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After a brief summary of Tauberian conditions for ordinary sequences of numbers, we con-
sider summability of double sequences of real or complex numbers by weighted mean meth-
ods which are not necessarily products of related weighted mean methods in one variable.
Our goal is to obtain Tauberian conditions under which convergence of a double sequence
follows from its summability, where convergence is understood in Pringsheim’s sense. In
the case of double sequences of real numbers, we present necessary and sufficient Taube-
rian conditions, which are so-called one-sided conditions. Corollaries allow these Tauberian
conditions to be replaced by Schmidt-type slow decrease conditions. For double sequences
of complex numbers, we present necessary and sufficient so-called two-sided Tauberian
conditions. In particular, these conditions are satisfied if the summable double sequence is
slowly oscillating.

2000 Mathematics Subject Classification: 40E05, 40B05, 40G05.

1. Introduction. We begin with a brief and concise summary of the corresponding

well-known results for single sequences. For basic facts on summability theory, we refer

to [4, 9, 12] for ordinary sequences and to [1] for double sequences.

Let p = (pk : k= 0,1,2, . . .) be a fixed sequence of nonnegative numbers with p0 > 0,

and set

Pm :=
m∑
k=0

pk, k= 0,1, . . . . (1.1)

Weighted means of a sequence (sk : k= 0,1, . . .) of complex numbers are defined by

tm := 1
Pm

m∑
k=0

pksk, m= 0,1, . . . . (1.2)

The sequence (sk) is said to be summable by the weighted mean method determined

by the sequence p, in short, summable (N,p), if the sequence (tm) converges to a finite

limit s; in symbols, sm → s(N,p).
The summability method (N,p) is said to be regular, if sm → s implies sm → s(N,p).

It is well known that (N,p) is regular if and only if Pm →∞ asm→∞ (see, e.g., [9, page

16]), which we assume in the following.
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We are interested in converse conclusions. In general, sm → s(N,p) implies sm → s
only under additional so-called Tauberian conditions. Set

ak := sk−sk−1, k= 0,1, . . . ; s−1 := 0. (1.3)

Then, each of the following conditions is Tauberian for the method (N,p):

m∑
k=1

akPk−1 = o
(
Pm
)
, (1.4)

∞∑
k=1

∣∣ak∣∣2 Pk−1

pk−1
<∞, pk > 0 ∀k > 0, (1.5)

ak = o
(
pk−1

Pk−1

)
, (1.6)

since they yield tm−sm → 0 as m→∞. The o-type condition (1.6) can be weakened to

an O-type condition

ak =O
(
pk−1

Pk−1

)
, (1.7)

or even to a one-sided condition

ak ≤ c pk−1

Pk−1
, (1.8)

where c is a positive constant and in the last case we suppose that p also satisfies the

condition pm/Pm → 0 as m→∞.

A necessary and sufficient Tauberian condition was given in [8], which is implied by

either of the conditions (1.4)–(1.8). To present it, we recall the following two defini-

tions. Let λ= (λ(m)), where λ(m) >m for all m, be an increasing sequence of natural

numbers such that

liminf
m→∞

Pλ(m)
Pm

> 1, (1.9)

and denote by Λu the set of all such sequences λ. Similarly, let µ = (µ(m)), where

µ(m) <m for all m, be a nondecreasing sequence of natural numbers such that

liminf
m→∞

Pm
Pµ(m)

> 1, (1.10)

and denote by Λ� the set of all such sequences µ.

