e.s.i.d. if |ϑ|µ >∑m
i=1‖Ai‖2 with γ−1

A = |ϑ|µ .

(b) If A is not strictly Hurwitzian, then assume that a control u(t)=Kx(t) is applied

through the control matrix B with (A,B) being controllable. Thus, the delay-free closed-

loop dynamics can be defined by the strictly Hurwitzian n-matrix M = A+BK (which

may be chosen as the delay-free dynamics of the auxiliary system) of the same stability

abscissa and dominant eigenvalue multiplicity as above. Thus, the closed-loop system

is g.u.e.s.i.d. if |ϑ|µ >∑m
i=1‖Ai‖2 for a controller gain matrixK being an existing solution

of (B⊗I)Kv =mv−av with Kv = Vec(K), mv = Vec(M), and av = Vec(A).
(c) If (A,B) is only stabilizable, then the stability abscissa is Min(−ϑ,−ϑ′) < 0, where

(−ϑ) < 0 is obtained from the relocated closed-loop controllable poles through the con-

troller gain matrix K and (−ϑ′) < 0 is the stability abscissa of the uncontrollable open-

loop stable (since the system is stabilizable) poles which cannot be relocated through

feedback. Thus, the delayed system is g.u.e.s.i.d. if Max(|ϑ|µ,|ϑ′|µ′) >∑m
i=1‖Ai‖2.

(d) If the state is not available for measurement but (A,B,C) is controllable and ob-

servable or (at least) stabilizable and detectable for appropriate control and output ma-

trices B and C , respectively, then the closed-loop stabilization problem may be solved

in light of Theorem 5.1.

(e) Now, assume that the impulsive input is nonzero. If there is a finite number of

impulses, then the above conditions of uniform stability still remain valid. If there

is an infinite number of impulses bi = Bix(t−i ), then the global uniform stability in-

dependent of delay is preserved if all the time intervals in-between two consecutive

impulses satisfy the lower-bound constraint Tmin ≥ Supk∈I(1/iγ′)
∑i
k=1‖I + Bk‖ with

γ′ = γ−1
A −∑m

i=1‖Ai‖2 from Theorems 4.3(ii) and 5.1 provided that γA := ‖(sI−A)−1‖∞ >∑m
i=1‖Ai‖2.

(f) If, in case (e), A is not strictly Hurwitzian and a closed-loop stabilization is per-

formed, then γA is replaced by the appropriate gain γM for M = A+BK. If all the bi
(i∈ I) converge exponentially to zero while being state-independent, Theorem 4.3 may

be used instead of Theorem 5.1.

(g) Now, assume that an auxiliary system ż(t) = Az(t)+A1z(t −h1) is g.u.e.s.i.d.

for all φ ∈ Ce(h1) and any delay h1. A sufficient condition is |ϑA|µA > ‖A1‖2 with

γ−1
A = |ϑA|µA , where (−ϑA) < 0 is the stability abscissa of A provided that A is strictly
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Hurwitzian with the dominant eigenvalue being of multiplicity µA. Define the H∞-norm

γaux :=
∥∥∥(sI−A−A1e−hs

)−1
∥∥∥∞

≤
∥∥∥(sI−A)−1

∥∥∥∞ ·
∥∥∥I−(sI−A)−1A1e−hs

∥∥∥∞ ≤ γA
1−γA

∥∥A1

∥∥
2

(6.4)

provided that ‖A1‖2 < γ−1
A = |ϑA|µA . Then, a sufficient condition for the current system

to be g.u.e.s.i.d. when no impulsive input is injected is that 1 > γaux
∑m
i=2‖Ai‖2, which

is guaranteed if 1 > γA
∑m
i=2‖Ai‖2/(1−γA‖A1‖2) provided that ‖A1‖2 < γ−1

A = |ϑA|µA .

If A+A1e−hs has stable eigenvalues but A is not strictly Hurwitzian, that is, ż′(t) =
Az′(t) is not g.u.e.s.i.d., then γaux is finite but it cannot be calculated from sufficiency-

type conditions for stability using (6.4). However, the system is still g.u.e.s.i.d. if 1 >
γaux

∑m
i=2‖Ai‖2.

