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REFINEMENT EQUATIONS FOR GENERALIZED TRANSLATIONS

W. CHRISTOPHER LANG
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We study refinement equations which relate the dilation of a function with generalized trans-
lates of the function, consisting of convolutions against certain kernels including Cauchy
and Gaussian densities; solutions are expressed in terms of solutions of the corresponding
refinement equation involving ordinary translation.

2000 Mathematics Subject Classification: 42C40.

1. Introduction. Refinement equations (also known as scale equations or dilation
equations) form the basis of typical wavelet constructions (see, e.g., [4]). Such equa-
tions relate a dilation of a function to a combination of its translates. Here, we will
consider a refinement equation involving a generalized translation operator T consist-
ing of convolution against a kernel function or density,

qb(f) = 3 26, T (x). (1.1)

2 k=0

We will consider this equation in the case that > ¢y = 1 and c¢x = 0 for all k. This is
therefore a generalization of the refinement equation

qb(%) = > 2ckp(x—k). (1.2)

k=0

We will consider the generalized translation operator T consisting of convolution
against a Cauchy density function, and we will consider T consisting of convolution
against a Gaussian density function. In the first case, we define the operator T by T f =
hx f, where h(x) = g(x —1), where g is the Cauchy density function g(x) = 1/(m(1+
x?)). In the second case, we define T f = G(1,02) x f, where

exp[ﬂ]. (1.3)
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G(u,0%x) o2
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Under certain weak conditions on the coefficients ¢y (see below), the refinement equa-
tion (1.2) has a solution n consisting of a probability measure given by the weak-x

convergent convolution product

n= ¥ ( > Ck‘sk/zj)- (1.4)

J=1\x20
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Our strategy for solving (1.1) is to locate a function f(x,t) such that

b(x) = jf(x,tmn(t). (L.5)

In Section 2 of this paper, we will do this for the refinement equation involving convo-

lution against the Cauchy kernel, and in Section 3 we will do this for certain n for the

refinement equation involving the Gaussian kernel. In the last section of this paper, we

will define a general partial multiresolution analysis for generalized translations.
Now, (1.1) is an example of a more general sort of refinement equation

b (%) = 2uxbx), (1.6)
where  is a finite regular Borel measure with [ du = 1. Equations of this sort are known
as continuous refinement equations, and are studied in many references, including
[1, 3,5,6,9, 10, 11, 13, 14, 15]. In particular, [9] gives simple conditions for such an
equation to have distributional solutions, in great generality, while [5] uses probabilistic
methods to study the convergence of subdivision algorithms solving such equations.
Chui and Shi [1] give conditions for continuous refinement equations to have solu-
tions, and they develop a continuous multiresolution analysis with associated dyadic
wavelets for these equations. Rvachev [14] defines the “up-function,” a smooth, com-
pactly supported function solving the equation 2¢(x/2) = [;_; ¢(»)dy, and develops
many applications. Kabaya-Imai and Iri [11] consider similar equations arising in es-
timates of roundoff errors in large calculations; and Dahmen and Micchelli consider
other examples of equations generalizing the up-function equation. Goodman et al. [6]
compute spectral radii for dilation-convolution operators, while Kabaya-Imai and Iri
compute eigenvalues and eigenvectors for their operators.
Equation (1.6) may be solved iteratively, using the algorithm

¢(n+1)(x) =2(“*¢(n))(2x), (1.7)

where ¢ is a suitable initial approximation such as the “box” function ¢© = 1p¢.1).
Derfel et al. [5] use a theorem of Grincevicjus [8] concerning the convergence of certain
series of random variables to prove the theorem that if [ sup{1,log|x|}du(x) < oo, then
the iteration converges weak-* to a probability measure. This is of course true if u has
compact support; the condition will also hold in the examples below. (A simple measure
that does not meet this condition, and in fact for which the iteration diverges to zero,
ispu=>2,-11/(m(n+1))5,:n). This same condition is sufficient for n to be given by the
convolution product given above in (1.4). (For more about such convolution products,
see [7].) We use the iteration (1.7) to produce the plottings for Section 3.

