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1. Introduction. Let An be the class of functions of the form

f(z)= z+
∞∑

k=n+1

akzk
(
n∈N= {1,2,3, . . .}) (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. A function f ∈ An is said to

be in the class S∗n(α) if it satisfies

Re
{
zf ′(z)
f(z)

}
>α (z ∈U) (1.2)

for some α (0 ≤ α < 1). A function in the class S∗n(α) is starlike of order α in U . We

also write A1 =A and S∗1 (α)= S∗(α).
Let Cn(α) be the subclass of An consisting of functions f(z) which satisfy

Re
{
f ′(z)

}
>α (z ∈U) (1.3)

for some α (0≤α< 1). A function f(z) in Cn(α) is close-to-convex of order α in U (cf.

Duren [1]).

Let f(z) and g(z) be analytic inU . Then the function f(z) is said to be subordinate to

g, written f ≺ g or f(z)≺ g(z), if there exists an analytic functionw(z) withw(0)= 0

and |w(z)| < 1 (z ∈ U) such that f(z) = g(w(z)) for z ∈ U . If g(z) is univalent in U ,

then f(z)≺ g(z) is equivalent to f(0)= g(0) and f(U)⊂ g(U).
Let H(p(z),zp′(z))≺ h(z) be a first-order differential subordination. Then a univa-

lent function q(z) is called its dominant if p(z) ≺ q(z) for all analytic functions p(z)
that satisfy the differential subordination. A dominant q̄(z) is called the best dominant

if q̄(z) ≺ q(z) for all dominants q(z). For the general theory of first-order differential

subordination and its applications, we refer to [3].

Recently, Xu and Yang [5] obtained some results on starlikeness and close-to-

convexity of certain meromorphic functions. In the present note, we investigate some
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sufficient conditions for starlikeness and close-to-convexity of order α of certain an-

alytic functions in U by using the subordination principle, and obtain some useful

corollaries as special cases. Furthermore, we extend the results given by Owa et al. [4].

2. Main results. To derive our results, we need the following lemmas.

Lemma 2.1 [6]. Let g(z) = b0+bnzn+bn+1zn+1+··· (n ∈ N) be analytic in U and

let h(z) be analytic and starlike (with respect to the origin), univalent in U with h(0)= 0.

If zg′(z)≺ h(z) (z ∈U), then

g(z)≺ b0+ 1
n

∫ z
0

h(t)
t
dt. (2.1)

Lemma 2.2 [3]. Let g(z) be analytic and univalent in U and let θ(w) and ϕ(w) be

analytic in a domain D containing g(U), with ϕ(w)≠ 0 when w ∈ g(U). Set

Q(z)= zg′(z)ϕ(g(z)), h(z)= θ(g(z))+Q(z) (2.2)

and suppose that

(i) Q(z) is univalent and starlike in U ;

(ii) Re{zh′(z)/Q(z)} = Re{θ′(g(z))/ϕ(g(z))+zQ′(z)/Q(z)}> 0 (z ∈U).
If p(z) is analytic in U , with p(0)= g(0), p(U)⊂D, and

θ
(
p(z)

)+zp′(z)ϕ(p(z))≺ θ(g(z))+zg′(z)ϕ(g(z))= h(z), (2.3)

then p(z)≺ g(z) and g(z) is the best dominant of (2.3).

Lemma 2.3 [2]. Let g(z) = b0+bnzn+bn+1zn+1+··· (n ∈N) be analytic in U with

g(z) �≡ b0. If 0< |z0|< 1 and Re{g(z0)} =min|z|≤|z0|Re{g(z)}, then

z0g′
(
z0
)≤− n

∣∣b0−g
(
z0
)∣∣2

2Re
{
b0−g

(
z0
)} . (2.4)

Applying Lemma 2.1, we now derive the following.

Theorem 2.4. Let f ∈An satisfy f(z)f ′(z)≠ 0 for z ∈U\{0} and

−αzf
′(z)

f(z)
+ zf

′′(z)
f ′(z)

+α≺ az
1−bz (z ∈U), (2.5)

where α, a, and b are real numbers with a≠ 0 and b ≤ 1.

