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ON THE LEBEDEV TRANSFORMATION IN HARDY’S SPACES
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We establish the inverse Lebedev expansion with respect to parameters and arguments of
the modified Bessel functions for an arbitrary function from Hardy’s spaceH2,A, A> 0. This
gives another version of the Fourier-integral-type theorem for the Lebedev transform. The
result is generalized for a weighted Hardy space Ĥ2,A ≡ Ĥ2((−A,A);|Γ(1+Rez+iτ)|2dτ),
0 < A < 1, of analytic functions f(z),z = Rez+ iτ , in the strip |Rez| ≤ A. Boundedness
and inversion properties of the Lebedev transformation from this space into the space
L2(R+;x−1dx) are considered. When Rez = 0, we derive the familiar Plancherel theorem
for the Kontorovich-Lebedev transform.

2000 Mathematics Subject Classification: 44A15, 42B30, 33C10.

1. Introduction. In 1947 Lebedev [4] proved the following expansion of an arbitrary

function g in terms of the modified Bessel functions

g(x)= 1
πi

∫ α+i∞
α−i∞

µKµ(x)dµ
∫∞

0

g(t)
t
Iµ(t)dt, x > 0. (1.1)

Here Kµ(x), Iµ(x) are modified Bessel functions [2, 5] of the complex index µ =α+iτ ,

α > 1, x > 0, g is an arbitrary function of bounded variation in any finite interval and

it belongs to the weighted Lebesgue space L1(R+;x−1Iα(x)dx). The outer integral in

(1.1) is understood, as usual, in a principal value sense.

Our object here is to study the inverse Lebedev expansion

f(z)= 1
πi

∫∞
0

Iz(t)
t
dt
∫ α+i∞
α−i∞

µKµ(t)f (µ)dµ, Rez > |α|, (1.2)

in the Hardy space H2,A, A> 0 [3, 6], which consists of those functions f(z),z = Rez+
iτ , analytic in the right half-plane Rez >−A with the property

‖f‖H2,A = sup
Rez>−A

(∫∞
−∞

∣∣f(Rez+iτ)∣∣2dτ
)1/2

<∞. (1.3)

Expansion (1.2) generates the pair of Lebedev integral transformations

g(x)= 1
πi

∫ α+i∞
α−i∞

µKµ(x)f(µ)dµ, (1.4)

f(z)=
∫∞

0

Iz(t)
t
g(t)dt, (1.5)
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with respect to an index and an argument of the modified Bessel functions. For 0<A<1,

we extend Lebedev’s transformation on the generalized Hardy space

Ĥ2,A ≡ Ĥ2

(
(−A,A);∣∣Γ(1+Rez+iτ)∣∣2dτ

)
⊃H2,A (1.6)

of analytic functions f(z) in the strip |Rez| ≤A with the condition

‖f‖Ĥ2,A
= sup
|Rez|≤A

(∫∞
−∞

∣∣Γ(1+Rez+iτ)∣∣2∣∣f(Rez+iτ)∣∣2dτ
)1/2

<∞, (1.7)

where Γ(z) is Euler’s gamma function. The boundedness theorems of Plancherel type

are proved in these spaces. In particular, the case Rez = 0 in (1.7) leads to the Plancherel

theorem for the familiar Kontorovich-Lebedev transform (cf. [9, Chapter 2]).

We note (see [2, 7, 9]) that the modified Bessel functions Kµ(z), Iµ(z) are linear inde-

pendent solutions of the Bessel differential equation

z2d2u
dz2

+zdu
dz

−(z2+µ2)u= 0. (1.8)

They can be given by the formulas

Iµ(z)=
∞∑
k=0

(z/2)µ+2k

Γ(µ+k+1)k!
, (1.9)

Kµ(z)= π
2sinπµ

[
I−µ(z)−Iµ(z)

]
, (1.10)

when µ ≠ 0,±1,±2, . . . , and Kn(z)= limµ→nKµ(z), n= 0,±1,±2, . . . . The function Kµ(z)
is also called the MacDonald function and has the following integral representations

(cf. [2, 9]):

Kµ(z)=
∫∞

0
e−zcosht coshµtdt = 1

2

∫∞
0
e−z(t+t

−1)/2tµ−1dt. (1.11)

Useful relations are [2, 7]

2µKµ(z)= z
[
Kµ+1(z)−Kµ−1(z)

]
, (1.12)∫∞

0
Iξ(x)Kµ(x)

dx
x
= 1
ξ2−µ2

, Reξ > |Reµ|, (1.13)

dn

dzn
Kµ(z)= (−1)n

2n

n∑
k=0

(
n
k

)
Kµ−n+2k(z). (1.14)

These functions have the asymptotic behavior [2, 5]

