ON STARLIKENESS AND CLOSE-TO-CONVEXITY OF CERTAIN ANALYTIC FUNCTIONS

OH SANG KWON and NAK EUN CHO

Received 20 January 2004

Our purpose is to derive some sufficient conditions for starlikeness and close-to-convexity of order α of certain analytic functions in the open unit disk.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let A_n be the class of functions of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \quad (n \in \mathbb{N} = \{1, 2, 3, \dots\})$$
(1.1)

which are analytic in the open unit disk $U = \{z : |z| < 1\}$. A function $f \in A_n$ is said to be in the class $S_n^*(\alpha)$ if it satisfies

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \quad (z \in U)$$
(1.2)

for some α ($0 \le \alpha < 1$). A function in the class $S_n^*(\alpha)$ is starlike of order α in U. We also write $A_1 = A$ and $S_1^*(\alpha) = S^*(\alpha)$.

Let $C_n(\alpha)$ be the subclass of A_n consisting of functions f(z) which satisfy

$$\operatorname{Re}\left\{f'(z)\right\} > \alpha \quad (z \in U) \tag{1.3}$$

for some α ($0 \le \alpha < 1$). A function f(z) in $C_n(\alpha)$ is close-to-convex of order α in U (cf. Duren [1]).

Let f(z) and g(z) be analytic in U. Then the function f(z) is said to be subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists an analytic function w(z) with w(0) = 0 and |w(z)| < 1 ($z \in U$) such that f(z) = g(w(z)) for $z \in U$. If g(z) is univalent in U, then $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(U) \subset g(U)$.

Let $H(p(z), zp'(z)) \prec h(z)$ be a first-order differential subordination. Then a univalent function q(z) is called its dominant if $p(z) \prec q(z)$ for all analytic functions p(z) that satisfy the differential subordination. A dominant $\bar{q}(z)$ is called the best dominant if $\bar{q}(z) \prec q(z)$ for all dominants q(z). For the general theory of first-order differential subordination and its applications, we refer to [3].

Recently, Xu and Yang [5] obtained some results on starlikeness and close-toconvexity of certain meromorphic functions. In the present note, we investigate some sufficient conditions for starlikeness and close-to-convexity of order α of certain analytic functions in *U* by using the subordination principle, and obtain some useful corollaries as special cases. Furthermore, we extend the results given by Owa et al. [4].

2. Main results. To derive our results, we need the following lemmas.

LEMMA 2.1 [6]. Let $g(z) = b_0 + b_n z^n + b_{n+1} z^{n+1} + \cdots (n \in \mathbb{N})$ be analytic in U and let h(z) be analytic and starlike (with respect to the origin), univalent in U with h(0) = 0. If $zg'(z) \prec h(z)$ ($z \in U$), then

$$g(z) \prec b_0 + \frac{1}{n} \int_0^z \frac{h(t)}{t} dt.$$
 (2.1)

LEMMA 2.2 [3]. Let g(z) be analytic and univalent in U and let $\theta(w)$ and $\varphi(w)$ be analytic in a domain D containing g(U), with $\varphi(w) \neq 0$ when $w \in g(U)$. Set

$$Q(z) = zg'(z)\varphi(g(z)), \qquad h(z) = \theta(g(z)) + Q(z)$$

$$(2.2)$$

and suppose that

(i) Q(z) is univalent and starlike in U;

(ii) $\operatorname{Re}\{zh'(z)/Q(z)\} = \operatorname{Re}\{\theta'(g(z))/\varphi(g(z)) + zQ'(z)/Q(z)\} > 0 \ (z \in U).$ If p(z) is analytic in *U*, with $p(0) = g(0), p(U) \subset D$, and

$$\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(g(z)) + zg'(z)\varphi(g(z)) = h(z),$$
(2.3)

then $p(z) \prec g(z)$ and g(z) is the best dominant of (2.3).

LEMMA 2.3 [2]. Let $g(z) = b_0 + b_n z^n + b_{n+1} z^{n+1} + \cdots (n \in \mathbb{N})$ be analytic in *U* with $g(z) \neq b_0$. If $0 < |z_0| < 1$ and $\operatorname{Re}\{g(z_0)\} = \min_{|z| \le |z_0|} \operatorname{Re}\{g(z)\}$, then

$$z_0 g'(z_0) \le -\frac{n |b_0 - g(z_0)|^2}{2 \operatorname{Re}\{b_0 - g(z_0)\}}.$$
(2.4)

Applying Lemma 2.1, we now derive the following.

