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Our purpose is to derive some sufficient conditions for starlikeness and close-to-convexity
of order « of certain analytic functions in the open unit disk.
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1. Introduction. Let A, be the class of functions of the form
f2)=z+ > arz¥ (meN={1,2,3,..}) (1.1)
k=n+1

which are analytic in the open unit disk U = {z: |z| < 1}. A function f € A, is said to
be in the class S;f («) if it satisfies

zf'(z)
Re{ 2 }>a (zel) (1.2)

for some & (0 < @ < 1). A function in the class S;}(«) is starlike of order « in U. We
also write A; = A and S} (x) = S* ().
Let C,, () be the subclass of A, consisting of functions f(z) which satisfy

Re{f (2)} > (z€U) (1.3)

for some « (0 < x < 1). A function f(z) in C, () is close-to-convex of order « in U (cf.
Duren [1]).

Let f(z) and g(z) be analytic in U. Then the function f(z) is said to be subordinate to
g, written f < g or f(z) < g(z), if there exists an analytic function w(z) with w(0) =0
and |w(z)| <1 (z € U) such that f(z) = g(w(z)) for z € U. If g(z) is univalent in U,
then f(z) < g(z) is equivalent to f(0) = g(0) and f(U) c g(U).

Let H(p(z),zp'(z)) < h(z) be a first-order differential subordination. Then a univa-
lent function g(z) is called its dominant if p(z) < q(z) for all analytic functions p(z)
that satisfy the differential subordination. A dominant g(z) is called the best dominant
if g(z) < q(z) for all dominants g(z). For the general theory of first-order differential
subordination and its applications, we refer to [3].

Recently, Xu and Yang [5] obtained some results on starlikeness and close-to-
convexity of certain meromorphic functions. In the present note, we investigate some
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sufficient conditions for starlikeness and close-to-convexity of order « of certain an-
alytic functions in U by using the subordination principle, and obtain some useful
corollaries as special cases. Furthermore, we extend the results given by Owa et al. [4].

2. Main results. To derive our results, we need the following lemmas.

LEMMA 2.1 [6]. Let g(z) = by +bpz" + by 12" + .- (n €N) be analytic in U and
let h(z) be analytic and starlike (with respect to the origin), univalent in U with h(0) = 0.
Ifzg'(z) < h(z) (z€ U), then

1 (?h(t)
g(Z) < b0+ E JO Tdt (2.1)

LEMMA 2.2 [3]. Let g(z) be analytic and univalent in U and let 6(w) and @ (w) be
analytic in a domain D containing g(U), with @ (w) = 0 when w € g(U). Set

Q(z2) =29 (2)p(g(2)), h(z)=0(g(2))+Q(z) (2.2)

and suppose that

(i) Q(z) is univalent and starlike in U;

(ii) Re{zh'(z2)/Q(2)} =Re{0'(g(2))/@(g(2)) +zQ'(2)/Q(z2)} > 0 (z € U).
If p(z) is analytic in U, with p(0) = g(0), p(U) C D, and

0(p(2)+zp' (2)p(p(2)) < 0(g(2)) +zg (2)p(g(2)) = h(2), (2.3)

then p(z) < g(z) and g(z) is the best dominant of (2.3).

LEMMA 2.3 [2]. Let g(z) = bo+buz"+bp 12" +--- (n €N) be analytic in U with
g(z) #bo. If 0 < |z9| <1 andRe{g(z¢)} = min; <z, Re{g(z)}, then

209 (20) = _nlbo-g(z0)|" (2.4)
~ 2Re{bo—g(z0)}’ '
Applying Lemma 2.1, we now derive the following.
THEOREM 2.4. Let f € Ay, satisfy f(z)f'(z) # 0 for z € U\{0} and
zf'(z) zf"(z) az
- + + < zelU), 2.5
f(z) f(2) 1-bz ) (2:5)
where &, a, and b are real numbers witha +# 0 and b < 1.
(i) If0<a<nand0<b <1, then
Z‘xf’(Z)} ( 1 >u/nlo
Re{ Faz) > b (zeU). (2.6)
(i) If0<a<nandb =0, then
Z“f’(z)} —a/n
Re{ Fa(z2) >e (zeU). (2.7)
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(iii) Ifa+0and0< b <1, then