Kµ(z)=
(
π
2z

)1/2
e−z

[
1+O

(
1
z

)]
, z �→∞, (1.15)

Iµ(z)= ez√
2πz

[
1+O

(
1
z

)]
, z �→∞, (1.16)
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and near the origin

Kµ(z)=O
(
z−|Reµ|), z �→ 0, (1.17)

K0(z)=− logz+O(1), z �→ 0, (1.18)

Iµ(z)=O
(
zReµ), µ �= 0, z �→ 0. (1.19)

Meanwhile asymptotic formulas (1.15), (1.16), (1.17), (1.18), (1.19) can be written in a

more explicit form. In particular, formula (1.15) has the following interpretation (cf. [5,

Section 6.2.7, formula (38)]):

Kµ(z)∼
(
π
2z

)1/2
e−z2F0

(
1
2
+µ, 1

2
−µ;− 1

2z

)

=
(
π
2z

)1/2
e−z

∞∑
n=0

(
1
2
+µ

)
n

(
1
2
−µ

)
n

(−1)n

n!(2z)n
, z �→∞,

(1.20)

where 2F0(a,b;z) is the generalized hypergeometric function and (a)n = a(a+1)···
(a+n−1) is Pochhammer’s symbol [1]. We note that according to [2, Chapter 7] the

equivalence sign in (1.20) means that for any fixed µ and for each M = 1,2, . . . , we have

the exact equality

Kµ(z)=
(
π
2z

)1/2
e−z


M−1∑
n=0

(
1
2
+µ

)
n

(
1
2
−µ

)
n

(−1)n

n!(2z)n
+O(|z|−M)


, z �→∞. (1.21)

We will use below the properties of the Mellin transform pair [8], which is defined by

the formulas

f�(s)=
∫∞

0
f(x)xs−1dx,

f(x)= 1
2πi

∫ γ+i∞
γ−i∞

f�(s)x−sds, s = γ+it, x > 0,
(1.22)

where integrals (1.22) exist as Lebesgue integrals or, in particular, in mean with respect

to the norm of spaces L2(γ− i∞,γ+ i∞) and L2(R+;x2γ−1), respectively. In the latter

case, the Parseval equality of the form

∫∞
0

∣∣f(x)∣∣2x2γ−1dx = 1
2π

∫∞
−∞

∣∣f�(γ+it)∣∣2dt (1.23)

holds true.

2. Lebedev’s transform in Hardy’s spaces. We begin with the following.

Theorem 2.1. Let f ∈H2,A. Then expansion (1.2) is true for all z such that Rez > |α|,
α>−A, where integrals with respect to µ and t exist in Lebesgue’s sense.

Proof. First we show under conditions of the theorem that the inner integral in

(1.2) exists as a Lebesgue integral. Then we will obtain an estimate, which will provide
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the absolute and uniform convergence by Rez ≥α0 > |α| of the outer integral in (1.2).

In fact, invoking Schwarz’s inequality we have

∣∣∣∣
∫ α+i∞
α−i∞

µKµ(t)
t

f (µ)dµ
∣∣∣∣≤

∫∞
−∞

∣∣∣∣(α+iτ)Kα+iτ(t)t
f (α+iτ)

∣∣∣∣dτ
≤ ‖f‖H2,A

(∫∞
−∞

∣∣∣∣(α+iτ)Kα+iτ(t)t

∣∣∣∣
2

dτ
)1/2

.
(2.1)

We treat the latter integral by using integral representations (1.11) of the MacDonald

function, relation (1.12), and the Parseval equality (1.23) for the Mellin transform. In-

deed, we deduce

(α+iτ)Kα+iτ(t)
t

= 1
2

[
K1+α+iτ(t)−Kα+iτ−1(t)

]

= 1
4

∫∞
0
e−t(y+y

−1)/2(y−y−1)yα+iτ−1dy.
(2.2)

Hence taking into account the reciprocal formulas of the Mellin transform (1.22) via

(1.23), and (1.11), we find

∫∞
−∞

∣∣∣∣(α+iτ)Kα+iτ(t)t

∣∣∣∣
2

dτ = 1
16

∫∞
−∞

∣∣∣∣
∫∞

0
e−t(y+y

−1)/2(y−y−1)yα+iτ−1dy
∣∣∣∣

2

dτ

= π
8

∫∞
0
e−t(y+y

−1)(y−y−1)2y2α−1dy

= π
4

[
K2(α+1)(2t)+K2(α−1)(2t)−2K2α(2t)

]
, α∈R.