Now, the following theorem was proved in [8]: for a given sequence (sm) of real

numbers, sm → s(N,p) implies sm → s if and only if

inf
λ∈Λu

limsup
m→∞

1
Pλ(m)−Pm

λ(m)∑
k=m+1

pk
(
sk−sm

)≤ 0, (1.11a)

inf
µ∈Λ�

limsup
m→∞

1
Pm−Pµ(m)

m∑
k=µ(m)+1

pk
(
sm−sk

)≤ 0. (1.11b)
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In case of smooth weights, for example, when

pk := (k+1)α, k= 0,1, . . . ; α>−1, (1.12)

we may replace Λu by Λ̃u := {([λm]) : λ > 1} and Λ� by Λ̃� := {([m/λ]) : λ > 1}, where

[a] denotes the integer part ofa> 0. Furthermore, either the condition of slow decrease

in the sense of Schmidt [10] (see also [4, pages 124-125])

lim
λ→1+

liminf
m→∞

min
m<k≤λm

(
sk−sm

)≥ 0, (1.13)

or the condition of slow increase

lim
λ→1+

limsup
m→∞

max
m<k≤λm

(
sk−sm

)≤ 0, (1.14)

implies both (1.11a) and (1.11b) (see [8] for details).

In the same paper, the following theorem for complex sequences was proved: sm →
s(N,p) implies sm → s if and only if one of the following Tauberian conditions is satis-

fied:

inf
λ∈Λu

limsup
m→∞

∣∣∣∣∣ 1
Pλm−Pm

λ(m)∑
k=m+1

pk
(
sk−sm

)∣∣∣∣∣= 0 (1.15a)

or

inf
µ∈Λ�

limsup
m→∞

∣∣∣∣∣ 1
Pm−Pµ(m)

m∑
k=µ(m)+1

pk
(
sm−sk

)∣∣∣∣∣= 0. (1.15b)

The following special case is called the condition of slow oscillation (see, e.g., [6]):

inf
λ∈Λu

limsup
m→∞

max
m<k≤λ(m)

∣∣sk−sm∣∣= 0. (1.16)

In this case (1.15a) (and a fortiori, (1.15b)) is clearly satisfied. The symmetric counterpart

involving the class Λ� can be formulated analogously.

From now on, we will consider double sequences. Let p = (pk,� : k,� = 0,1, . . .) be a

fixed double sequence of nonnegative numbers with p0,0 > 0, and set

Pm,n :=
m∑
k=0

n∑
�=0

pk,�, m,n= 0,1, . . . . (1.17)

The weighted means of a double sequence (sk,� : k,� = 0,1, . . .) of complex numbers are

defined by

tm,n := 1
Pm,n

m∑
k=0

n∑
�=0

pk,�sk,�, m,n= 0,1, . . . . (1.18)

The sequence (sk,�) is said to be summable by the weighted mean method determined

by the sequence p, in short, summable (N,p), if the double sequence (tm,n) converges
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to a finite number s in Pringsheim’s sense; in symbols, sm,n → s(N,p). This type of

convergence means that for every ε > 0 there exists a natural number n0(ε) such that

∣∣tm,n−s∣∣< ε ∀m,n≥n0(ε). (1.19)

Furthermore, we also consider the so-called bounded convergence (in Pringsheim’s

sense); in symbols, b− limsm,n = s, which means the following:

sm,n �→ s,
∣∣sm,n∣∣≤K ∀m,n= 0,1, . . . , (1.20)

where K is a finite positive number. Similarly, b− limsm,n = s(N,p) means that b−
limtm,n = s.

It is known (see, e.g., [3]) that

b− limsm,n = s �⇒b− limsm,n = s(N,p) (1.21)

if and only if

lim
m,n→∞

Pk,n
Pm,n

= 0 ∀k (1.22)

and

lim
m,n→∞

Pm,�
Pm,n

= 0 ∀�. (1.23)

In particular, it follows from (1.22) that Pm,n→∞ as m,n→∞.

Of particular interest are the weighted means of multiplicative structure, that is,

when pk,� = pkq�, where (pk) and (q�) are sequences of nonnegative real numbers

with p0,q0 > 0. Given a double sequence (sm,n), we set

am,n := sm,n−sm−1,n−sm,n−1+sm−1,n−1, m,n= 0,1, . . . , (1.24)

with the agreement that sm,n = 0 if m< 0 or n< 0.

