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We prove that if a one-to-one mapping f : Rn → Rn (n ≥ 2) preserves the unit circles, then
f is a linear isometry up to translation.
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1. Introduction. Let X and Y be normed spaces. A mapping f : X → Y is called an

isometry if f satisfies the equality

∥∥f(x)−f(y)∥∥= ‖x−y‖ (1.1)

for all x,y ∈ X. A distance r > 0 is said to be preserved (conserved) by a mapping

f :X → Y if

∥∥f(x)−f(y)∥∥= r ∀x,y ∈X with ‖x−y‖ = r . (1.2)

If f is an isometry, then every distance r > 0 is conserved by f , and vice versa. We

can now raise a question whether each mapping that preserves certain distances is an

isometry. Indeed, Aleksandrov [1] had raised a question whether a mapping f : X → X
preserving a distance r > 0 is an isometry, which is now known to us as the Aleksandrov

problem. Without loss of generality, we may assume r = 1 when X is a normed space

(see [16]).

Beckman and Quarles [2] solved the Aleksandrov problem for finite-dimensional real

Euclidean spaces X =Rn (see also [3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 19, 20]).

Theorem 1.1 (Beckman and Quarles). If a mapping f :Rn→Rn (2≤n<∞) preserves

a distance r > 0, then f is a linear isometry up to translation.

Recently, Zaks [25] proved the rational analogues of the Beckman-Quarles theorem.

Indeed, he assumes that n= 4k(k+1) for some k≥ 1 or n= 2m2−1 for some m ≥ 3,

and he proves that if a mapping f :Qn →Qn preserves the unit distance, then f is an

isometry (see also [21, 22, 23, 24]).

It seems interesting to investigate whether the “distance r > 0” in the Beckman-

Quarles theorem can be replaced by some properties characterized by “geometrical

figures” without loss of its validity.

In [9], the first author proved that if a one-to-one mapping f :Rn→Rn (n≥ 2)maps

every regular triangle (quadrilateral or hexagon) of side length a > 0 onto a figure of
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the same type with side length b > 0, then there exists a linear isometry I :Rn→Rn up

to translation such that

f(x)= b
a
I(x). (1.3)

Furthermore, the first author proved that if a one-to-one mapping f :R2 →R2 maps

every unit circle onto a unit circle, then f is a linear isometry up to translation (see [10]).

In this connection, we will extend the result of [10] to the n-dimensional cases; more

precisely, we prove in this paper that if a one-to-one mapping f :Rn→Rn (n≥ 2)maps

every unit circle onto a unit circle, then f is a linear isometry up to translation.

2. Preliminaries. We start with any two distinct points a and b in Rn with the dis-

tance between the two less than 2. Let their distance be

2c = 2sinϕ0 with 0<ϕ0 <
π
2
, 0< c < 1. (2.1)

Given such two distinct points whose distance is less than 2, we can choose a coordinate

(y1, . . . ,yn) for Rn such that

a= (0, . . . ,0,sinϕ0
)
, b= (0, . . . ,0,−sinϕ0

)
. (2.2)

Let the (n−2)-dimensional unit sphere contained in the space orthogonal to the yn-

direction be

Y= {(y1, . . . ,yn−1,0
) |y2

1 +···+y2
n−1 = 1

}
. (2.3)

If we call the center of any unit circle passing through the two points (a and b) o′ and

the origin of the coordinate o, then the vector
�→

oo′ is perpendicular to the yn-axis and

its length must be cosϕ0 and therefore
�→

oo′∈ Ỹ= cosϕ0Y, see Figure 2.1. It means that

any unit circle passing through the points a and b has its center in Ỹ = cosϕ0Y. Let

T be the set of union of all the unit circles passing through the points a and b. More

precisely, if we define the following set:

T= {(cosϕ+cosϕ0
)
y+(0, . . . ,0,sinϕ) |y ∈ Y, 0≤ϕ< 2π

}
, (2.4)
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then it is clear that this is the set of union of all the unit circles which are centered at

cosϕ0y for each fixed y ∈ Y and which pass through a and b when ϕ = π ∓ϕ0 (see

Figure 2.1).