(2.3)

Therefore combining with (2.1) we obtain the estimate

∫∞
−∞

∣∣∣∣(α+iτ)Kα+iτ(t)t
f (α+iτ)

∣∣∣∣dτ
≤
√
π
2
‖f‖H2,A

(
K2(α+1)(2t)+K2(α−1)(2t)−2K2α(2t)

)1/2.
(2.4)

Hence by using (2.4) we derive the absolute convergence of the iterated integral (1.2)

under condition Rez > |α|. In fact, it will follow from the convergence of the integral

∫∞
0

∣∣Iz(t)∣∣(K2(α+1)(2t)+K2(α−1)(2t)−2K2α(2t)
)1/2dt <∞, (2.5)

where Rez > |α|. We apply asymptotic formulas (1.17), (1.18) and expansion (1.21) in

terms of the generalized hypergeometric series (see also [5]) for the modified Bessel

functions. Now it is not difficult to obtain principal asymptotic terms near the origin

and at infinity for the latter combination of the MacDonald functions in (2.5). Indeed,

for the case of infinity it is sufficient to put in (1.21) M = 2. Precisely, we find

(
K2(α+1)(2t)+K2(α−1)(2t)−2K2α(2t)

)1/2 =O(t−|α|−1), t �→ 0+,
(
K2(α+1)(2t)+K2(α−1)(2t)−2K2α(2t)

)1/2 = π
1/4

t3/4 e
−t
(

1+O
(

1
t

))
, t �→+∞,

(2.6)
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where the corresponding constant under the sign O is an absolute one. Consequently,

invoking asymptotic relations (1.16), (1.19), we easily establish the convergence of the

integral (2.5) when Rez > |α| and its uniform convergence by Rez ≥ α0 > |α|. Hence

by virtue of Fubini’s theorem we invert the order of integration in the right-hand side

of (1.2). Calculating the integral with respect to t by (1.13), we get the representation

1
πi

∫∞
0

Iz(t)
t
dt
∫ α+i∞
α−i∞

µKµ(t)f (µ)dµ = 1
πi

∫ α+i∞
α−i∞

µf(µ)dµ
z2−µ2

. (2.7)

Now in order to complete the proof of Theorem 2.1 we will prove that the latter integral

is f(z). For this we use the theory of Cauchy’s integrals. We write the right-hand side

of (2.7) in the form

1
πi

∫ α+i∞
α−i∞

µf(µ)dµ
z2−µ2

= 1
2πi

∫ α−i∞
α+i∞

2µf(µ)dµ
(µ−z)(µ+z) . (2.8)

However, since Rez > |α| and B,C > 0 are large enough, then by Cauchy’s theorem

we have

f(z)= 1
2πi

[∫ α−iB
α+iB

+
∫ C−iB
α−iB

+
∫ C+iB
C−iB

+
∫ α+iB
C+iB

]
2µf(µ)dµ
(µ−z)(µ+z) . (2.9)

By a further integration,

f(z)= 1
2πi

∫ C+1

C
dB
[∫ α−iB

α+iB
+
∫ C−iB
α−iB

+
∫ C+iB
C−iB

+
∫ α+iB
C+iB

]
2µf(µ)dµ
(µ−z)(µ+z)

= J1+J2+J3+J4.
(2.10)

Hence we choose C such that |z|<C/√2. Then

∣∣J2

∣∣= 1
π

∣∣∣∣
∫ C+1

C
dB

∫ C−iB
α−iB

µf(µ)dµ
µ2−z2

∣∣∣∣= 1
π

∣∣∣∣
∫ C
α
du

∫ C+1

C

(u−iB)f(u−iB)dB
(u−iB)2−z2

∣∣∣∣
≤ 1
π

∫ C
α
du

(∫ C+1

C

∣∣f(u−iB)∣∣2dB
)1/2(∫ C+1

C

|u−iB|2dB∣∣(u−iB)2−z2
∣∣2

)1/2

≤ 1
π

sup
x>−A

(∫ C+1

C

∣∣f(x−iB)∣∣2dB
)1/2∫ C

α
du

(∫ C+1

C

|u−iB|2dB∣∣|u−iB|2−|z|2∣∣2

)1/2

.

(2.11)

But

∫ C
α
du

(∫ C+1

C

|u−iB|2dB∣∣|u−iB|2−|z|2∣∣2

)1/2

≤
∫ C
α
du

(∫ C+1

C

(
u2+B2

)
dB(

u2+B2/2
)2

)1/2

= 2
∫ C
α

du√|u|
(∫ (C+1)/|u|

C/|u|

(
1+v2

)
dv(

2+v2
)2

)1/2

≤ 2
∫ C
α

√
1
|u| arctan

|u|
u2+C(C+1)

du≤ 2

√
arctan

1
2C

∫ C
α

du√|u|
≤
√

2
C

∫ C
−C

du√|u| = 4
√

2.