THEOREM 2.4. Let $f \in A_n$ satisfy $f(z)f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$-\alpha \frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)} + \alpha \prec \frac{az}{1-bz} \quad (z \in U),$$

$$(2.5)$$

where α , *a*, and *b* are real numbers with $a \neq 0$ and $b \leq 1$.

(i) *If* $0 < a \le n$ *and* $0 < b \le 1$ *, then*

$$\operatorname{Re}\left\{\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)}\right\} > \left(\frac{1}{1+b}\right)^{a/nb} \quad (z \in U).$$

$$(2.6)$$

(ii) If $0 < a \le n$ and b = 0, then

$$\operatorname{Re}\left\{\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)}\right\} > e^{-a/n} \quad (z \in U).$$
(2.7)

(iii) If $a \neq 0$ and $0 < b \leq 1$, then

$$\left| \left(\frac{z^{\alpha} f'(z)}{f^{\alpha}(z)} \right)^{-nb/a} - 1 \right| < b \quad (z \in U).$$

$$(2.8)$$

(iv) If a > 0 and b = 0, then

$$\left|\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)} - 1\right| < e^{a/n} - 1 \quad (z \in U).$$
(2.9)

PROOF. Let $f \in A_n$ with $f(z)f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and define

$$g(z) = -\alpha \left(\frac{zf'(z)}{f(z)} - 1\right) + \frac{zf''(z)}{f'(z)}.$$
(2.10)

Then $g(z) = b_n z^n + b_{n+1} z^{n+1} + \cdots$ is analytic in *U* and (2.5) can be rewritten as

$$g(z) \prec h(z), \tag{2.11}$$

where h(z) = az/(1-bz) is analytic and starlike in *U*. Applying Lemma 2.1 to (2.11), we have

$$\int_0^z \frac{g(t)}{t} dt < \frac{1}{n} \int_0^z \frac{h(t)}{t} dt, \qquad (2.12)$$

that is,

$$-\alpha \int_{0}^{z} \left(\frac{f'(t)}{f(t)} - \frac{1}{t}\right) dt + \int_{0}^{z} \frac{f''(t)}{f'(t)} dt < \frac{a}{n} \int_{0}^{z} \frac{dt}{1 - bt}.$$
(2.13)

(i) If $0 < a \le n$ and $0 < b \le 1$, then from (2.13) we deduce that

$$\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)} \prec \left(\frac{1}{1-bz}\right)^{a/nb} \equiv h_1(z).$$
(2.14)

The function $h_1(z)$ is analytic and convex univalent in *U* because

$$\operatorname{Re}\left\{1 + \frac{zh_1''(z)}{h_1(z)}\right\} = \operatorname{Re}\left\{\frac{1 + (a/n)z}{1 - bz}\right\} \ge \frac{1 - a/n}{1 + b} \ge 0 \quad (z \in U).$$
(2.15)

Also, $h_1(U)$ is symmetric with respect to the real axis. Hence $\operatorname{Re}\{h_1(z)\} > h_1(-1)$ in U and it follows from (2.14) that

$$\operatorname{Re}\left\{\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)}\right\} > \left(\frac{1}{1+b}\right)^{a/nb} \quad (z \in U).$$
(2.16)

(ii) If $0 < a \le n$ and b = 0, then from (2.13) we obtain

$$\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)} \prec e^{(a/n)z} \equiv h_2(z).$$

$$(2.17)$$

Since $h_2(z)$ is analytic and convex univalent in U and $h_2(U)$ is symmetric with respect to the real axis, it follows from (2.17) that

$$\operatorname{Re}\left\{\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)}\right\} > e^{-a/n} \quad (z \in U).$$
(2.18)