2. The Cauchy density. Here, we consider (1.1) with generalized translation T f =
h x f, where h(x) = g(x —1) and g(x) = 1/(1r(1 + x?)). As mentioned above, our
strategy for solving (1.1) for this generalized translation is to locate a function f(x,t)
such that ¢(x) = [ f(x,t)dn(t), where n is a solution of (1.2). Indeed, we will show
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that

foan == 1t 2.1)

t T2+ (x—t)2

gives the desired result. We have the following theorem.

THEOREM 2.1. Equation (1.1) has solution

"1 t
#0)= || & e @2

where n is the probability measure (1.4), where we assume that cy, =0 for k > n in (1.2)
(so the support of n is [0,1n]).

PROOF. First, we show that ¢ is well defined by (2.2). We will show that ¢ (x) exists
(is a finite value) for every x # 0. Then, we will verify that ¢ € L' (R).

Now, if x # 0, the function f(x,t) as defined by (2.1) is bounded as a function of
t. Indeed, f(x,t) reaches a maximum value of (1++/2)/(2m|x|) att = x/~/2 or t =
—x/+/2. Since n is a probability measure, then

t n14+.2 1+/2

n1
60| = || e dn(© = || gpdn = 300 @3)
So, ¢ (x) is finite for x = 0. We can then use Fubini’s theorem to show ¢ € L' (R),
Il = [| foendnrax = [[ fxndxanc) = [1anw - 1. (2.4)

We now are able to show that ¢ solves (1.1).

First, for a > 0 define the dilation g, of g by g,(x) = g(x/a)/a. It turns out that
Ja * gp = ga+p- (This follows from the fact that the Fourier transform of g, is §,(§) =
e*\az\_)

Next, we note a self-similarity property of the measure n: for any integrable func-
tion f,

Jf(2t>dn<t> —f(chfmk))dn(t). (2.5)
k=0

This is because if we write i for the dilation of n defined by A(E) = 7((1/2)E), then

il = (Xk=0CkOk) *N.
We now have

1o(3) - fo(5)-)omo- [ (=52 Yoo

-| ( S ti"kg(x_t(jzk)))dnm = [ 3 cgrate-t-Ran.

k=0 k=0

(2.6)
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Then, we have

k factors

> a(Thp) (x) = J > ek <6k xGgk---kgkg: *6t>(x)dn(t)

k=0 k=0

= J D ek (Grek * Seak) (x)dn(t) (2.7)
k=0

- J > crgrak(x —t—k)dn(t) = %d)({)'

k=0 2

(Fubini’s theorem is used in the first equality.) So, we have verified that ¢ satisfies (1.1).
O

It may be observed that the Fourier transform of the solution ¢ to (1.1) satisfies the
equation

P (%) =A(E-ilEl). (2.8)

This suggests generalizing Theorem 2.1 to higher dimensions.

To that end, we will write x € R" as x = (x1,...,Xn). We define addition and scalar
multiplication as usual, and we will write |x| = (|x1],...,|xnl|). We will write x > 0
provided that x; > 0,...,x, > 0.

Letn = *;":1 (X a=0Ca02-j4), Where o € Z"; we assume that ¢4 > 0 and > cx = 1. The
measure 1 satisfies the refinement equation

P(27'x) = > 2cap(x - x). (2.9)
«=0
Let
t1 tn

_ a(t.x) = . _ 2.10
g =gtx) (n(t%m?)) (n(t%m%)) (10
Defining the Fourier transform on R™ as usual by f (&) = [pn f(x)e ¥ *dx, we find that
the Fourier transform of g(t,x) as a function of x is e 18l = e~t1l&1l. .. g=tnl&nl From

this it follows that g(t,x) x g(s,x) = g(t + s,x) for any t,s € R™ with s,t > 0 (Where
the convolution is with respect to the second argument x).
Then, we may generalize the refinement equation (2.9) as

P(27x) = > T (x), 2.11)

o=0

where T* is the operator T®f = gy * 04 * f. It turns out that the solution of this
equation is given by ¢ (x) = [gn g(t,t —x)dn(t); the proof is very similar to the proof
of Theorem 2.1. In this setting, as expected, we have ¢ (&) = R(E—i|&]|).
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We may generalize Theorem 2.1 in a different direction, returning to (1.1) in a single
dimension. In Theorem 2.1, we required the coefficients ¢y to be nonnegative. If we no
longer require this, we are no longer assured that n solving (1.2) is a measure. Instead,
if Yycx = 1, and all but finitely many terms of this sum are zero, then n will be a
distribution [2]. If we write {f,n) for the value of the distribution n on the test function
f,we find that the solution of (1.1) (with the Cauchy density) is ¢ (x) = (g:(x —t),n(t)).
We can no longer expect ¢ € L' (R); however ¢ will be smooth except possibly at x = 0
(where the function may be unbounded). In this context, we still have 43(&) =RnE—-1il&]).