(2.12)
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Consequently we obtain

∣∣J2

∣∣≤ 4
√

2
π

sup
x>−A

(∫ C+1

C

∣∣f(x−iB)∣∣2dB
)1/2

�→ 0, C �→∞. (2.13)

Similarly,

∣∣J4

∣∣= 1
π

∣∣∣∣
∫ C+1

C
dB

∫ α+iB
C+iB

µf(µ)dµ
µ2−z2

∣∣∣∣ �→ 0, C �→∞. (2.14)

Further,

∣∣J3

∣∣= 1
π

∣∣∣∣
∫ C+1

C
dB

∫ C+iB
C−iB

µf(µ)dµ
µ2−z2

∣∣∣∣≤ 1
π

∫∞
−∞
|C+iτ|∣∣f(C+iτ)∣∣dτ∣∣(C+iτ)2−z2

∣∣
≤ 1
π
‖f‖H2,A

(∫∞
−∞

|C+iτ|2dτ∣∣(C+iτ)2−z2
∣∣2

)1/2

≤ 1
π
‖f‖H2,A

(∫∞
−∞

|C+iτ|2dτ∣∣|C+iτ|2−C2/2
∣∣2

)1/2

= 2

π
√
C
‖f‖H2,A

(∫∞
−∞
(1+u2)du(

1+2u2
)2

)1/2

≤ 2√
πC

‖f‖H2,A �→ 0, C �→∞.
(2.15)

Thus

f(z)= lim
C→∞

1
πi

∫ C+1

C
dB

∫ B
−B
(α+iτ)f(α+iτ)dτ

z2−(α+iτ)2

= lim
C→∞

[
1
πi

∫ C
−C
(α+iτ)f(α+iτ)dτ

z2−(α+iτ)2 + 1
πi

∫ −C
−C−1

(C+1+τ)(α+iτ)f(α+iτ)dτ
z2−(α+iτ)2

+ 1
πi

∫ C+1

C

(C+1−τ)(α+iτ)f(α+iτ)dτ
z2−(α+iτ)2

]
.

(2.16)

However,

1
π

∣∣∣∣
∫ C+1

C

(C+1−τ)(α+iτ)f(α+iτ)dτ
z2−(α+iτ)2

∣∣∣∣
≤ 1
π
‖f‖H2,A

(∫ C+1

C

(C+1−τ)2|α+iτ|2dτ∣∣z2−(α+iτ)2∣∣2

)1/2

.
(2.17)

Further, since |z|<C/√2, we have

(∫ C+1

C

(C+1−τ)2|α+iτ|2dτ∣∣z2−(α+iτ)2∣∣2

)1/2

≤
(∫ C+1

C

(C+1−τ)2(α2+τ2
)
dτ(

α2+τ2/2
)2

)1/2

≤ 2
(∫ C+1

C

(C+1−τ)2dτ
α2+τ2

)1/2

= 2
(
(C+1)

∫ 1

C/(C+1)

(1−v)2dv
α2/(C+1)2+v2

)1/2
≤ 2
C
.

(2.18)
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Combining with (2.17) we get that the integral in its left-hand side tends to zero, when

C →∞. In the same manner we derive

lim
C→∞

1
πi

∫ −C
−C−1

(C+1+τ)(α+iτ)f(α+iτ)dτ
z2−(α+iτ)2 = 0. (2.19)

Thus from (2.16) and (2.7) we arrive at the expansion (1.2) and complete the proof of

Theorem 2.1.

Corollary 2.2. The Lebedev transformation (1.4) is a bounded operator from H2,A

into the space L1(R+;|Iβ(t)|t−1dt), where Reβ > 0.

Proof. In fact, by taking Reβ > |α| from estimates (2.1), (2.5) we find

‖g‖L1(R+ ;|Iβ(t)|t−1dt) =
∫∞

0

∣∣Iβ(t)∣∣
∣∣g(t)∣∣
t

dt ≤ const.‖f‖H2,A . (2.20)

We consider Lebedev’s transformation (1.4) when f belongs to Ĥ2,A with the norm

(1.7). The main result is established by the following.

Theorem 2.3. Let an odd function f ∈ Ĥ2,A, 0 < A < 1. Then Lebedev’s transform

(1.4) belongs to L2(R+;x−1dx) and satisfies the following identity:

∫∞
0

∣∣g(x)∣∣2dx
x
=
∫ +∞
−∞

Rez−iτ
sinπ(Rez−iτ)f(Rez+iτ)f(−Rez+iτ)dτ. (2.21)

Moreover, for almost all x > 0, g(x) is defined by the formula

g(x)= 1
πi

d
dx

∫ α+i∞
α−i∞

µ
∫ x

0
Kµ(y)f(µ)dydµ, |α|<A. (2.22)

Finally, if g ∈ L2(R+;t−1dt)∩L1((0,1);t−A−1dt), then the reciprocal inversion is of the

form

f(z)=−sinπz
π

∫∞
0
Kz(t)

g(t)dt
t

, |Rez|<A. (2.23)