(iii) If $a \neq 0$ and $0 < b \le 1$, then by (2.14) we have

$$\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)} = \left(\frac{1}{1-bw(z)}\right)^{a/nb} \quad (z \in U),$$
(2.19)

where w(z) is analytic in U with $|w(z)| \le |z|$ ($z \in U$). Therefore we have

$$\left| \left(\frac{z^{\alpha} f'(z)}{f^{\alpha}(z)} \right)^{-nb/a} - 1 \right| < |-bw(z)| < b \quad (z \in U).$$

$$(2.20)$$

(iv) If a > 0 and b = 0, then from (2.17) we get

$$\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)} = e^{(a/n)w(z)} \quad (z \in U),$$

$$(2.21)$$

Π

where w(z) is analytic in *U* with $|w(z)| \le |z|$ ($z \in U$). Thus

$$\left|\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)} - 1\right| = \left|e^{(a/n)w(z)} - 1\right| \le e^{(a/n)|w(z)|} - 1 < e^{a/n} - 1 \quad (z \in U).$$
(2.22)

Therefore the proof of Theorem 2.4 is completed.

By specifying the values of the parameters appearing in Theorem 2.4, we can obtain several useful corollaries.

Taking $0 < a = 2(\alpha - \beta) \le n$ and b = 1, Theorem 2.4(i) reduces to the following.

COROLLARY 2.5. Let $f \in A_n$ satisfy $f(z)f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$\operatorname{Re}\left\{\alpha\frac{zf'(z)}{f(z)} - \frac{zf''(z)}{f'(z)}\right\} < 2\alpha - \beta \quad (z \in U),$$
(2.23)

where α is a real number and $\alpha - n/2 \le \beta < \alpha$, then

$$\operatorname{Re}\left\{\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)}\right\} > \frac{1}{2^{(2(\alpha-\beta)/n)}} \quad (z \in U).$$
(2.24)

REMARK 2.6. Owa et al. [4] proved that if $f \in A_n$ satisfies $f(z)f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and (2.23) for $\alpha \ge 0$ and $\alpha - n/2 \le \beta < \alpha$, then

$$\operatorname{Re}\left\{\frac{z^{\alpha}f'(z)}{f^{\alpha}(z)}\right\} > \frac{n}{n+2\alpha-2\beta} \quad (z \in U).$$
(2.25)

In view of $2^x < 1 + x$ (0 < x < 1), Corollary 2.5 is better than the main theorem of [4].

COROLLARY 2.7. If $f \in A_n$ satisfies $f(z)f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)} - \frac{zf''(z)}{f'(z)}\right\} < 1 + \frac{a}{2} \quad (z \in U)$$
(2.26)

for some a ($0 < a \le n$), then $f \in S_n^*(2^{-a/n})$ and the order $2^{-a/n}$ is sharp.

PROOF. Letting $\alpha = b = 1$ in Theorem 2.4(i) and using (2.26), we see that $f \in S_n^*(2^{-a/n})$. To show that the order $2^{-a/n}$ cannot be increased, we consider

$$f(z) = \exp \int_0^z \frac{(1+t^n)^{-a/n}}{t} dt \in A_n.$$
 (2.27)

It is easy to verify that the function f(z) defined by (2.27) satisfies (2.26) and

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} = \operatorname{Re}\left\{\left(\frac{1}{1+z^n}\right)^{a/n}\right\} \longrightarrow \left(\frac{1}{2}\right)^{a/n}$$
(2.28)

as $z \rightarrow 1$. Therefore the proof is completed.

Putting $\alpha = 0$ and b = 1 in Theorem 2.4(i), we have the following.

COROLLARY 2.8. If $f \in A_n$ satisfies $f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$-\operatorname{Re}\left\{\frac{zf''(z)}{f'(z)}\right\} < \frac{a}{2} \quad (z \in U)$$

$$(2.29)$$

for some a ($0 < a \le n$), then $f \in C_n(2^{-a/n})$ and the order $2^{-a/n}$ is sharp.

REMARK 2.9. Corollary 2.7 (with $0 < a = 2(1 - \beta) \le n$) and Corollary 2.8 (with $0 < a = 2\beta < n$) are better than the corresponding results in [4].

Setting $\alpha = 0$ and 1 in Theorem 2.4(ii), we have the following two corollaries.

COROLLARY 2.10. If $f \in A_n$ satisfies $f(z)f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$\left|\frac{zf''(z)}{f'(z)}\right| < a \quad (z \in U) \tag{2.30}$$

for some a $(0 < a \le n)$, then $f \in C_n(e^{-a/n})$.