(i) If 0<a≤n and 0< b ≤ 1, then

Re
{
zαf ′(z)
fα(z)

}
>
(

1
1+b

)a/nb
(z ∈U). (2.6)

(ii) If 0<a≤n and b = 0, then

Re
{
zαf ′(z)
fα(z)

}
> e−a/n (z ∈U). (2.7)
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(iii) If a≠ 0 and 0< b ≤ 1, then

∣∣∣∣∣
(
zαf ′(z)
fα(z)

)−nb/a
−1

∣∣∣∣∣< b (z ∈U). (2.8)

(iv) If a> 0 and b = 0, then

∣∣∣∣zαf ′(z)fα(z)
−1
∣∣∣∣< ea/n−1 (z ∈U). (2.9)

Proof. Let f ∈An with f(z)f ′(z)≠ 0 for z ∈U\{0} and define

g(z)=−α
(
zf ′(z)
f(z)

−1
)
+ zf

′′(z)
f ′(z)

. (2.10)

Then g(z)= bnzn+bn+1zn+1+··· is analytic in U and (2.5) can be rewritten as

g(z)≺ h(z), (2.11)

where h(z) = az/(1−bz) is analytic and starlike in U . Applying Lemma 2.1 to (2.11),

we have

∫ z
0

g(t)
t
dt ≺ 1

n

∫ z
0

h(t)
t
dt, (2.12)

that is,

−α
∫ z

0

(
f ′(t)
f (t)

− 1
t

)
dt+

∫ z
0

f ′′(t)
f ′(t)

dt ≺ a
n

∫ z
0

dt
1−bt . (2.13)

(i) If 0<a≤n and 0< b ≤ 1, then from (2.13) we deduce that

zαf ′(z)
fα(z)

≺
(

1
1−bz

)a/nb
≡ h1(z). (2.14)

The function h1(z) is analytic and convex univalent in U because

Re
{

1+ zh
′′
1 (z)

h1(z)

}
= Re

{
1+(a/n)z

1−bz
}
≥ 1−a/n

1+b ≥ 0 (z ∈U). (2.15)

Also, h1(U) is symmetric with respect to the real axis. Hence Re{h1(z)}>h1(−1) in U
and it follows from (2.14) that

Re
{
zαf ′(z)
fα(z)

}
>
(

1
1+b

)a/nb
(z ∈U). (2.16)

(ii) If 0<a≤n and b = 0, then from (2.13) we obtain

zαf ′(z)
fα(z)

≺ e(a/n)z ≡ h2(z). (2.17)
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Since h2(z) is analytic and convex univalent in U and h2(U) is symmetric with respect

to the real axis, it follows from (2.17) that

Re
{
zαf ′(z)
fα(z)

}
> e−a/n (z ∈U). (2.18)

(iii) If a≠ 0 and 0< b ≤ 1, then by (2.14) we have

zαf ′(z)
fα(z)

=
(

1
1−bw(z)

)a/nb
(z ∈U), (2.19)

where w(z) is analytic in U with |w(z)| ≤ |z| (z ∈U ). Therefore we have∣∣∣∣∣
(
zαf ′(z)
fα(z)

)−nb/a
−1

∣∣∣∣∣<
∣∣−bw(z)∣∣< b (z ∈U). (2.20)

(iv) If a> 0 and b = 0, then from (2.17) we get

zαf ′(z)
fα(z)

= e(a/n)w(z) (z ∈U), (2.21)

where w(z) is analytic in U with |w(z)| ≤ |z| (z ∈U ). Thus
∣∣∣∣zαf ′(z)fα(z)

−1
∣∣∣∣= ∣∣e(a/n)w(z)−1

∣∣≤ e(a/n)|w(z)| −1< ea/n−1 (z ∈U). (2.22)

Therefore the proof of Theorem 2.4 is completed.

By specifying the values of the parameters appearing in Theorem 2.4, we can obtain

several useful corollaries.