Z(xf/ (Z) -nbl/a
( Falz) ) -1 <b (ze€U). (2.8)
(iv) Ifa> 0 and b = 0, then
Z‘Xf’(Z) _ aj/n _
Fa(z) 1 ‘ <e 1 (zeU). (2.9)

PROOF. Let f € A, with f(z)f'(z) #0 for z € U\{0} and define

z2f () 71) L2@ (2.10)

g(z):ﬂx( f(z) f(z) "

Then g(z) = bz + by, 12" + - - - is analytic in U and (2.5) can be rewritten as
9(z) < h(z), (2.11)

where h(z) = az/(1 —bz) is analytic and starlike in U. Applying Lemma 2.1 to (2.11),
we have

z z
[fog L[hoy, e
o ¢ nJo t
that is,
z ’ z rr z
S () 1) J S () a dt
- ——|dt+ at< — | ——. 2.13
"‘L(f(t) { o o0y Tome @13
A If0<a<nand0<b <1, then from (2.13) we deduce that
Z‘xf'(Z) ( 1 >u/nb _
Faz) < - =hy(2). (2.14)
The function h,(z) is analytic and convex univalent in U because
zh’l’(z)}i {1+(a/n)z} l-a/n
Re{1+ nz) =Re 1-b2 > b >0 (zeU). (2.15)

Also, hy(U) is symmetric with respect to the real axis. Hence Re{h,(z)} > h;(-1) in U
and it follows from (2.14) that

W[ (1) e

(i) If 0 <a <m and b = 0, then from (2.13) we obtain

z%f"(2)

Faiz) el WMz = hy(2). (2.17)
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Since h»(z) is analytic and convex univalent in U and h, (U) is symmetric with respect
to the real axis, it follows from (2.17) that

Zo(f/(z) _a/n

Re{ Folz) }>e (zeU). (2.18)
(iii) If @ = 0 and 0 < b < 1, then by (2.14) we have
Z{xf!(z) B 1 a/nb

Falz) (1 —bw(z)) (zeU), (2.19)

where w(z) is analytic in U with |w(z)| < |z]| (z € U). Therefore we have

()™

(iv) If a > 0 and b = 0, then from (2.17) we get

<|-bw(z)| <b (z€U). (2.20)

o £7
fo(g) = el (z ), (2.21)
where w(z) is analytic in U with |w(z)| < |z| (z € U). Thus
2f(z) 1’ = |e@mw@ 1| co@m@i_j ceain_1 (zeU).  (2.22)
fx(z)
Therefore the proof of Theorem 2.4 is completed. |

By specifying the values of the parameters appearing in Theorem 2.4, we can obtain
several useful corollaries.
Taking 0 <a =2(x—pB) <n and b = 1, Theorem 2.4(i) reduces to the following.

COROLLARY 2.5. Let f € A, satisfy f(z)f'(z) #0 for z € U\{0} and

Re{azf(g)—zﬁ(g)}<2a—ﬁ (zeU), (2.23)
where « is a real number and x —n /2 < B < «, then
z%f'(2) 1
Re{ Fo(z) }> S B (zeU). (2.24)

REMARK 2.6. Owa et al. [4] proved that if f € A, satisfies f(z)f'(z) = 0 for z €
U\{0} and (2.23) for « > 0 and x—n/2 < B < «, then

z%f"(2) n
Re{ f(2) }> ni2a—2g FEU): (2.25)

In view of 2¥ <1+ x (0 < x < 1), Corollary 2.5 is better than the main theorem of [4].

COROLLARY 2.7. If f € A, satisfies f(z)f'(z) # 0 for z € U\{0} and

zf'(z) zf"(z) a
Re{ fz)  f(2 }<1+2 (zel) (2.26)

for some a (0 < a <n), then f € S} (2=4/") and the order 2=*/" is sharp.
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PROOF. Letting x=b=1 in Theorem 2.4(i) and using (2.26), we see that f € S} (2-4/"),
To show that the order 2-%/" cannot be increased, we consider

—-a/n

f(z) =€ij: %dteAn. (2.27)

It is easy to verify that the function f(z) defined by (2.27) satisfies (2.26) and

[ 3 S

as z — 1. Therefore the proof is completed. |

Putting « = 0 and b = 1 in Theorem 2.4(i), we have the following.