COROLLARY 2.11. If $f \in A_n$ satisfies $f(z)f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$\left|1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right| < a \quad (z \in U)$$
(2.31)

for some a $(0 < a \le n)$, then $f \in S_n^*(e^{-a/n})$ and the order $e^{-a/n}$ is sharp with the extremal function

$$f(z) = \exp \int_0^z \frac{e^{-(a/n)t^n}}{t} dt.$$
 (2.32)

For $\alpha = 1$ and a = -nb ($0 < b \le 1$) in Theorem 2.4(iii), we have the following.

COROLLARY 2.12. If $f \in A_n$ satisfies $f(z)f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \prec -\frac{-nbz}{1-bz}$$
(2.33)

for some b ($0 < b \le n$), then $f \in S_n^*(1-b)$ and the order 1-b is sharp with the extremal function $f(z) = ze^{(b/n)z^n}$.

Next, applying Lemma 2.2, we obtain the following two results.

THEOREM 2.13. Let $f \in A$ satisfy $f(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$\frac{zf'(z)}{f(z)} + \frac{z^2 f''(z)}{f(z)} \prec h(z) \quad (z \in U),$$
(2.34)

where

$$h(z) = \frac{(1-2\alpha)^2 z^2 + 2(2-3\alpha) + 1}{(1-z)^2} \quad (0 \le \alpha < 1; \ z \in U),$$
(2.35)

then $f \in S^*(\alpha)$ and the order α is sharp.

PROOF. We put

$$\frac{zf'(z)}{f(z)} = (1-\alpha)p(z) + \alpha \tag{2.36}$$

for $0 \le \alpha < 1$. Then p(z) is analytic in U and p(0) = 1. Differentiating (2.36) logarithmically, we find that

$$\frac{zf'(z)}{f(z)} + \frac{z^2 f''(z)}{f(z)} = (1 - \alpha)zp'(z) + ((1 - \alpha)p(z) + \alpha)^2.$$
(2.37)

From (2.34) and (2.37), we have

$$(1-\alpha)zp'(z) + (1-\alpha)^2p^2(z) + 2\alpha(1-\alpha)p(z) + \alpha^2 \prec h(z).$$
(2.38)

Now we choose

$$g(z) = \frac{1+z}{1-z}, \qquad \theta(w) = (1-\alpha)^2 w^2 + 2(1-\alpha)w + \alpha^2, \qquad \varphi(w) = 1-\alpha.$$
 (2.39)

Then g(z) is analytic and univalent in U, $\operatorname{Re}\{g(z)\} > 0$ ($z \in U$), and $\theta(w)$ and $\varphi(w)$ are analytic with $\varphi(w) \neq 0$ in the *w*-plane.

The function

$$Q(z) = zg'(z)\varphi(z) = 2(1-\alpha)\frac{z}{(1-z)^2}$$
(2.40)

is univalent and starlike in U. Further,

$$\theta(g(z)) + Q(z) = (1 - \alpha)^2 \left(\frac{1+z}{1-z}\right)^2 + 2\alpha(1-\alpha)\left(\frac{1+z}{1-z}\right) + \alpha^2 + 2(1-\alpha)\frac{z}{1-z}$$

$$= \frac{(1 - 2\alpha)^2 z^2 + 2(2 - 3\alpha)z + 1}{(1-z)^2} = h(z),$$
(2.41)

$$\operatorname{Re}\left\{\frac{zh'(z)}{Q(z)}\right\} = \operatorname{Re}\left\{2(1-\alpha)g(z) + 2\alpha + \frac{zQ'(z)}{Q(z)}\right\}$$
$$= (3-2\alpha)\operatorname{Re}\left\{\frac{1+z}{1-z}\right\} + 2\alpha > 0$$
(2.42)

for $z \in U$. In view of (2.38)-(2.42), we see that

$$\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(g(z)) + zg'(z)\varphi(g(z)) = h(z).$$
(2.43)

Therefore, Lemma 2.2 leads to $p(z) \prec g(z)$, which implies that $f \in S^*(\alpha)$. Next, we consider

$$f(z) = \frac{z}{(1-z)^{2(1-\alpha)}} \in A.$$
(2.44)

It is easy to see that

$$\frac{zf'(z)}{f(z)} + \frac{z^2f''(z)}{f(z)} = h(z),$$

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} = \operatorname{Re}\left\{\frac{1 + (1 - 2\alpha)z}{1 - z}\right\} \longrightarrow \alpha$$
(2.45)

as $z \rightarrow -1$. The proof of the theorem is completed.

