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INFINITE MATRICES, WAVELET COEFFICIENTS AND FRAMES
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We study the action of A on f € L2(R) and on its wavelet coefficients, where A = (Apmjk) tmjik
is a double infinite matrix. We find the frame condition for A-transform of f € L2(R) whose
wavelet series expansion is known.
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1. Introduction. The notation of frame goes back to Duffin and Schaeffer [7] in the
early 1950s to deal with the problems in nonharmonic Fourier series. There has been
renewed interest in the subject related to its role in wavelet theory. For a glance of the
recent development and work on frames and related topics, see [3, 4, 5, 6, 9]. In this
note, we will use the regular double infinite matrices (see [9, 10]) to obtain the frame
conditions and wavelet coefficients.

2. Notations and known results. N is the set of positive integers, Z is the set of
integers, R is the set of real numbers. The space L?(R) of measurable function f is
defined on the real line R, that satisfies

J | f(x)]dx < . (2.1)

The inner product of two square integrable functions f,g € L?(R) is defined as

(o) = Foogtax,
LFIE = (F

(2.2)

Every function f € L?(R) can be written as

fX)= 3 Ciawjx(x). (2.3)

Jj.kez

This series representation of f is called wavelet series. Analogous to the notation of
Fourier coefficients, the wavelet coefficients C;x are given by

Cix= L SO kx)dx = {(f,Wix),
Wik =2"2w(2Ix k).

(2.4)
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Now, if we define an integral transform

W), =1al 2 [~ poow()ax, ferim), (2.5)
then the wavelet coefficients become
k 1
Cik=(Wyf) (5; 27) (2.6)

A sequence {x,} in a Hilbert space H is a frame if there exist constants c¢; and c,
0 < ¢y <c¢p < o0, such that

allfIZ< S [ {(fixn) |° <cal fIZ 2.7)

nez

for all f € H. The supremum of all such numbers ¢; and infimum of all such num-
bers c; are called the frame bounds of the frame. The frame is called tight frame when
c1 = ¢ and is called normalized tight frame when c¢; = ¢ = 1. Any orthonormal basis in
a Hilbert space H is a normalized tight frame. The connection between frames and nu-
merically stable reconstruction from discretized wavelet was pointed out by Grossmann
et al. [8]. In 1985, they defined that a wavelet function ¢ € L2(R), constitutes a frame
with frame bounds ¢; and ¢», if any f € L?(R) such that

allfIiZ< > [ win) [P <l fI% (2.8)

Jkez

Again, it is said to be tight if ¢; = ¢» and is said to be exact if it ceases to be frame by
removing any of its elements. There are many examples proposed by Daubechies et al.
[6]. For further details, one can refer to [1, 5, 6]. Chui and Shi [2] proved that {¢/;x}
is a frame for L2(R) with bounds c; and c¢», if for some a > 1 and b > 0, the Fourier
transform (¢ satisfies

C1

I/\

%Z |P(aiw)|* <c; ae., (2.9)
E

for some constants c; and c;. By integrating each term in

J
o= z"’““w <2 (2.10)
lwl b=, wl lw]
over 1 < |w| < a, we have
@ (aiw) |*
2c1loga < = Z J 7dw <2cloga, (2.11)
JeZ 1<|lw|<a |w|

which immediately yields

1 J |@(aw)|’

1 < 2bloga ] dw < . (2.12)
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The above condition known as compactibility condition was also observed by
Daubechies [4] by using techniques from trace class operators. The above constants
were given by frame bounds, see [2].

Let A = (@amnjx) be a double infinite matrix of real numbers. Then, A-transform of a
double sequence x = (xji) is

>0 AmnjkXjks (2.13)
=0 k=0

which is called A-means or A-transform of the sequence x = (x;;). This definition is
due to Moricz and Rhoades [9].
A double matrix A = (amnjx) is said to be regular (see [10]) if the following conditions
hold:
(@) limynn-co X750 Amnjk = 1,
(i) limypn-o 2;":0 lAmnjkl =0, (k=0,1,2,...),
(iii) limyn-co 2o l@mnjkl =0, (j =0,1,2,...),
Av) LAl = sup,,; nso Z.;:kzo [Amnl < 0.
Either of conditions (ii) and (iii) implies that

lim amnjk = 0. (2.14)
m,n—oo

In this note, we establish the frame condition by using A-transform of nonnegative
regular matrix, also we find action of the matrix A on wavelet coefficients.
3. Main results. In this section, we prove the following theorems.