Taking 0<a= 2(α−β)≤n and b = 1, Theorem 2.4(i) reduces to the following.

Corollary 2.5. Let f ∈An satisfy f(z)f ′(z)≠ 0 for z ∈U\{0} and

Re
{
α
zf ′(z)
f(z)

− zf
′′(z)

f ′(z)

}
< 2α−β (z ∈U), (2.23)

where α is a real number and α−n/2≤ β <α, then

Re
{
zαf ′(z)
fα(z)

}
>

1
2(2(α−β)/n)

(z ∈U). (2.24)

Remark 2.6. Owa et al. [4] proved that if f ∈ An satisfies f(z)f ′(z) ≠ 0 for z ∈
U\{0} and (2.23) for α≥ 0 and α−n/2≤ β <α, then

Re
{
zαf ′(z)
fα(z)

}
>

n
n+2α−2β

(z ∈U). (2.25)

In view of 2x < 1+x (0<x < 1), Corollary 2.5 is better than the main theorem of [4].

Corollary 2.7. If f ∈An satisfies f(z)f ′(z)≠ 0 for z ∈U\{0} and

Re
{
zf ′(z)
f(z)

− zf
′′(z)

f ′(z)

}
< 1+ a

2
(z ∈U) (2.26)

for some a (0<a≤n), then f ∈ S∗n(2−a/n) and the order 2−a/n is sharp.
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Proof. Lettingα=b=1 in Theorem 2.4(i) and using (2.26), we see that f ∈ S∗n(2−a/n).
To show that the order 2−a/n cannot be increased, we consider

f(z)= exp
∫ z

0

(
1+tn)−a/n

t
dt ∈An. (2.27)

It is easy to verify that the function f(z) defined by (2.27) satisfies (2.26) and

Re

{
zf ′(z)
f(z)

}
= Re

{(
1

1+zn
)a/n}

�→
(

1
2

)a/n
(2.28)

as z→ 1. Therefore the proof is completed.

Putting α= 0 and b = 1 in Theorem 2.4(i), we have the following.

Corollary 2.8. If f ∈An satisfies f ′(z)≠ 0 for z ∈U\{0} and

−Re
{
zf ′′(z)
f ′(z)

}
<
a
2

(z ∈U) (2.29)

for some a (0<a≤n), then f ∈ Cn(2−a/n) and the order 2−a/n is sharp.

Remark 2.9. Corollary 2.7 (with 0 < a = 2(1−β) ≤ n) and Corollary 2.8 (with 0 <
a= 2β <n) are better than the corresponding results in [4].

Setting α= 0 and 1 in Theorem 2.4(ii), we have the following two corollaries.

Corollary 2.10. If f ∈An satisfies f(z)f ′(z)≠ 0 for z ∈U\{0} and

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣<a (z ∈U) (2.30)

for some a (0<a≤n), then f ∈ Cn(e−a/n).
Corollary 2.11. If f ∈An satisfies f(z)f ′(z)≠ 0 for z ∈U\{0} and

∣∣∣∣1+ zf ′′(z)f ′(z)
− zf

′(z)
f(z)

∣∣∣∣<a (z ∈U) (2.31)

for some a (0 < a ≤ n), then f ∈ S∗n(e−a/n) and the order e−a/n is sharp with the

extremal function

f(z)= exp
∫ z

0

e−(a/n)tn

t
dt. (2.32)

For α= 1 and a=−nb (0< b ≤ 1) in Theorem 2.4(iii), we have the following.

Corollary 2.12. If f ∈An satisfies f(z)f ′(z)≠ 0 for z ∈U\{0} and

1+ zf
′′(z)

f ′(z)
− zf

′(z)
f(z)

≺−−nbz
1−bz (2.33)

for some b (0< b ≤n), then f ∈ S∗n(1−b) and the order 1−b is sharp with the extremal

function f(z)= ze(b/n)zn .
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Next, applying Lemma 2.2, we obtain the following two results.