It is known (see [11]) that if

Pm :=
m∑
k=0

pk �→∞, Qn :=
n∑
�=0

q� �→∞ m,n �→∞, (1.25)

then the pair of conditions

sup
n≥0

∣∣∣∣∣
n∑
�=0

am,�

∣∣∣∣∣≤ c pm−1

Pm−1
∀m, sup

m≥0

∣∣∣∣∣
m∑
k=0

ak,n

∣∣∣∣∣≤ c qn−1

Qn−1
∀n, (1.26)

where c is some constant, is a Tauberian condition; that is, under conditions (1.25)

and (1.26), limsm,n = s(N,p) implies limsm,n = s. We observe that (1.26) can be con-

sidered to be a multiplicative version of the Tauberian condition (1.7). However, am,n
=O(pm−1qn−1/Pm−1Qn−1) (compare (1.7)) is not a Tauberian condition, as it has been

shown in [5] for the (C,1,1)-mean.
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2. Main results. In the sequel we will need the following notations. Letm, n, µ, ν be

nonnegative integers and set

aµ(n) :=
n∑
ν=0

aµ,ν , bν(m) :=
m∑
µ=0

aµ,ν , (2.1)

where aµ,ν is defined in (1.24). Clearly, we have

aµ(n) := sµ,n−sµ−1,n, bν(m) := sm,ν−sm,ν−1. (2.2)

Furthermore, set

pk(n) :=
n∑
ν=0

pk,ν , q�(m) :=
m∑
µ=0

pµ,�, k,� = 0,1, . . . . (2.3)

Now, the multivariate version of the Tauberian condition (1.4) reads as follows.

Theorem 2.1. If sm,n → s(N,p) and one of the following Tauberian conditions is

satisfied,

n∑
µ=1

Pµ−1,n max
�≤n

∣∣aµ(�)∣∣+
n∑
ν=1

Pm,ν−1

∣∣bν(m)∣∣= o(Pm,n) (2.4a)

or

n∑
µ=1

Pµ−1,n
∣∣aµ(n)∣∣+

n∑
ν=1

Pm,ν−1 max
k≤m

∣∣bν(k)∣∣= o(Pm,n), (2.4b)

then sm,n→ s.
The multivariate version of Tauberian condition (1.5) is more involved.

Theorem 2.2. Assume that (1.22) holds. If b− limsm,n = s(N,p) and one of the fol-

lowing Tauberian conditions is satisfied: for every ε > 0 there exist natural numbers µ0,

ν0 such that

∞∑
µ=µ0

Pµ−1,n

pµ−1(n)
max
�≤n

∣∣aµ(�)∣∣2 < ε for large n,

∞∑
ν=ν0

Pm,ν−1

qν−1(m)
∣∣bν(m)∣∣2 < ε for large m

(2.5a)

or

∞∑
µ=µ0

Pµ−1,n

pµ−1(n)
∣∣aµ(n)∣∣2 < ε for large n,

∞∑
ν=ν0

Pm,ν−1

qν−1(m)
max
k≤m

∣∣bν(k)∣∣2 < ε for large m,
(2.5b)

then b− limsm,n = s.
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Now, we turn to our main result which provides a necessary and sufficient Tauberian

condition to deduce the conclusion sm,n → s from sm,n → s(N,p). A result of this type

was already discussed in [7] for the (C,1,1)-mean and for more general weighted means

in [11], however, the assumptions there can be simplified and the proof in the present

paper is direct.