Proof. We prove that when f ∈H2,A, then the corresponding Lebedev transforma-

tion g is a function from L2(R+;x−1dx). In order to proceed with this we show that for

all x > 0,

∫ α+i∞
α−i∞

µKµ(x)f(µ)dµ =
∫ i∞
−i∞

µKµ(x)f(µ)dµ. (2.24)

Then the right-hand side of (2.24) is the Kontorovich-Lebedev transform of if (iτ) ∈
L2(R)⊂ L2(R;τdτ/sinhπτ), which belongs to L2(R+;x−1dx) due to a Plancherel type

theorem (see, e.g., [9, 10]).

So, appealing to representations (1.11) we find that the integrand in (2.24) is analytic

by µ in the strip |Reµ|<A for each x > 0. Therefore by Cauchy’s theorem we obtain

∫ C+1

C
dB
[∫ α−iB

α+iB
+
∫ −iB
α−iB

+
∫ iB
−iB
+
∫ α+iB
iB

]
µKµ(x)f(µ)dµ = 0. (2.25)



3610 SEMYON B. YAKUBOVICH

Hence we treat each integral in (2.25) in a similar manner to that in the proof of Theorem

2.1 by using Schwarz’s inequality and the above estimates for the last integral in (2.1).

Then it is not difficult to establish the following relations:

lim
C→∞

∫ C+1

C
dB

∫ −iB
α−iB

µKµ(x)f(µ)dµ = 0,

lim
C→∞

∫ C+1

C
dB

∫ α+iB
iB

µKµ(x)f(µ)dµ = 0,

lim
C→∞

∫ C+1

C
dB

∫ α−iB
α+iB

µKµ(x)f(µ)dµ =
∫ α−i∞
α+i∞

µKµ(x)f(µ)dµ,

lim
C→∞

∫ C+1

C
dB

∫ +iB
−iB

µKµ(x)f(µ)dµ =
∫ i∞
−i∞

µKµ(x)f(µ)dµ,

(2.26)

which lead to equality (2.24). Similarly it is not difficult to verify that for any f ∈H2,A, we

can shift a contour of integration within the strip |Reµ| < A for the integral involving

the modified Bessel function (1.9). In particular, analogously to (2.25), we write

∫ C+1

C
dB
[∫ −α−iB

−α+iB
+
∫ α−iB
−α−iB

+
∫ α+iB
α−iB

+
∫ −α+iB
α+iB

]
µ

sinπµ
I±µ(x)f(µ)dµ = 0. (2.27)

When C →∞, we derive the equality

∫ α+i∞
α−i∞

µ
sinπµ

I±µ(x)f(µ)dµ =
∫ −α+i∞
−α−i∞

µ
sinπµ

I±µ(x)f(µ)dµ, |Reµ|<A. (2.28)

Now we prove (2.21) for f ∈H2,A. We note that the case Rez = 0 corresponds to the

Parseval equality for the Kontorovich-Lebedev transform [9, 10]. Hence assuming that

0< Rez < A (−A< Rez < 0) by virtue of Theorem 2.1, we substitute in the right-hand

side of (2.21) instead of f(Rez+ iτ) (f (−Rez+ iτ)) its value by the transformation

(1.5). Then it becomes

∫ +∞
−∞

Rez−iτ
sinπ(Rez−iτ)f(Rez+iτ)f(−Rez+iτ)dτ

=
∫ +∞
−∞

Rez−iτ
sinπ(Rez−iτ)f(−Rez+iτ)

∫∞
0

IRez−iτ(t)
t

g(t)dtdτ,
(2.29)

where g(t) is defined by (1.4). We motivate the change of the order of integration in

the right-hand side of (2.29) by Fubini’s theorem via the estimate (see Corollary 2.2)

∫∞
−∞

∣∣∣∣ Rez−iτ
sinπ(Rez−iτ)f(−Rez+iτ)

∣∣∣∣
∫∞

0

∣∣IRez−iτ(t)
∣∣

t
∣∣g(t)∣∣dt

≤ const.
(∫∞

−∞

∣∣∣∣ Rez−iτ
sinπ(Rez−iτ)

∣∣∣∣
2

dτ
)1/2

‖f‖2
H2,A <∞, 0< Rez <A< 1.

(2.30)

Inverting the order of integration we treat the inner integral by using relation (1.10).