THEOREM 2.14. If $f \in A$ satisfies $f(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$\frac{zf'(z)}{f(z)} + 2\alpha \frac{z^2 f''(z)}{f(z)} < h(z),$$
(2.46)

where

$$h(z) = \frac{(2\alpha - 1)^3 z^2 + 2\alpha (3 - 4\alpha) z + 1}{(1 - z)^2} \quad (0 \le \alpha < 1; \ z \in U),$$
(2.47)

then $f \in S^*(\alpha)$ and the order α is sharp.

PROOF. It suffices to prove the theorem for $0 < \alpha < 1$. We define the function p(z)by (2.36). Then p(z) is analytic in U and p(0) = 1. By a simple calculation, we find that

$$\frac{zf'(z)}{f(z)} + 2\alpha \frac{z^2 f''(z)}{f(z)} = 2\alpha (1-\alpha) zp'(z) + 2\alpha (1-\alpha)^2 p^2(z) + (1-\alpha) (1-2\alpha+4\alpha^2) p(z)$$
(2.48)
+ $\alpha (1-2\alpha+2\alpha^2).$

Thus the subordination (2.46) becomes

$$2\alpha(1-\alpha)zp'(z) + 2\alpha(1-\alpha)^2p^2(z) + (1-\alpha)(1-2\alpha+4\alpha^2)p(z) + \alpha(1-2\alpha+2\alpha^2) < h(z).$$
(2.49)

Set g(z) = (1+z)/(1-z), $\theta(w) = 2\alpha(1-\alpha)^2w^2 + (1-\alpha)(1-2\alpha+4\alpha^2)w + \alpha(1-2\alpha+4\alpha^2)w + \alpha(1-2\alpha+4\alpha+4\alpha^2)w + \alpha(1-2\alpha+4\alpha+4\alpha+4\alpha^2)w +$ $2\alpha^2$), and $\varphi(w) = 2\alpha(1-\alpha)$. Then g(z), $\theta(w)$, and $\varphi(w)$ satisfy the conditions of Lemma 2.2. The function

$$Q(z) = zg'(z)\varphi(g(z)) = 4\alpha(1-\alpha)\frac{z}{(1-z)^2}$$
(2.50)

is univalent and starlike in U. Further,

$$\theta(g(z)) + Q(z) = 2\alpha(1-\alpha)^{2} \left(\frac{1+z}{1-z}\right)^{2} + (1-\alpha)\left(1-2\alpha+4\alpha^{2}\right) \left(\frac{1+z}{1-z}\right) + \alpha(1-2\alpha+2\alpha^{2}) + 4\alpha(1-\alpha)\frac{z}{(1-z)^{2}} = \frac{(2\alpha-1)^{3}z^{2}+2\alpha(3-4\alpha)z+1}{(1-z)^{2}} = h(z),$$
(2.51)
$$\operatorname{Re}\left\{\frac{zh'(z)}{Q(z)}\right\} = \operatorname{Re}\left\{2(1-\alpha)g(z) + \frac{1-2\alpha+4\alpha^{2}}{2\alpha} + \frac{zQ'(z)}{Q(z)}\right\} = (3-2\alpha)\operatorname{Re}\left\{\frac{1+z}{1-z}\right\} + \frac{1-2\alpha+4\alpha^{2}}{2\alpha} > 0,$$

for $z \in U$. Note that

$$\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(g(z)) + zg'(z)\varphi(g(z)) = h(z).$$
(2.52)

Hence, an application of Lemma 2.2 yields that $p(z) \prec g(z)$, that is, $f \in S^*(\alpha)$. For the function f(z) defined by (2.44), we have

$$\frac{zf'(z)}{f(z)} + 2\alpha \frac{z^2 f''(z)}{f(z)} = h(z),$$

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \longrightarrow \alpha \quad \text{as} \quad z \longrightarrow -1.$$
(2.53)

Therefore we complete the proof of Theorem 2.14.

Finally, by using Lemma 2.3, we prove the following.