To formulate Theorem 2.5, we introduce the notation

�(m,n;k,�) :=
∑

m<µ≤k

∑
n<ν≤�

pµ,ν = Pk,�−Pk,n−Pm,�+Pm,n, (2.6)

where k > m and � > n. We consider a pair of nondecreasing sequences (λ1(m)
>m, λ2(n) > n :m,n= 1,2, . . .) of natural numbers such that

liminf
m,n→∞

Pλ1(m),λ2(n)

Pm,n
> 1, (2.7)

limsup
m,n→∞

Pλ1(m),λ2(n)

�(m,n;λ1(m),λ2(n)
) <∞, (2.8)

and denote by Λu the set of all such pairs of sequences.

Furthermore, we consider a pair of nondecreasing sequences (µ1(m) <m, µ2(n) <
n) of natural numbers such that

liminf
m,n→∞

Pm,n
Pµ1(m),µ2(n)

> 1,

limsup
m,n→∞

Pm,n
�(µ1(m),µ2(n);m,n

) <∞, (2.9)

and denote by Λ� the set of all such pairs of sequences.

We remind the reader that the limit infimum of a double sequence of real numbers

is defined by

liminf
m,n→∞ bm,n := lim

N→∞
inf

m,n≥N
bm,n, (2.10)

where the right-hand side may be −∞ or ∞. Obviously,

limsup
m,n→∞

bm,n =− liminf
m,n→∞

(−bm,n). (2.11)

Example 2.3. Put pm,n =m+n, then we have

Pm,n =
(

1
2

)
m(m+1)n+

(
1
2

)
n(n+1)m∼

(
1
2

)
nm(n+m), (2.12)

and a typical example of a sequence from Λu is λ1(m) = [λm], λ2(n) = [µn] with λ
and µ > 1 leading to

�(m,n;λ1(m),λ2(n)
)∼ (1

2

)
nm

(
m
(
λ2µ−λ2−µ+1

)+n(µ2λ−µ2−λ+1
))
. (2.13)

We cannot expect that (2.8) is always satisfied, since for example with pk,� = e−k� we

have Pm,n =n+m+o(1). However, in this case (1.22) is not satisfied.
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Lemma 2.4. Under (1.22), the sets Λu and Λ� are not empty.

Proof. Given m0, n0, we can find by (1.22) integers m ≥m0, n ≥ n0 large enough

such that Pm,n ≥ 3Pm0,n and Pm,n ≥ 3Pm,n0 which implies that �(m0,n0,m,n) ≥
(1/3)Pm,n.

The next result contains a multivariate version of the Tauberian conditions in (1.11).

Theorem 2.5. Assume that the sets Λu and Λ� are nonempty and sm,n is a double

sequence of real numbers. Then, sm,n → s(N,p) implies sm,n → s if and only if both of

the following conditions are satisfied:

inf
Λu

limsup
m,n→∞

1
�(m,n : λ1(m),λ2(n)

) ∑
m<k≤λ1(m)

∑
n<�≤λ2(n)

pk,�
(
sk,�−sm,n

)≤ 0, (2.14a)

inf
Λ�

limsup
m,n→∞

1
�(µ1(m),µ2(n);m,n

) ∑
µ1(m)<k≤m

∑
µ2(n)<�≤n

pk,�
(
sm,n−sk,�

)≤ 0. (2.14b)

Remarks 2.6. (i) The conditions in (2.14) are obviously satisfied if

inf
Λu

limsup
m,n→∞

max
m<k≤λ1(m)
n<�≤λ2(n)

(
sk,�−sm,n

)≤ 0, (2.15a)

inf
Λ�

limsup
m,n→∞

max
µ1(m)<k≤m
µ2(n)<�≤n

(
sm,n−sk,�

)≤ 0. (2.15b)

(ii) In the special (but important) case of multiplicative weights pk,� = pkq� with se-

quences p, q as before, conditions (2.7) and (2.8) are satisfied if the sequences (λ1(m))
and (λ2(n)) of natural numbers are chosen such that

liminf
m→∞

Pλ1(m)

Pm
> 1, liminf

n→∞
Qλ2(n)

Qn
> 1. (2.16)

Then, condition (2.7) is obviously satisfied. In addition, we have

Pλ1(m),λ2(n)

�(m,n;λ1(m),λ2(n)
) = {(1− Pm

Pλ1(m)

)(
1− Qn

Qλ2(n)

)}−1

, (2.17)

whence it follows that

limsup
m,n→∞

Pλ1(m),λ2(n)

�(m,n;λ1(m),λ2(n)
)

=
{(

1− limsup
m→∞

Pm
Pλ1(m)

)(
1− limsup

n→∞
Qn
Qλ2(n)

)}−1

<∞,
(2.18)

which means that this time (2.8) is automatically satisfied.