COROLLARY 2.8. If f € A, satisfies f'(z) + 0 for z € U\{0} and

zf"(z)
’Re{ f(z)

} < % (zeU) (2.29)

for some a (0 < a <n), then f € C,(2=%") and the order 2=%'" |s sharp.

REMARK 2.9. Corollary 2.7 (with 0 < a = 2(1 — ) < n) and Corollary 2.8 (with 0 <
a = 23 < n) are better than the corresponding results in [4].

Setting «x = 0 and 1 in Theorem 2.4(ii), we have the following two corollaries.

COROLLARY 2.10. If f € A, satisfies f(z)f'(z) + 0 for z € U\{0} and

zf"(z)
f(2)

for some a (0 < a <n), then f € Cy(e4/M),

<a (zel) (2.30)

COROLLARY 2.11. If f € A, satisfies f(z)f'(z) + 0 for z € U\{0} and

zf"(z) zf'(2)
1 f@

for some a (0 < a < n), then f € S}(e~*™) and the order e~*" is sharp with the
extremal function

1+

<a (zel) (2.31)

z e_(a/n)tn
f(z)= expj0 fdt. (2.32)

For x=1and a = —nb (0 < b < 1) in Theorem 2.4(iii), we have the following.
COROLLARY 2.12. If f € A, satisfies f(z)f'(z) + 0 for z € U\{0} and

zf"(z) B zf'(z) - 7fnbz
f(zy  f2 1-bz

for some b (0 < b <n), then f € S} (1—b) and the order 1 —b is sharp with the extremal
function f(z) = zetb/mz",

1+

(2.33)
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Next, applying Lemma 2.2, we obtain the following two results.

THEOREM 2.13. Let f € A satisfy f(z) =0 for z € U\{0} and

zf'(z) Zz2%f"(2)

2 + Fz) <h(z) (zeU), (2.34)
where
_ 252 _
(z) = 122X0°27 2@ 2300+ (e, (2.35)
(1-2)?
then f € S*(x) and the order « is sharp.
PROOF. We put
zf'(z)
@) - (I1-0)p(z)+«x (2.36)

for 0 < o« < 1. Then p(z) is analytic in U and p(0) = 1. Differentiating (2.36) logarith-
mically, we find that

2@ 2@ i 2

o T e - 1m0z @+ -0p@) + ) (2.37)
From (2.34) and (2.37), we have

(1-)zp'(2) + (1-*p?(2) +2a(1 = 0p(2) + & < h(2). (2.38)

Now we choose

1+z

o w=0-ww+2(l-ow+ed, @w =l-a (239

g(z) =
Then g(z) is analytic and univalent in U, Re{g(z)} > 0 (z € U), and 0(w) and @ (w)
are analytic with @ (w) # 0 in the w-plane.

The function

, B 3 z
Q) =29 (2)@(z) =20 -0 77 (2.40)
is univalent and starlike in U. Further,
o afl+z)? - 14z ) B z
0(g(2)+Q(z2)=1-w) (T—z) +2x(1 (x)(—l_z)ﬂx +2(1 o()—l_Z o
_(172(x)222+2(273(x)z+1_h( ) ’
B (1-2)2 RSN
zh'(2)) _ B zQ'(2)
Re{ Q) }—Re{Z(l x)g(z) +2x+ Q) } o4

- (3—2a)Re{1ﬁ}+2a>o
1-z
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for z € U. In view of (2.38)-(2.42), we see that
O(p(2)+zp' (2)p(p(z) <0(g(2))+zg (2)p(g(z)) = h(z). (2.43)

Therefore, Lemma 2.2 leads to p(z) < g(z), which implies that f € S*(x). Next, we
consider

f(Z) = ﬁ € A. (244)

It is easy to see that

zf'(z) Zz%f"(2)

=h
o e M 045
zf'(z2)) _ 1+(1-200z) ’
Re{ f(z) }_Re{ 1-z } &
as z — —1. The proof of the theorem is completed. |
THEOREM 2.14. If f € A satisfies f(z) + 0 for z € U\{0} and
zf'(z) z2f"(z)
2 2.4
fo T e <M (2.40)
where
_1)322 _
n(z) = Bz r20Bod002 4l . ey, (2.47)

(1-2)2
then f € S*(x) and the order « is sharp.