The intersection of T and they1-yn plane consists of two circles, say C1 (wheny1 = 1,

i.e., y = (1,0, . . . ,0)) and C2 (when y1 =−1, i.e., y = (−1,0, . . . ,0), see Figure 2.1). In the

following contexts, we will consider the cases y1 = 1 and−1 in connection with T as the

circles C1 and C2, respectively. Call S1 the (n−1)-dimensional unit sphere containing

the circle C1. If we let the center of C1 be O and the center of S1 be Õ, then it is obvious

that O= Õ.

(To see this, choose any point A ∈ C1 and its antipodal point B in C1. Then, by the

definition of the antipodal points that they lie exactly the opposite with respect to the

center of the circle C1 whose center is at O, and because they are of the same length 1,

we have the following condition that

�→
OA=−

�→
OB,

�→
AB=

�→
AO+

�→
OB= 2

�→
OB . (2.5)

On the other hand, we have, since the two points A and B lie also on the unit sphere S1

with its center at Õ,

2= ∣∣ �→
AB

∣∣= ∣∣ �→
AÕ+

�→
ÕB

∣∣≤ ∣∣ �→
AÕ

∣∣+∣∣ �→
ÕB

∣∣= 1+1= 2. (2.6)

Therefore, by the Cauchy-Schwarz inequality,
�→

AÕ is a positive multiple of
�→

ÕB, which

means
�→

AÕ=
�→

ÕB because their lengths are both 1. So,

�→
AB=

�→
AÕ+

�→
ÕB= 2

�→
ÕB, (2.7)

and therefore Õ=O.)

Now, we first show that S1 and T intersect only at C1. To make computation simpler

we use a new coordinate x for Rn, where

x =y−(cosϕ0,0, . . . ,0
)
. (2.8)

In this coordinate (see Figure 2.2), S1 becomes the unit sphere S centered at the origin,

S1 = S =
{(
x1, . . . ,xn

) | x2
1+···+x2

n = 1
}
, (2.9)

T= {x = (cosϕ+cosϕ0
)
y+(0, . . . ,0,sinϕ)

−(cosϕ0,0, . . . ,0
) |y ∈ Y, 0≤ϕ< 2π

}
.

(2.10)

With the help of this coordinate we show the following lemma.

Lemma 2.1. T∩S1 = C1.
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Proof. If any element in T has distance 1 from the origin of the x-coordinate, then

we have

1= [(cosϕ+cosϕ0
)
y1−cosϕ0

]2+(cosϕ+cosϕ0
)2y2

2

+···+(cosϕ+cosϕ0
)2y2

n−1+sin2ϕ

= (cosϕ+cosϕ0
)2−2cosϕ0

(
cosϕ+cosϕ0

)
y1+cos2ϕ0+sin2ϕ

= 1+2cos2ϕ0
(
1−y1

)+2cosϕ0 cosϕ
(
1−y1

)
.

(2.11)

Therefore, we have

0= 2cosϕ0
(
1−y1

)(
cosϕ+cosϕ0

)
. (2.12)

With y1 = 1, T in (2.10) represents the unit circle C1 in the x1-xn plane. If

cosϕ =−cosϕ0, i.e., ϕ =π∓ϕ0, (2.13)

then it follows from (2.10) that

T= {x = (−cosϕ0,0, . . . ,0,±sinϕ0
)}= {a,b} (2.14)

which also belong to C1.

Now, consider, as in Figure 2.3, the origin e and ẽ= (−2,0, . . . ,0) in the x-coordinate

and the unit circle C1 passing through e and ẽ in the x1-xn plane. Choose a point d∈ C1,

d �∈ {e, ẽ}. We parameterize all the unit circles passing through the points e and d. We

assume the xn-coordinate of d is negative.

By triangle inequality, the distance between e and d is less than 2, say 2sinϕ0, with

0<ϕ0 <π/2. Choose a new coordinate y for Rn and consider two points

e′ = (0, . . . ,0,sinϕ0
)
, d′ = (0, . . . ,0,−sinϕ0

)
, (2.15)

(see Figure 2.4).
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To get a parameterization of the unit circles passing through e and d, we consider

the mapping M defined by

x =My =




cosϕ0 0 ··· 0 sinϕ0

0 1 ··· 0 0
...

...
. . .

...
...