(iii) In the special case when

lim
m→∞

Pm+1

Pm
= 1, lim

n→∞
Qn+1

Qn
= 1, (2.19)
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we may replace (2.14a) by

inf
ρ>1

limsup
m,n→∞

1(
Pm(ρ)−Pm

)(
Qn(ρ)−Qn

) ∑
m<k≤m(ρ)

∑
n<�≤n(ρ)

pkq�
(
sk,�−sm,n

)≤ 0, (2.20)

where

m(ρ) :=min
{
k >m :

Pk
Pm

≥ ρ
}
, (2.21)

and n(ρ) is defined analogously based on (Qn). A similar reformulation of condition

(2.14b) reads as follows:

inf
0<σ<1

limsup
m,n→∞

1(
Pm−Pm(σ)

)(
Qn−Qn(σ)

) ∑
m(σ)<k≤m

∑
n(σ)<�≤n

pkq�
(
sm,n−sk,�

)≤ 0,

(2.22)

where

m(σ) :=max
{
k <m :

Pk
Pm

≤ σ
}

(2.23)

and n(σ) is defined analogously based on (Qn).
(iv) It is clear that (2.20) and (2.22) are implied by the following conditions of slow

increase:

lim
ρ→1+

limsup
m,n→∞

max
m<k≤m(ρ)
n<�≤n(ρ)

(
sk,�−sm,n

)≤ 0,
(2.24a)

lim
σ→1−

limsup
m,n→∞

max
m(σ)<k≤m
n(σ)<�≤n

(
sm,n−sk,�

)≤ 0,
(2.24b)

respectively. Now, one can verify that the last two conditions are equivalent. Further-

more, all particular cases discussed in [11] can be deduced from (2.24a).

Finally, the counterpart of Theorem 2.5 when (sm,n) is a double sequence of complex

numbers reads as follows.

Theorem 2.7. Assume that the sets Λu and Λ� are nonempty. Then, sm,n → s(N,p)
implies sm,n→ s if and only if one of the following conditions is satisfied:

inf
Λu

limsup
m,n→∞

∣∣∣∣∣ 1
�(m,n;λ1(m),λ2(n)

) ∑
m<k≤λ1(m)

∑
n<�≤λ2(n)

pk,�
(
sk,�−sm,n

)∣∣∣∣∣= 0 (2.25a)
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or

inf
Λ�

limsup
m,n→∞

∣∣∣∣∣ 1
�(µ1(m),µ2(n);m,n

) ∑
µ1(m)<k≤m

∑
µ2(n)<�≤n

pk,�
(
sm,n−sk,�

)∣∣∣∣∣= 0.

(2.26a)

Remark 2.8. The following special case may be called the condition of slow oscilla-

tion. If

inf
Λu

limsup
m,n→∞

max
m<k≤λ1(m)
n<�≤λ2(n)

∣∣sk,�−sm,n∣∣= 0, (2.27)

then condition (2.25a) is obviously satisfied. The symmetric counterpart of (2.27) from

which (2.26a) follows can be formulated analogously.

Originally, these conditions were considered in the case of multiplicative weights in

[2, 11].