Theorem 2.13. Let f ∈A satisfy f(z)≠ 0 for z ∈U\{0} and

zf ′(z)
f(z)

+ z
2f ′′(z)
f(z)

≺ h(z) (z ∈U), (2.34)

where

h(z)= (1−2α)2z2+2(2−3α)+1
(1−z)2 (0≤α< 1; z ∈U), (2.35)

then f ∈ S∗(α) and the order α is sharp.

Proof. We put

zf ′(z)
f(z)

= (1−α)p(z)+α (2.36)

for 0 ≤ α < 1. Then p(z) is analytic in U and p(0) = 1. Differentiating (2.36) logarith-

mically, we find that

zf ′(z)
f(z)

+ z
2f ′′(z)
f(z)

= (1−α)zp′(z)+((1−α)p(z)+α)2. (2.37)

From (2.34) and (2.37), we have

(1−α)zp′(z)+(1−α)2p2(z)+2α(1−α)p(z)+α2 ≺ h(z). (2.38)

Now we choose

g(z)= 1+z
1−z , θ(w)= (1−α)2w2+2(1−α)w+α2, ϕ(w)= 1−α. (2.39)

Then g(z) is analytic and univalent in U , Re{g(z)} > 0 (z ∈ U), and θ(w) and ϕ(w)
are analytic with ϕ(w)≠ 0 in the w-plane.

The function

Q(z)= zg′(z)ϕ(z)= 2(1−α) z
(1−z)2 (2.40)

is univalent and starlike in U . Further,

θ
(
g(z)

)+Q(z)= (1−α)2(1+z
1−z

)2

+2α(1−α)
(

1+z
1−z

)
+α2+2(1−α) z

1−z
= (1−2α)2z2+2(2−3α)z+1

(1−z)2 = h(z),
(2.41)

Re
{
zh′(z)
Q(z)

}
= Re

{
2(1−α)g(z)+2α+ zQ

′(z)
Q(z)

}

= (3−2α)Re
{

1+z
1−z

}
+2α> 0

(2.42)
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for z ∈U . In view of (2.38)–(2.42), we see that

θ
(
p(z)

)+zp′(z)ϕ(p(z))≺ θ(g(z))+zg′(z)ϕ(g(z))= h(z). (2.43)

Therefore, Lemma 2.2 leads to p(z) ≺ g(z), which implies that f ∈ S∗(α). Next, we

consider

f(z)= z
(1−z)2(1−α) ∈A. (2.44)

It is easy to see that

zf ′(z)
f(z)

+ z
2f ′′(z)
f(z)

= h(z),

Re
{
zf ′(z)
f(z)

}
= Re

{
1+(1−2α)z

1−z
}
�→α

(2.45)

as z→−1. The proof of the theorem is completed.

Theorem 2.14. If f ∈A satisfies f(z)≠ 0 for z ∈U\{0} and

zf ′(z)
f(z)

+2α
z2f ′′(z)
f(z)

≺ h(z), (2.46)

where

h(z)= (2α−1)3z2+2α(3−4α)z+1
(1−z)2 (0≤α< 1; z ∈U), (2.47)

then f ∈ S∗(α) and the order α is sharp.

Proof. It suffices to prove the theorem for 0 < α < 1. We define the function p(z)
by (2.36). Then p(z) is analytic in U and p(0)= 1. By a simple calculation, we find that

zf ′(z)
f(z)

+2α
z2f ′′(z)
f(z)

= 2α(1−α)zp′(z)+2α(1−α)2p2(z)+(1−α)(1−2α+4α2)p(z)
+α(1−2α+2α2).