PrOOF. It suffices to prove the theorem for 0 < « < 1. We define the function p(z)
by (2.36). Then p(z) is analytic in U and p(0) = 1. By a simple calculation, we find that

zf'(z) zf" (2)
2
f@ e
=20(1-)zp'(2) +20(1 - )’ p?(2) + (1 —x) (1 —2x + 40°) p(2) (2.48)
+a(l-2x+20).
Thus the subordination (2.46) becomes
200(1-x)zp' (z) +2a(1 —)’p? (2) + (1 —x) (1 -2 +4x?) p(2)
(2.49)

+a(l1-2x+20°) < h(z).

Setg(z) =(1+2)/(1-2), 0(w) =2x(l —c)’w?+ (1 - o) (1 -2 +4c®)w + x(1 -2+
2a?), and @(w) = 2a(1 — ). Then g(z), O(w), and @(w) satisfy the conditions of
Lemma 2.2. The function

Q(2) =29 (2)®(g(2)) = 4x(l - x) (2.50)

_Zz
(1-2)2
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is univalent and starlike in U. Further,

0(g(2))+Q(2) :20((1—0()2<i—t§)2+(1—0()(1—2(x+4o<2)(£)
+o<(1—20(+2(x2)+40((1—o<)ﬁ
:(Za—1)322(1rE¢;<§23—4a)z+1 Ch), 2.51)
Re{zg;(zz)) } - Re{Z(l—a)g(z) + 1*2;‘;4“2 + ZS(S)}
2
s[5}
for z € U. Note that
0(p(2))+zp' (2)p(p(2)) < 0(g(2)) +zg' (2)p(g(2)) = h(2). (2.52)

Hence, an application of Lemma 2.2 yields that p(z) < g(z), thatis, f € $*(x). For the
function f(z) defined by (2.44), we have

’ 2 Lrr
2f(2) L ZSD
f(2) f(2)
/ (2.53)
Re{zf (Z)} —x as z— —1.
f(2)
Therefore we complete the proof of Theorem 2.14. |

Finally, by using Lemma 2.3, we prove the following.

THEOREM 2.15. Let f € Ay, satisfy f(z) =0 for z € U\{0} and

2 ’ 2 ’ 2 Lrr
z(f"(2)) +2\<Zf @), z°f (Z)) ”A} < (zeU) (2.54)

f2(2) f@o Tro )t

2
for some A (A > 0). Then f € S} (0) and the order O is sharp.

arg{(l—?\)

PROOF. The function g(z) defined by

_zf'(z)
f(z)

is analytic in U and it is easily verified that

g(2) =14b,z"+bps1 2"+ (2.55)

2( £ 2 ’ 2 ¢
z*(f"(2)) +/\(Zf (2)  22f"(2)

1-A
( ) f2(z) f(2) f(2)

) =g%(2)+Azg'(z) (A>0;zeU).
(2.56)

Suppose that there exists a point zo € U\ {0} such that

Re{g(2)} >0 (lzl<|z0]), g(z0) =18, (2.57)



STARLIKENESS AND CLOSE-TO-CONVEXITY 3629

where B is a real number. Then, applying Lemma 2.3, we have

n(1+p?)

> (2.58)

209 (z0) < —

Thus it follows from (2.56), (2.57), and (2.58) that

2
(1-2)20

(f'(20))° (2f'(20) | Z3f"(20)\ mA
ey M )

2
= (9(20))* +Azog' (20) + "7‘\ (2.59)

_nA(+p?)  mA

2 » =0

<-p
for A > 0, which contradicts (2.54). Hence Re{g(z)} > 0 (z € U), that is f € S§;5(0). If
we let

ful2) = ﬁ € An, (2.60)

then

2 , 2 ’ 2 11
(N ZUE (2hile) | 2y

f2(2) @ a2 2

\ 5 (2.61)
n 1+z"
() (ES) e,
and so the function f;,(z) satisfies (2.54). Noting that
zf)(2) 1+z"
R 4 =R —0 2.62
Ch@ T (2.62)

as z — e™" we conclude that the order 0 is the best possible. |
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