3. Proofs

Proof of Theorem 2.1. It hinges on the following decomposition. By (2.1), we may

write ∣∣Pm,n(sm,n−tm,n)∣∣
=
∣∣∣∣∣
m∑
k=0

n∑
�=0

pk,�
(
sm,n−sk,�

)∣∣∣∣∣
=
∣∣∣∣∣
m∑
k=0

n∑
�=0

pk,�

{ m∑
µ=k+1

�∑
ν=0

aµ,ν+
m∑
µ=0

n∑
ν=�+1

aµ,ν

}∣∣∣∣∣
=
∣∣∣∣∣
m∑
k=0

n∑
�=0

pk,�

{ m∑
µ=k+1

aµ(�)+
n∑

ν=�+1

bν(m)
}∣∣∣∣∣

≤
m∑
µ=1

Pµ−1,n max
1≤�≤n

∣∣aµ(�)∣∣+
n∑
ν=1

Pm,ν−1

∣∣bν(m)∣∣.

(3.1)

Thus, (2.4a) implies that sm,n−tm,n→ 0 as m,n→∞.

In the case of condition (2.4b), the above reasoning works if we use the decomposition

m∑
k=0

n∑
�=0

pk,�
(
sm,n−sk,�

)= m∑
k=0

n∑
�=0

pk,�

{ m∑
µ=k+1

n∑
ν=0

aµ,ν+
k∑
µ=0

n∑
ν=�+1

aµ,ν

}
. (3.2)

Proof of Theorem 2.2. Assume that condition (2.5a) is satisfied. By the Cauchy

inequality and (2.3), we have

m∑
µ=1

Pµ−1,n max
1≤�≤n

∣∣aµ(�)∣∣

≤
{ m∑
µ=1

Pµ−1,n

pµ−1(n)
max

1≤�≤n

∣∣aµ(�)∣∣2
n∑
µ=1

Pµ−1,npµ−1(n)
}1/2

≤ cPm,n,
(3.3)
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where c is a constant. Similarly, we have

n∑
ν=1

Pm,ν−1

∣∣bν(m)∣∣≤ cPm,n. (3.4)

Taking into account (3.1) and the boundedness of the double sequence (tm,n), from the

inequalities above we conclude that (sm,n) is also bounded, that is,

∣∣sm,n∣∣≤K ∀m,n= 0,1, . . . (3.5)

with some constant K. By (2.2), it follows that

∣∣aµ(�)∣∣≤ 2K,
∣∣bν(k)∣∣≤ 2K ∀µ,ν,k,� = 0,1, . . . . (3.6)

Now, we can proceed as follows. For any ε > 0, choose natural numbers µ0, ν0 according

to the assumptions in Theorem 2.2 and follow the estimations above to obtain

{µ0−1∑
µ=1

+
m∑

µ=µ0

}
Pµ−1,n max

1≤�≤n

∣∣aµ(�)∣∣

≤ (µ0−1
)
Pµ0−2,n2K+

{ ∞∑
µ=µ0

Pµ−1,n

pµ(n)
max

1≤�≤n

∣∣aµ(�)∣∣2
m∑
µ=1

Pµ−1,npµ−1(n)
}1/2

≤ Pm,n
{(
µ0−1

)
2K
Pµ0−2,n

Pm,n
+ε1/2

}
≤ 2Pm,nε1/2,

(3.7)

provided that m, n are large enough (observe (1.22)). Similarly, we obtain

{ν0−1∑
ν=1

+
n∑

ν=ν0

}
Pm,ν−1

∣∣bν(m)∣∣≤ 2Pm,nε1/2, (3.8)

provided again that m, n are large enough. Combining (3.1), (3.7), and (3.8) yields

∣∣sm,n−tm,n∣∣≤ 4ε1/2, (3.9)

which completes the proof since ε was arbitrary. The proof is analogous if (2.5b) is

satisfied.

For the proof of Theorem 2.5, we need the following auxiliary result which is inter-

esting in itself.