We conclude this section with two examples.

EXAMPLE 2.2. The refinement equation (1.1) withco=c; =1/2and ¢y =0 for k > 1
has the following solution: here, n = *30:1((1/2)50 +(1/2)6,») is just Lebesgue mea-
sure restricted to the unit interval, so

I t
‘/’(X):L Ttz

L (L1 (x2y
T8 4m x? 21T x /J

(2.12)

This may be likened to a Haar scaling function for the Cauchy density generalized refine-
ment equation, although the graph bears no resemblance (this function is continuous
except for an infinite discontinuity at 0).

EXAMPLE 2.3. The refinement equation (1.1) with co =1/4=c»,c1 =1/2,and ¢ =0
for k > 2 has the following solution. This time, the measure n is the absolutely contin-
uous measure with the “triangle” density function f(t) =1-|t—1| for 0 <t <2 and
f(t) =0 for all other x. Therefore,

Z1t(1-1t-1))
P =) e
:ltan’l(x—_z)fltan’l(x—_él)fxmbd (2.13)
™ X ™ X 2T

(2—x)In(x?—-4x+8) N (x-1)In(x?-2x+2)
417 2m ’

This function is continuous and bounded.

3. The Gaussian density. Here, we consider (1.1) with generalized translation T f =
G(1,02%) % f,where G is the Gaussian density (1.3), with some choice of ¢ > 0. Again, our
strategy for solving (1.1) for this generalized translation is to locate a function f(x,t)
such that ¢ (x) = [ f(x,t)dn(t). Indeed, we will show that f(x,t) = G(t,0(t);x) for a
certain function 8. However, we will only be able to show what gives a solution for (1.1)
in the case ¢y =0 for k > 1.
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To do this, we first note for real u,, y2 and op,0> > 0 that G(ul,(ff) * G(uz,ag) =
Gy + 2,02 +0F) = G(uy + 2, c?), where ¢ = /o2 + 2. This will allow us to determine
the function 6.

So,welet ¢p(x) = [G(t,0(t),x)dn(t), and we substitute this into (1.1). The left-hand
side of that equation becomes

of3) - feleornrJano

- JG(Zt,49(t);x)dn(t) 3.1)

= J > ckG(t+k,49((t;k));x)df)(t),

k=0

where the last equality uses (2.5). The right-hand side of (1.1) becomes

k factors
> aTkp(x) =D JG(l,O’Z;X) Kone >|<G(l,(rz;x)‘*G(t,G(t);x)dn(t)
k=0 k=0 3.2)
=> JG(t+k,ka’2+9(t);x).dn(t).

k=0

Therefore, if 40((t +k)/2) = ko?+0(t) for k= 0 and t € supp(n), then ¢ solves (1.1).
These equations are not compatible if supp(n) ¢ [0,1], which occurs if ¢x # 0 for k > 1,
and which results in three or more equations. But if ¢y = 0 for k > 1, then we only have
the two equations 40 (t/2) = 0(t) and 40((t +1)/2) = O(t) + 0%, where 0 < t < 1. These
are equivalent to

%0(20 ifOsts%,
o(t) = 1, 1 1 (3.3)
ZO‘ +ZQ(2t_1) 1f§<ts1
There is a solution 0 to this self-similarity condition:
0t)=02> €47, (3.4)

Jj=0

where t € [0,1] has nonterminating binary expansion t = g2 20 ej2‘j , where €; €
{0,1} for all j.
We have the following theorem.