(2.48)

Thus the subordination (2.46) becomes

2α(1−α)zp′(z)+2α(1−α)2p2(z)+(1−α)(1−2α+4α2)p(z)
+α(1−2α+2α2)≺ h(z). (2.49)

Set g(z)= (1+z)/(1−z), θ(w)= 2α(1−α)2w2+(1−α)(1−2α+4α2)w+α(1−2α+
2α2), and ϕ(w) = 2α(1−α). Then g(z), θ(w), and ϕ(w) satisfy the conditions of

Lemma 2.2. The function

Q(z)= zg′(z)ϕ(g(z))= 4α(1−α) z
(1−z)2 (2.50)
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is univalent and starlike in U . Further,

θ
(
g(z)

)+Q(z)=2α(1−α)2
(

1+z
1−z

)2

+(1−α)(1−2α+4α2)(1+z
1−z

)

+α(1−2α+2α2)+4α(1−α) z
(1−z)2

= (2α−1)3z2+2α(3−4α)z+1
(1−z)2 = h(z),

Re
{
zh′(z)
Q(z)

}
= Re

{
2(1−α)g(z)+ 1−2α+4α2

2α
+ zQ

′(z)
Q(z)

}

= (3−2α)Re
{

1+z
1−z

}
+ 1−2α+4α2

2α
> 0,

(2.51)

for z ∈U . Note that

θ
(
p(z)

)+zp′(z)ϕ(p(z))≺ θ(g(z))+zg′(z)ϕ(g(z))= h(z). (2.52)

Hence, an application of Lemma 2.2 yields that p(z)≺ g(z), that is, f ∈ S∗(α). For the

function f(z) defined by (2.44), we have

zf ′(z)
f(z)

+2α
z2f ′′(z)
f(z)

= h(z),

Re
{
zf ′(z)
f(z)

}
�→α as z �→−1.

(2.53)

Therefore we complete the proof of Theorem 2.14.

Finally, by using Lemma 2.3, we prove the following.

Theorem 2.15. Let f ∈An satisfy f(z)≠ 0 for z ∈U\{0} and

∣∣∣∣∣arg

{
(1−λ)z

2
(
f ′(z)

)2

f 2(z)
+λ
(
zf ′(z)
f(z)

+ z
2f ′′(z)
f(z)

)
+ nλ

2

}∣∣∣∣∣<π (z ∈U) (2.54)

for some λ (λ > 0). Then f ∈ S∗n(0) and the order 0 is sharp.

Proof. The function g(z) defined by

g(z)= zf
′(z)

f(z)
= 1+bnzn+bn+1zn+1+··· (2.55)

is analytic in U and it is easily verified that

(1−λ)z
2
(
f ′(z)

)2

f 2(z)
+λ
(
zf ′(z)
f(z)

+ z
2f ′′(z)
f(z)

)
= g2(z)+λzg′(z) (λ > 0; z ∈U).

(2.56)

Suppose that there exists a point z0 ∈U\{0} such that

Re
{
g(z)

}
> 0

(|z|< ∣∣z0

∣∣), g
(
z0
)= iβ, (2.57)
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where β is a real number. Then, applying Lemma 2.3, we have

z0g′
(
z0
)≤−n

(
1+β2

)
2

. (2.58)

Thus it follows from (2.56), (2.57), and (2.58) that

(1−λ)z
2
0

(
f ′
(
z0
))2

f 2
(
z0
) +λ

(
zf ′

(
z0
)

f
(
z0
) + z

2
0f ′′

(
z0
)

f
(
z0
) )

+ nλ
2

= (g(z0
))2+λz0g′

(
z0
)+ nλ

2

≤−β2− nλ
(
1+β2

)
2

+ nλ
2
≤ 0

(2.59)

for λ > 0, which contradicts (2.54). Hence Re{g(z)} > 0 (z ∈U ), that is f ∈ S∗n(0). If

we let

fn(z)= z(
1−zn)2/n ∈An, (2.60)

then

(1−λ)z
2
(
f ′n(z)

)2

f 2
n(z)

+λ
(zf ′n(z)
fn(z)

+ z
2f ′′n (z)
fn(z)

)
+ nλ

2

=
(

1+ nλ
2

)(
1+zn
1−zn

)2

(z ∈U),
(2.61)

and so the function fn(z) satisfies (2.54). Noting that

Re
zf ′n(z)
fn(z)

= Re
1+zn
1−zn �→ 0 (2.62)

as z→ eiπ/n, we conclude that the order 0 is the best possible.
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