Lemma 3.1. If sm,n→ s(N,p), then for any pair of sequences (λ1(m)),(λ2(n))∈Λu,

lim
m,n→∞

1
�(m,n;λ1(m),λ2(n)

) ∑
m<k≤λ1(m)

∑
n<�≤λ2(n)

pk,�sk,� = s, (3.10)
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and for any pair of sequences (µ1(m)),(µ2(n))∈Λ�,

lim
m,n→∞

1
�(µ1(m),µ2(n);m,n

) ∑
µ1(m)<k≤m

∑
µ2(n)<�≤n

pk,�sk,� = s. (3.11)

Proof. By definition, we may write that

∑
m<k≤λ1(m)

∑
n<�≤λ2(n)

pk,�sk,�

= Pλ1(m),λ2(n)tλ1(m),λ2(n)−Pλ1(m),ntλ1(m),n−Pm,λ2(n)tm,λ2(n)+Pm,ntm,n.
(3.12)

Hence, a simple rearrangement gives

1
�(m,n;λ1(m),λ2(n)

) ∑
m<k≤λ1(m)

∑
n<�≤λ2(n)

pk,�sk,�

= tλ1(m),λ2(n)+
1

�(m,n;λ1(m),λ2(n)
){(Pλ1(m),n−Pm,n

)(
tλ1(m),λ2(n)−tλ1(m),n

)
+(Pm,λ2(n)−Pm,n

)(
tλ1(m),λ2(n)−tm,λ2(n)

)
+Pm,n

(
tλ1(m),λ2(n)−tλ1(m),n−tm,λ2(n)+tm,n

)}
.

(3.13)

It remains to observe that by (2.6) we have

Pλ1(m),n−Pm,n ≤ Pλ1(m),λ2(n)−�
(
m,n;λ1(m),λ2(n)

)
, (3.14)

whence, by (2.8) we obtain

limsup
m,n→∞

Pλ1(m),n−Pm,n
�(m,n;λ1(m),λ2(n)

) <∞; (3.15)

and similarly

limsup
m,n→∞

Pm,λ2(n)−Pm,n
�(m,n;λ1(m),λ2(n)

) <∞. (3.16)

Combining the last two inequalities with (3.13) and using the convergence of (tm,n), we

conclude (3.10).

The proof of (3.11) is similar.

The following corollary is an immediate consequence of Lemma 3.1 by taking (λ1(m),
λ2(n))= (m+1,n+1).

Corollary 3.2. If

liminf
m,n→∞

pm,n
Pm,n

> 0, (3.17)

then sm,n→ s(N,p) if and only if sm,n→ s.
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Proof of Theorem 2.5. Necessity. It follows directly from Lemma 3.1 and the con-

vergence of (sm,n). Even more is true, for every pair (λ1(m),λ2(n))∈Λu, we have

lim
m,n→∞

1
�(m,n;λ1(m),λ2(n)

) ∑
m<k≤λ1(m)

∑
n<�≤λ2(n)

pk,�
(
sk,�−sm,n

)= 0. (3.18)

An analogous limit relation holds for every pair (µ1(m),µ2(n))∈Λ�.
Sufficiency. Given ε > 0, by (2.14a) there exists a pair (λ1(m),λ2(n))∈Λu such that

limsup
m,n→∞

1
�(m,n;λ1(m),λ2(n)

) ∑
m<k≤λ1(m)

∑
n<�≤λ2(n)

pk,�
(
sk,�−sm,n

)≤ ε. (3.19)

By Lemma 3.1, we conclude that

s− liminf
m,n→∞ sm,n ≤ ε. (3.20)

In a similar way, by (2.14b) and Lemma 3.1, we conclude

limsup
m,n→∞

sm,n−s ≤ ε. (3.21)

Since ε > 0 was arbitrary, (3.20) together with (3.21) yield sm,n→ s as m,n→∞.

Proof of Theorem 2.7. It is omitted since it follows similar arguments as the

proof of Theorem 2.5.
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