THEOREM 3.1. Let A = (aijx) be a double nonnegative regular matrix. If

fx)= > Cixwjr(x) (3.1)
jkez

is a wavelet expansion of f € L?(R) with wavelet coefficients

Cia= | _FOWRGIAX = (£, (3.2
then the frame condition for A-transform of f € L%(R) is

allfIz< S [{Af,wi)|® <2l fIIZ, (3.3)

i,leZ
where Af is the A-transform of f and 0 < ¢y < ¢ < o0,

THEOREM 3.2. If Cj are the wavelet coefficients of f € L*>(R), that is, Cix={f,Wik),
then the d;,, are the wavelet coefficients of Af, where {di,} is defined as the A-
transform of {Cjx} by

dim= 2. amikCik. (3.4)
Jk=—00
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THEOREM 3.3. Let A = (aimjk) be a double nonnegative matrix whose elements are
(Wik,Wim). Then, {Y;} constitutes a frame of L*(R) if and only if {@.m} constitutes

a frame of L?(R), where Cjy = (f,@;jx) and dim = (f,Wim)-

PROOF OF THEOREM 3.1. We can write

F) = > (fiwi) Wik

j.kez

If we take A-transform of f, we get

Af(x)= > (Af,wi)piL,

i,leZ

and therefore

> HAf,wa) P < Y J'mm |Af o) | [wian(x) | Pdx

ileZ ilez”
<HAIRIFIZ S (w3

ileZ

Since A is regular matrix and |[¢;;ll> = 1, therefore

S AL w1 < el f113,

ileZ

where ¢ is positive constant.
Now, for any arbitrarily f € L?(R), define

-1/2
f= [ > (Af, W) |2} f

i,leZ

Clearly,

“12
(Af,wig) = [ > (Af,llli,l>|2] (Af,win),

ileZ

then

Z |<Af,llfi,l>\2 <L

i,leZ

(3.5)

(3.6)

(3.7)

(3.9

(3.10)

(3.11)
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Hence, if there exists « a positive constant, then

IAFIl = o

N (3.12)
[Z [{(Af, win) | ] IAfI3 < .
ilez

Since A is regular, we have

{ > HAvai,l)\Z} I£113 < oq( IIAIIZ) (3.13)

i,lez

where «; is another positive constant. Therefore,

alfld< Y [{Af.wu)|° (3.14)

ilez

where ¢; = &> 0.
Combining (3.8) and (3.14), we have

alfii3< Y [(Af.wiu)|* <call £I3. (3.15)

ilez

This completes the proof. |

PROOF OF THEOREM 3.2. We can write

(Af,pin) = J Af X Prm(x)dx

(3.16)
J Z alkaCJkl.UJk(X)(I/lm(X)dX
Jk—foo
Now,
Z (Af Wlm)Wlm: Z J Z alkaCJkWJk(X)Wlm(x)(.Ulm( x)dx
Lm= lLm= % jk—oo
= > dl,m(/—’l,mj W1 (0[5 (3.17)
Im=—oco -
= Z dl,mqjl,m-
ILim=—c
Therefore,
> dimWim= . (Af,Wim)Wim. (3.18)
Im=—o0 l,m=—c

This implies that d;,, are wavelet coefficients of Af.
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Thus,

dim = {(f,Wim)- (3.19)

This completes the proof. |

PROOF OF THEOREM 3.3. We observe that
AmjkCik = (Wi Wrm) (fr Wjik)
- J: Wik Prm(x)dx Jif(x)de
- J:f(x)mdx [; Wik W) (x)dx (3.20)
= Jj; FO)Yrm(x)dx
= (f,Wim),

that is, almjij,k =dim-
Now,

> |dim |° = > | @imixCix | :Z|<f,wl,m>|2
Lm

Lm
(2.”.)2 Z | (f Wlm)|
(o] 2
F(w +21p) § (w + 21t p) e ™ dw (3.21)
p=—c0
21 L 2
= o J > fw+2mp)g(w+2mp)dw |
0 i
by Parseval’s formula for trigonometric Fourier series.
Now
00 2 00
S fw2mp)@(w+2mp)| = ( S flw +2TF10)(fI(T2Hp))
T e (3.22)

X ( z f(w+2rrq)([/(w+2'rrq)).

g=—o

Let f(w) = Zf;:,mf(w +21q) P (w +2114q).
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Therefore,
2
=LJ Z fw+2mp)§(w+2mp)dw
2 .
_ZL( (w+21rp)(p(w+2rrp)dwF(w)dw)
21( w)L.U(W)F(W)dw>
=2L{ >, J f(w)tl/(w)f(w+2ﬂq)w(w+2wq)dw} (3.23)
q=—0o0
J Fw)§w) f (w) i (w)dw
=§L |fa) [?|gw) |*dw
_ 1 p 2
=5 J_m | f(w) | dw
= [If13,
that is,

Sldim|* = IIf13, feIL?(R). (3.24)
Lm

Therefore, for a regular matrix A = (a;mjx), we have

allfI3 <> [dim|* <2 £113 (3.25)
Lm
if and only if
cLFIB < e ]* < csllf13, (3.26)
ik
where, 0 < ¢}, ¢, < . This completes the proof. O
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