THEOREM 2.15. Let $f \in A_n$ satisfy $f(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$\left| \arg\left\{ (1-\lambda)\frac{z^2 (f'(z))^2}{f^2(z)} + \lambda \left(\frac{zf'(z)}{f(z)} + \frac{z^2 f''(z)}{f(z)}\right) + \frac{n\lambda}{2} \right\} \right| < \pi \quad (z \in U)$$
(2.54)

for some λ ($\lambda > 0$). Then $f \in S_n^*(0)$ and the order 0 is sharp.

PROOF. The function g(z) defined by

$$g(z) = \frac{zf'(z)}{f(z)} = 1 + b_n z^n + b_{n+1} z^{n+1} + \cdots$$
(2.55)

is analytic in U and it is easily verified that

$$(1-\lambda)\frac{z^2(f'(z))^2}{f^2(z)} + \lambda\left(\frac{zf'(z)}{f(z)} + \frac{z^2f''(z)}{f(z)}\right) = g^2(z) + \lambda zg'(z) \quad (\lambda > 0; \ z \in U).$$
(2.56)

Suppose that there exists a point $z_0 \in U \setminus \{0\}$ such that

$$\operatorname{Re}\left\{g(z)\right\} > 0 \quad (|z| < |z_0|), \quad g(z_0) = i\beta, \tag{2.57}$$

where β is a real number. Then, applying Lemma 2.3, we have

$$z_0 g'(z_0) \le -\frac{n(1+\beta^2)}{2}.$$
(2.58)

Thus it follows from (2.56), (2.57), and (2.58) that

$$(1-\lambda)\frac{z_0^2(f'(z_0))^2}{f^2(z_0)} + \lambda \left(\frac{zf'(z_0)}{f(z_0)} + \frac{z_0^2f''(z_0)}{f(z_0)}\right) + \frac{n\lambda}{2}$$

= $(g(z_0))^2 + \lambda z_0 g'(z_0) + \frac{n\lambda}{2}$
 $\leq -\beta^2 - \frac{n\lambda(1+\beta^2)}{2} + \frac{n\lambda}{2} \leq 0$ (2.59)

for $\lambda > 0$, which contradicts (2.54). Hence $\operatorname{Re}\{g(z)\} > 0$ ($z \in U$), that is $f \in S_n^*(0)$. If we let

$$f_n(z) = \frac{z}{(1-z^n)^{2/n}} \in A_n,$$
(2.60)

then

$$(1-\lambda)\frac{z^{2}(f_{n}'(z))^{2}}{f_{n}^{2}(z)} + \lambda \left(\frac{zf_{n}'(z)}{f_{n}(z)} + \frac{z^{2}f_{n}''(z)}{f_{n}(z)}\right) + \frac{n\lambda}{2}$$

= $\left(1 + \frac{n\lambda}{2}\right) \left(\frac{1+z^{n}}{1-z^{n}}\right)^{2} \quad (z \in U),$ (2.61)

and so the function $f_n(z)$ satisfies (2.54). Noting that

$$\operatorname{Re}\frac{zf_n'(z)}{f_n(z)} = \operatorname{Re}\frac{1+z^n}{1-z^n} \longrightarrow 0$$
(2.62)

as $z \rightarrow e^{i\pi/n}$, we conclude that the order 0 is the best possible.

ACKNOWLEDGMENT. The authors would like to express their gratitude to the referee for his valuable suggestions.

REFERENCES

- [1] P. L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, 1983.
- S. S. Miller and P. T. Mocanu, Second-order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), no. 2, 289-305.
- [3] _____, On some classes of first-order differential subordinations, Michigan Math. J. **32** (1985), no. 2, 185–195.
- [4] S. Owa, M. Nunokawa, H. Saitoh, and S. Fukui, Starlikeness and close-to-convexity of certain analytic functions, Far East J. Math. Sci. 2 (1994), no. 2, 143–148.
- [5] N. Xu and D. Yang, On starlikeness and close-to-convexity of certain meromorphic functions, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 10 (2003), no. 1, 1–11.

 [6] D. Yang, On sufficient conditions for multivalent starlikeness, Bull. Korean Math. Soc. 37 (2000), no. 4, 659–668.

Oh Sang Kwon: Department of Mathematics, Kyungsung University, Pusan 608-736, Korea *E-mail address*: oskwon@star.kyungsung.ac.kr

Nak Eun Cho: Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Korea

E-mail address: necho@pknu.ac.kr