Hence taking into account the relations (2.28) and since f(z) = −f(−z), |Rez| < A,
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we obtain∫∞
−∞

Rez−iτ
sinπ(Rez−iτ) IRez−iτ(t)f (−Rez+iτ)dτ

= 1
πi

∫ Rez+i∞

Rez−i∞
πz̄

2sinπz̄
Iz̄(t)

[
f(−z̄)−f(z̄)]dz

= 1
πi

∫ Rez+i∞

Rez−i∞
πz

2sinπz
Iz(t)

[
f(−z)−f(z)]dz

= 1
πi

∫ −Rez+i∞

−Rez−i∞
πz

2sinπz
I−z(t)f (z)dz− 1

πi

∫ Rez+i∞

Rez−i∞
πz

2sinπz
Iz(t)f (z)dz

= 1
πi

∫ Rez+i∞

Rez−i∞
πz

2sinπz
[
I−z(t)−Iz(t)

]
f(z)dz

= 1
πi

∫ Rez+i∞

Rez−i∞
zKz(t)f (z)dz = g(t)

(2.31)

and therefore we arrive at the left-hand side of equality (2.21). Since the space H2,A is

dense in Ĥ2,A, then for each f ∈ Ĥ2,A we have f(z)= limn→∞fn(z), where fn ∈H2,A and

the latter limit is with respect to the norm (1.7). Furthermore, by a well-known relation

for the gamma function (cf., [1]),

πz
sinπz

= Γ(1+z)Γ(1−z), (2.32)

and invoking Schwarz’s inequality we have from (2.21) correspondingly,

∫∞
0

∣∣gn(x)−gm(x)∣∣2dx
x

= 1
π

∣∣∣∣
∫ Rez+i∞

Rez−i∞
πz̄

sinπz
(
fn(z)−fm(z)

)(
fn(−z̄)−fm(−z̄)

)
dz
∣∣∣∣

≤ 1
π

(∫∞
−∞

∣∣Γ(1+Rez+iτ)∣∣2∣∣fn(Rez+iτ)−fm(Rez+iτ)∣∣2dτ
)1/2

×
(∫∞

−∞

∣∣Γ(1−Rez−iτ)∣∣2∣∣fn(−Rez+iτ)−fm(−Rez+iτ)∣∣2dτ
)1/2

≤ 1
π
∥∥fn−fm∥∥2

Ĥ2,A
�→ 0, n,m �→∞.

(2.33)

Therefore gn(x) is a Cauchy sequence in the space L2(R+;x−1dx) and has a limit g ∈
L2(R+;x−1dx), which we call Lebedev’s transformation of f ∈ Ĥ2,A. We will show that

for almost all x > 0 the Lebedev transformation is defined by (2.22), which coincides,

in turn, with (1.4) when f ∈H2,A. Indeed, integrating the equality

gn(t)= 1
πi

∫ α+i∞
α−i∞

µKµ(t)fn(µ)dµ, (2.34)

with respect to t ∈ [0,x], we invert the order of integration in its right-hand side. This

is motivated by estimates (2.1), (2.4) and by the convergence of the integral (see (2.5))

∫ x
0
t
(
K2(α+1)(2t)+K2(α−1)(2t)−2K2α(2t)

)1/2dt <∞, |α|< 1. (2.35)
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Thus we obtain

∫ x
0
gn(t)dt = 1

πi

∫ α+i∞
α−i∞

µ
∫ x

0
Kµ(t)fn(µ)dtdµ. (2.36)

However, since

∫ x
0

∣∣gn(t)∣∣dt ≤
(∫ x

0
tdt

)1/2∥∥gn∥∥L2(R+ ;x−1dx) <∞, (2.37)

we have that

lim
n→∞

∫ x
0
gn(t)dt =

∫ x
0
g(t)dt. (2.38)

On the other hand, with Schwarz’s inequality, the right-hand side of (2.36) is majorized

by

1
π

∣∣∣∣
∫ α+i∞
α−i∞

µ
∫ x

0
Kµ(t)fn(µ)dtdµ

∣∣∣∣
≤ 1
π

(∫∞
−∞

∣∣∣∣ α+iτ
Γ(1+α+iτ)

∣∣∣∣
2∣∣∣∣
∫ x

0
Kα+iτ(t)dt

∣∣∣∣
2

dτ
)1/2∥∥fn∥∥Ĥ2,A

.
(2.39)

Consequently, this is finite if the latter integral is convergent. Then we pass to the limit

in (2.36) by n→∞ and, combining with (2.38), we derive the equality

∫ x
0
g(t)dt = 1

πi

∫ α+i∞
α−i∞

µ
∫ x

0
Kµ(t)f (µ)dtdµ. (2.40)

Hence for almost all x > 0 it leads to (2.22). Moreover, it coincides with (1.4) when

f ∈H2,A, since in this case we may put the derivative inside the integral via its uniform

convergence.