THEOREM 3.1. The equation ¢p(x/2) = 2cop(x) +2c1G(1,02%) % p(x), where ¢y +
c1 =1 and cy,c1 > 0, has solution ¢(x) = [ G(t,0(t),x)dn(t), where n solves p(x/2) =
2cop(x) +2c1¢p(x—1), and where 0 is given by (3.4).
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PROOF. It remains to verify that ¢ (x) = [G(t,0(t),x)dn(t) with this 0 is well de-
fined. Now, it happens that o2t2/4 < 0(t) < 402t2?/3 for all t € [0,1]. Therefore, for
such t,

L 1 —(x—1)?
G(t,e(t),x)—me"p< 20(t) )
1 f(X*t)z

< frormz ™ (“zom ) o

_ 1 ox <73(x7t)2>
T Jmo?t?)2 P\ 8oz )

If x = 0, this is bounded. So, for x + 0, ¢p(x) is finite,

1 1
c c
9| = | 60w, dnw < [ Sanw < (3.6)
0 o lx| [x|
since n is a probability measure. It follows that ¢» € L' (R), using the same argument as
in Theorem 2.1. Thus, ¢ is well defined, and the formal calculations above now verify
that ¢ is a solution as claimed. |

We can say more about ¢. Closer estimates of G(t,0(t);x) can be made, which show
that ¢ is continuous if 0 < ¢y < 1/2 and discontinuous (at x = 0) if ¢o > 1/2. (Recall
co+cy = 1.) Also, ¢ is differentiable if ¢y < 1/4 but not if ¢y > 1/4. (It turns out that
¢(x) ~ x%, where x = —log,(2cp), for 0 < x < 1.) Actually, we can conclude that ¢ is
differentiable n times if ¢y < 27", from [5, Theorem 11]. This requires the distribution
G(1,02) to obey a finite moment condition, equation (3.2) of [5], which it satisfies.
It is interesting to note that this moment condition is not satisfied for the Cauchy
density considered in the previous section of this paper, so we are unable to give general
conclusions about the smoothness properties of ¢ except for the explicit formulas in
Examples 2.2 and 2.3.

EXAMPLE 3.2. If ¢g = 0 and ¢; = 1 in Theorem 3.1, the function ¢ happens to be just
¢ = G(1,02/3). Other examples of ¢ are plotted in Figures 4.1 and 4.2. These were
generated using code written in C++, using the iteration (1.7), and plotted using the
PiCTEX macro package. In Figure 4.1, ¢o = 1/2 and o = 0.05. In Figure 4.2, ¢o = 0.2 and
o = 0.05. For both figures, 15 iterations of (1.7) were used. Both functions are plotted
over the interval [0,2] (for x < 0 and x > 2, the values of the functions are very small).

4. Multiresolution analyses. For a generalized translation, we may define a suitable
notion of multiresolution analysis. Suppose ¢ is a function satisfying the refinement
equation

#(3 ) = 200 () + 201 b(x) (4.1)

with ¢p+c; =1 and ¢y, c; = 0. We then define the space Vj by

Vo = span{¢, u* p,u’ x p, > x ¢p,...}. 4.2)
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We would like to define (as usual) V; to be the dilation of V;, but if we define V; in this
way, then Vy ¢ V;. Instead, let u; be the dilation of u (so py (E) = u(2E) for Borel sets
E), let ¢p1(x) = ¢p(2x) and let V; be defined by

Vi = span {u" * ¢y, u" * 1 * ¢y 1> 0}. (4.3)

It then follows that V C Vj.

This leads us to a definition of V; for j = 0. We say V; = span{¢; : k = 0}, where
¢k is defined as follows. Suppose k/2) =n+e/2+€/4+--- +ej/21 is the binary
expansion of k/2/, so each €; € {0,1} and n is a nonnegative integer. Let u;j be the
dilation of p by 27 (so u;(E) = pu(2JE) for Borel sets E), let ¢;(x) = ¢(27x), and for
O<i=<jlet

50 if € = 0,
ni= . (4.4)
u;  ife;=1.
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Then, we define

bk =My kN1 kN2 Kk k0% P (4.5)

(Note ¢ = jo.)
It then follows that V; < V.1, since from (4.1) and (4.5) we may show that

copjrik+C1Pji12ki1 = Pjk- (4.6)

We will call the spaces Vj, so defined for j > 0, a partial generalized multiresolution
analysis. We should note that if u was just 61, then V; would be the space spanned by
¢ (2/x —k) (for j =0 and k = 0).

A similar construction is given in [12], in a somewhat different context.
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