0 0 ··· 1 0

−sinϕ0 0 ··· 0 cosϕ0



[
y+(cosϕ0,0, . . . ,0

)]t−(1,0, . . . ,0)t.

(2.16)

This transformationM is an isometry (since it is a composition of a rotation and trans-

lations) and sends

{
y = (0, . . . ,0,±sinϕ0

)}= {e′,d′} (2.17)

to

{
x = (0, . . . ,0), x = (cos

(−2ϕ0
)−1,0, . . . ,0,sin

(−2ϕ0
))}= {e,d} (2.18)

and therefore it sends any unit circle passing through e′ and d′ to a unit circle passing

through e and d.
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Therefore, by comparing Figure 2.4 with Figure 2.1 and considering (2.4), all the unit

circles passing through e and d can be parameterized as

{
x =My |y = (cosϕ+cosϕ0

)
y ′ +(0, . . . ,0,sinϕ), y ′ ∈ Y, 0≤ϕ< 2π

}
. (2.19)

With the help of this parameterization, we are ready to show the following lemma.

Lemma 2.2. For d∈ C1, d �∈ {e, ẽ}, any unit circle inRn, which passes through d and e,

has some point whose x1-coordinate is positive, except the circle C1.

Proof. Without loss of generality, we can assume the xn-coordinate of d is negative.

Note that with ϕ =π∓ϕ0 in (2.19), y = (0, . . . ,0,±sinϕ0) are the points e′ or d′ in the

y-coordinate and further ϕ =π∓ϕ0 means that

x = (0, . . . ,0)= e, x = (cos
(−2ϕ0

)−1,0, . . . ,0,sin
(−2ϕ0

))= d (2.20)

in the x-coordinate, regardless of y ′ ∈ Y. Any unit circle passing through e and d is

given as x =My with y given as in (2.19), that is,




x1

x2

...

xn−1

xn



=




cosϕ0 0 ··· 0 sinϕ0

0 1 ··· 0 0
...

...
. . .

...
...

0 0 ··· 1 0

−sinϕ0 0 ··· 0 cosϕ0







(
cosϕ+cosϕ0

)
y ′1+cosϕ0(

cosϕ+cosϕ0
)
y ′2

...(
cosϕ+cosϕ0

)
y ′n−1

sinϕ



−




1

0
...

0

0



.

(2.21)

The first coordinate is

x1 = cosϕ0
(
cosϕ+cosϕ0

)
y ′1+cos2ϕ0+sinϕ0 sinϕ−1. (2.22)

We show that for y ′1 ≠ −1 (y ′1 = −1 means the circle C′1 in the y-coordinate and the

circle C1 in the x-coordinate, see Figure 2.4), there is always some ϕ near π−ϕ0 (i.e.,

near the point e) such that the above x1 becomes positive.

Let

θ = (π−ϕ0
)−ϕ =π−(ϕ+ϕ0

)
, (2.23)

and so

ϕ =π−(θ+ϕ0
)
. (2.24)
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Then, the above is

x1 =−cosϕ0 cos
(
θ+ϕ0

)
y ′1+cos2ϕ0

(
1+y ′1

)+sinϕ0 sin
(
θ+ϕ0

)−1

=−cosϕ0
[
cosθcosϕ0−sinθ sinϕ0

]
y ′1+sinϕ0

[
sinθcosϕ0+cosθ sinϕ0

]
−1+cos2ϕ0

(
1+y ′1

)
= sinθ sinϕ0 cosϕ0

(
1+y ′1

)+cosθ sin2ϕ0−cosθcos2ϕ0y ′1
−1+cos2ϕ0

(
1+y ′1

)
= sinθ sinϕ0 cosϕ0

(
1+y ′1

)+cosθ−cosθcos2ϕ0
(
1+y ′1

)
−[1−cos2ϕ0

(
1+y ′1

)]
= sinθ sinϕ0 cosϕ0

(
1+y ′1

)−[1−cos2ϕ0
(
1+y ′1

)]
(1−cosθ).