In order to prove that the integral in (2.39) is finite we use (1.10), relation (2.32),

and the reduction formula for the gamma function Γ(z+1)= zΓ(z) [1]. Then invoking

Minkowski’s inequality we easily find

(∫∞
−∞

∣∣∣∣ α+iτ
Γ(1+α+iτ)

∣∣∣∣
2∣∣∣∣
∫ x

0
Kα+iτ(t)dt

∣∣∣∣
2

dτ
)1/2

= 1
2

(∫∞
−∞

∣∣∣∣ α+iτ
Γ(1+α+iτ)

∣∣∣∣
2∣∣∣∣ π

sinπ(α+iτ)
∣∣∣∣

2∣∣∣∣
∫ x

0

[
I−α−iτ(t)−Iα+iτ(t)

]
dt
∣∣∣∣

2

dτ
)1/2

= 1
2

(∫∞
−∞

∣∣Γ(1−α+iτ)∣∣2
∣∣∣∣
∫ x

0

[
I−α−iτ(t)−Iα+iτ(t)

]
dt
∣∣∣∣

2

dτ
)1/2

≤ 1
2

(∫∞
−∞

∣∣Γ(1−α+iτ)∣∣2
∣∣∣∣
∫ x

0
I−α−iτ(t)dt

∣∣∣∣
2

dτ
)1/2

+ 1
2

(∫∞
−∞

∣∣Γ(1−α+iτ)∣∣2
∣∣∣∣
∫ x

0
Iα+iτ(t)dt

∣∣∣∣
2

dτ
)1/2

.

(2.41)
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Meanwhile, from (1.9) and the relation Γ(k+1±(α+iτ))= Γ(1±(α+iτ))(1±(α+iτ))k,
we have, for each x > 0,

∣∣∣∣
∫ x

0
I±(α+iτ)(t)dt

∣∣∣∣
= 1∣∣Γ(1±(α+iτ))∣∣

∣∣∣∣∣∣
∫ x

0


 t±(α+iτ)

2±(α+iτ)
+

∞∑
k=1

t±(α+iτ)+2k

2±(α+iτ)+2k
(
1±(α+iτ))kk!


dt

∣∣∣∣∣∣
≤ 1∣∣Γ(1±(α+iτ))∣∣

∣∣∣∣
∫ x

0

t±(α+iτ)dt
2±(α+iτ)

∣∣∣∣+ 1∣∣Γ(1±(α+iτ))∣∣
∞∑
k=1

x±α+2k+1

2±α+2k
∣∣(1±(α+iτ))k∣∣k!

=O
(

1∣∣τΓ(1±(α+iτ))∣∣
)
, |τ| �→∞.

(2.42)

Hence we use this estimate after splitting the last integrals in (2.41) with respect to

τ on two integrals over |τ| < M and |τ| ≥ M , M > 0. It results immediately in their

convergence. Therefore the integral in (2.39) is finite.

Finally we prove the reciprocal formula (2.23). Indeed, for two different functions

f ,f1 ∈ Ĥ2,A and the corresponding g,g1 ∈ L2(R+;t−1dt), we may write (2.21) in the

form

∫∞
0
g(t)g1(t)

dt
t
=
∫∞
−∞

Rez−iτ
sinπ(Rez−iτ)f(−Rez+iτ)f1(Rez+iτ)dτ. (2.43)

Meantime, the theorem due to Paley and Wiener [6] says that the class H2(−A,A) of

analytic functions in the strip |Rez| ≤ A with the norm (1.3) over this strip coincides

with the set of functions, which admit the representation

F(z)= 1√
2π

∫∞
−∞
e−ztϕ(t)dt, −A< Rez <A, (2.44)

where the integral is absolutely convergent and a measurable function ϕ(t) is such

that ϕ ∈ L2(R−;e−2Atdt) and ϕ ∈ L2(R+;e2Atdt). Hence by taking

ϕ1(t)=

1 if t ∈ [0,x],

0 if t ∈R\[0,x], (2.45)

we have correspondingly from (2.44) that for each x > 0, f1(Rez+iτ)= (1/√2π)((1−
e−(Rez+iτ)x)/(Rez+iτ))∈ Ĥ2,A. But the latter function is also from the spaceH2(−A,A).
Therefore by (1.4) we find

g1(t,x)= 1

π
√

2π

∫∞
−∞
KRez+iτ(t)

[
1−e−(Rez+iτ)x]dτ. (2.46)

We may calculate explicitly the value of the function g1(t,x) by using [7, relation

(2.16.48.19)] and the Cauchy theorem. Then we obtain g1(t,x)= (e−t−e−t coshx)/
√

2π .