(h) Now, assume that in case (g) there is an impulsive input as in case (e) consisting of

infinitely many impulses. Thus, the current system is g.u.e.s.i.d. if the impulses occur

at consecutive times being not less than Supk∈I(1/iγ′aux)
∑i
k=1‖I+Bk‖, except possibly

on a set of zero measure, with γ′−1 → γ′−1
aux = (1−γA‖A1‖2)/γA−

∑m
i=2‖Ai‖2, provided

that ‖A1‖2 < γ−1
A and

∑m
i=2‖Ai‖2 < γ−1

A (1−γA‖A1‖2), from Theorems 4.3(ii) and 5.1.

Example 6.3. Consider the second-order scalar functional equation ẍ(t)=−aẋ(t)+
bx(t−h). The equation is decomposed into two first-order equations as follows:

x(t)= x1(t), ẋ1(t)= x2(t),

ẋ2(t)=−ax2(t)+bx1(t)−
∫ 0

−h
bx2(t+τ)dτ.

(6.5)

Consider the Lyapunov functional candidate

V
(
x1t ,x2t

)= x2
2t−bx2

1t+ξ
∫ 0

−h

∫ t
t+s
x2

2t(τ)dτds (6.6)

(see [4]), whose time-derivative is

V̇
(
x1t ,x2t

)=−2ax2
2(t)−

∫ 0

−h
2bx2(τ)x2(t+τ)dτ

+ξ
∫ 0

−h

∫ t
t+s

[
x2

2(t)−x2
2(t+τ)

]
dτ

≤
∫ 0

−h

{[
−
(

2a
r

)
−b+ξ

]}
x2

2(s)+(−b−ξ)x2
2(t+s)ds.

(6.7)

Thus, the system is globally asymptotically stable, dependent on delay if (−2(a/h)+
ξ−b) < 0 for some real constant ξ > 0 if xi(t), for i= 1 or 2, is nonzero for some subin-

terval of nonzero measure of [t−h,t], any t ≥ t0 (some finite t0 ∈ R0+), or, equivalently,

Max(0,−b) < ξ < 2(a/h)+b. This holds for allh> 0 if Min(a,b)≥ 0 and a and b are not

simultaneously zero. A general necessary condition for a given h is that (a/h+b) > 0

or, equivalently, h>−a/b. Note also that a necessary condition for exponential stabil-

ity for h = 0 is that a > 0 and b < 0, which follows from the Routh-Hurwitz criterion.

As a result, if a > 0 and b < 0, then the system is globally uniformly asymptotically
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stable if h ∈ [0,a/|b|). Theorem 4.3 may be applied as follows. Decompose the sys-

tem of second-order functional differential equations into two first-order differential

equations as follows:

ẋ(t)=Ax(t)+A1
(
x(t)−x(t−h)), (6.8)

where

x(t)= (x1(t),x2(t)
)T , A=

[
0 1

b −a

]
, A1 =

[
0 0

−b 0

]
. (6.9)

The stability abscissa of A is (−a) if a< 2|b| or −(a−√a2−4|b|) otherwise. Thus, the

system is g.u.e.s.i.d. ifa> 0, b < 0, anda> 2|b|+√a2−4|b| since the stability condition

for a≥ 2|b| is (a−√a2−4b) > 2|b| (Theorem 5.1), and for a< 2|b|, Theorem 5.1 fails

in (6.4).

7. Conclusions. This paper has dealt with the global uniform exponential stability

independent of delay (g.u.e.s.i.d.) of a class of homogeneous time-delay systems being

possibly subject to combined point and distributed delays as well as integrodifferential

Volterra-type delayed dynamics. The global stability is investigated for any real func-

tion of initial conditions being everywhere continuous on its definition domain, a real

interval [−h,0], where h is the maximum delay in the system, except possibly on a set

of zero measure where the function of initial conditions possesses bounded discontinu-

ities. Necessary and sufficient global uniform stability independent of delay conditions

has been obtained if the delay-free system is globally uniformly exponentially stable

(g.u.e.s.) and an auxiliary system is g.u.e.s.i.d. The obtained results have then been ap-

plied to a number of particular cases of interest by setting different auxiliary systems

including the standard delay-free one. Furthermore, some extensions have been given

for the case when the system is forced by impulsive inputs consisting of either a finite

number of impulses or infinitely many impulses. It has been assumed either that the

impulse amplitudes vanish exponentially or that the time interval between two inputs

exceeds a prescribed threshold of sufficiently large length. Some extensions have been

given by considering the closed-loop stabilization of time-delay systems of the given

class. Finally, some illustrative examples have also been presented.
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