(2.25)

θ = 0 (ϕ = π −ϕ0) means the intersection point e and the above x1 becomes 0 as it

should. Assume

θ ≠ 0
(−π−ϕ0 < θ < 0, 0< θ ≤π−ϕ0

)
. (2.26)

Then, x1 is positive if and only if

sinθ sinϕ0 cosϕ0
(
1+y ′1

)
>
[
1−cos2ϕ0

(
1+y ′1

)]
(1−cosθ), (2.27)

that is,

sinθ
1−cosθ

>
1−cos2ϕ0

(
1+y ′1

)
sinϕ0 cosϕ0

(
1+y ′1

) (2.28)

(recall y ′1 ≠−1 and 0<ϕ0 <π/2). In other words, the x1-coordinate is positive if and

only if

cot
θ
2
>

1−cos2ϕ0
(
1+y ′1

)
sinϕ0 cosϕ0

(
1+y ′1

) . (2.29)

Therefore, for y ′1 ≠ −1 (i.e., except the circle C1), the x1-coordinate is positive for

small enough θ > 0.

3. Main theorem. In the previous section, we introduced all preliminary lemmas for

the main result of this paper. Now, we prove our main theorem.

Theorem 3.1. If a one-to-one mapping f : Rn → Rn maps every unit circle onto a

unit circle, then f is a linear isometry up to translation.

Proof. We show f preserves the distance 2. Suppose the distance between a= f(A)
and b = f(B) is less than 2, while the distance between A and B is 2—see Figure 3.1.

Then, we show it leads to a contradiction.

Let the distance between a and b be 2c (0< c < 1). Choose any unit circle C passing

through A and B and let f(C) = C1. Choose a coordinate for a and b as in Figure 3.1

such that C1 lies in the x1-xn plane and

a=
(
−1−

√
1−c2,0, . . . ,0,c

)
, b=

(
−1−

√
1−c2,0, . . . ,0,−c

)
. (3.1)
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Let

e= (0, . . . ,0), ẽ= (−2,0, . . . ,0). (3.2)

Let f(E)= e and Ẽ the antipodal point (in C) of E and let f(Ẽ)= d. Let the union of all

the unit circles passing through a and b be T and the (n−1)-dimensional unit sphere

passing through A and B be S and the (n−1)-dimensional unit sphere passing through

e and ẽ be S1.

Then, it is clear that any point P on S (P �∈ {A,B}) lies in some unit circle determined

by the three points A, B, and P. To see this, if we call O the common center of C and S,

and let

〈 �→
OP,

�→
OA

〉= sinϕ0

(
− π

2
<ϕ0 <

π
2

)
, (3.3)

then the unit circle determined by these three points is parameterized as

�→
OV (ϕ)= cosϕ

( �→
OP−sinϕ0

�→
OA

cosϕ0

)
+sinϕ

�→
OA (−π <ϕ ≤π). (3.4)

Note that

{( �→
OP−sinϕ0

�→
OA

cosϕ0

)
,
�→

OA

}
(3.5)

are orthonormal to each other and

�→
OV

(
ϕ0
)= �→

OP,
�→

OV
(
π
2

)
=

�→
OA,

�→
OV

(
− π

2

)
=−

�→
OA=

�→
OB .

(3.6)

Since the image of this unit circle lies in T, it follows that the image of the whole S

under f lies in T.
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It is also obvious that the x1-coordinate of any point in T is nonpositive. (Note that

the center of any unit circle passing through a and b has coordinate

√
1−c2y−

(
1+

√
1−c2,0, . . . ,0

)
for some y ∈ Y, (3.7)

(see (2.4)) and the distance between this center and any x = (x1, . . . ,xn) is

√(
x1+1+

√
1−c2

(
1−y1

))2+··· (3.8)

and because

√
1−c2

(
1−y1

)≥ 0, (3.9)

positive x1 makes the distance larger than 1, which means that if x1 > 0, we have x �∈ T.)

Now, if d = ẽ, then the image of any unit circle passing through E and Ẽ lies in both

T and S1. However, by Lemma 2.1, T∩S1 = C1 and this fact contradicts the injectivity

of f .

On the other hand, if d ≠ ẽ, the image of any unit circle, except the circle C, passing

through E and Ẽ is a unit circle passing through e and d. This unit circle is not C1 since

f is one-to-one, and by Lemma 2.2 it cannot stay completely in T, a contradiction.

Consequently, f preserves the distance 2. According to the well-known theorem of

Beckman and Quarles, f is a linear isometry up to translation.
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