Further, from (1.7) and (2.32), we see that (z/sinπz)f(z) ∈ H2(−A,A), 0 < A < 1.
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Consequently, in view of (2.44) there exists a measurable function ϕ(t) such that

z
sinπz

f(z)= 1√
2π

∫∞
−∞
e−ztϕ(t)dt, (2.47)

where Rez =α, |α|<A,ϕ ∈ L2(R−;e−2Atdt), andϕ ∈ L2(R+;e2Atdt). Hence by the Par-

seval equality for the Fourier transform, the right-hand side of (2.43) may be written as

∫∞
−∞

α−iτ
sinπ(α−iτ)f(−α+iτ)f1(α+iτ)dτ =

∫∞
−∞
ϕ(t)ϕ1(t)dt =

∫ x
0
ϕ(t)dt. (2.48)

Combining with (2.46) and the left-hand side of (2.43), we derive

∫ x
0
ϕ(t)dt = 1√

2π

∫∞
0
g(t)

[
e−t−e−t coshx]dt

t
(2.49)

or, for almost all x > 0,

ϕ(x)= 1√
2π

d
dx

∫∞
0
g(t)

[
e−t−e−t coshx]dt

t
. (2.50)

However, we may differentiate through the integral sign in (2.50) and write it as follows:

ϕ(x)= sinhx√
2π

∫∞
0
g(t)e−t coshxdt. (2.51)

In fact, this is motivated by the uniform convergence of the integral (2.51) on x ≥ 0

since, via Schwarz’s inequality, we obtain

sinhx
∣∣∣∣
∫∞

0
g(t)e−t coshxdt

∣∣∣∣≤ sinhx‖g‖L2(R+ ;t−1dt)

(∫∞
0
te−2t coshxdt

)1/2

= tanhx
2

‖g‖L2(R+ ;t−1dt) ≤
1
2
‖g‖L2(R+ ;t−1dt).

(2.52)

Hence substituting (2.51) into (2.47) we find

z
sinπz

f(z)= 1
2π

∫∞
−∞
e−zy sinhy

∫∞
0
g(t)e−t coshydydt. (2.53)

If we invert formally the order of integration in (2.53), then, calculating the integral with

respect to y by using (1.11), (1.12), we arrive at the inversion formula (2.23). In order

to complete the proof of the theorem we show that this interchange is indeed possible

due to Fubini’s theorem under condition g ∈ L2(R+;t−1dt)∩L1((0,1);t−A−1dt). In fact,
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by the Schwarz inequality we have

∣∣∣∣
∫∞
−∞
e−(α+iτ)y sinhy

∫∞
0
g(t)e−t coshydydt

∣∣∣∣
≤
(∫∞

−∞
e2Ay sinh2y

∣∣∣∣
∫∞

0
g(t)e−t coshydt

∣∣∣∣
2

dy
)1/2

×
[(∫∞

0
e−2(A+α)ydy

)1/2
+
(∫ 0

−∞
e2(A−α)ydy

)1/2
]

=
[

1√
2(A+α) +

1√
2(A−α)

]

×
(∫∞

−∞
e2Ay sinh2y

∣∣∣∣
∫∞

0
g(t)e−t coshydt

∣∣∣∣
2

dy
)1/2

, |α|<A.

(2.54)

Meanwhile, employing the generalized Minkowski inequality, we derive

(∫∞
−∞
e2Ay sinh2y

∣∣∣∣
∫∞

0
g(t)e−t coshydt

∣∣∣∣
2

dy
)1/2

≤
∫∞

0

∣∣g(t)∣∣×(
∫∞
−∞
e2Aye−2t coshy sinh2ydy

)1/2
dt.

(2.55)

Integrating by parts in the latter integral and using again (1.11), (1.12), we obtain

(∫∞
−∞
e2Aye−2t coshy sinh2ydy

)1/2

=
√

2
(∫∞

0
e−2t coshy cosh2Ay sinh2ydy

)1/2

=
(

1
t

∫∞
0
e−2t coshy[cosh2Ay coshy+2Asinh2Ay sinhy]dy

)1/2

=
(

1
2t
[
K2A+1(2t)+K2A−1(2t)

]+ 2A2

t2
K2A(2t)

)1/2
.

(2.56)

Consequently, invoking (1.15), (1.17), we see that

(
1
2t
[
K2A+1(2t)+K2A−1(2t)

]+ 2A2

t2
K2A(2t)

)1/2
=O(t−A−1), t �→ 0,

(
1
2t
[
K2A+1(2t)+K2A−1(2t)

]+ 2A2

t2
K2A(2t)

)1/2
=O(e−tt−3/4), t �→+∞,

(2.57)

and combining with (2.55) we arrive at the estimate

∣∣∣∣
∫∞
−∞
e−(α+iτ)y sinhy

∫∞
0
g(t)e−t coshydydt

∣∣∣∣
≤ const.

∫ 1

0

∣∣g(t)∣∣t−A−1dt+const.
∫∞

1

∣∣g(t)∣∣2dt
t
<∞.

(2.58)

This ends the proof of Theorem 2.3.
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