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1. Introduction and results. For n∈N, n≥ 2, let K(·) be a Calderón-Zygmund ker-

nel defined on Rn, that is,

KΩ(y)=Ω(y)|y|−n, (1.1)

where Ω ∈ L1(Sn−1) is a homogeneous function of degree zero that satisfies∫
Sn−1

Ω(y)dσ(y)= 0 (1.2)

with dσ(·) being the normalized Lebesgue measure on the unit sphere.

Let Bn(0,1) be the unit ball centered at the origin in Rn. For a �∞ mapping Φ :

Bn(0,1)→Rd, d≥ 1, consider the singular integral operator

TΦ,Ωf(x)= p.v.
∫
Bn(0,1)

f
(
x−Φ(y))KΩ(y)dy, (1.3)

where, p.v. denotes the principal value.

It is known that if Φ is of finite type at 0 (see Definition 2.2) and Ω ∈ �1(Sn−1), then

TΦ,Ω is bounded on Lp for 1<p <∞ [15]. Moreover, it is known that TΦ,Ω may fail to be

bounded on Lp for any p if the finite-type condition is removed. In [8], Fan et al. showed

that the Lp boundedness of the operator TΦ,Ω still holds if the condition Ω ∈ �1(Sn−1)
is replaced by the weaker condition Ω ∈ Lq(Sn−1) for some q > 1. Subsequently, the Lp

(1< p <∞) boundedness of TΦ,Ω was established under conditions much weaker than

Ω ∈ Lq(Sn−1) [1, 6]. In particular, Al-Qassem et al. [1] established the Lp boundedness

of TΦ,Ω under the condition that the function Ω belongs to the block space B0,0
q (Sn−1)

introduced by Jiang and Lu in (see [14]). In fact, they proved the following theorem.

Theorem 1.1. Let TΦ,Ω be given by (1.3). Suppose that Ω ∈ B0,0
q (Sn−1) for some q > 1.

If Φ is of finite type at 0, then for 1<p <∞ there exists a constant Cp > 0 such that

∥∥TΦ,Ωf∥∥Lp(Rd) ≤ Cp‖f‖Lp(Rd) (1.4)

for any f ∈ Lp(Rd).
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It should be pointed out here that the condition Ω ∈ B0,0
q (Sn−1) in Theorem 1.1 was

recently proved to be nearly optimal. In fact, Al-Qassem et al. [2] showed that if the

condition Ω ∈ B0,0
q (Sn−1) is replaced by Ω ∈ B0,ν

q (Sn−1) for some ν < 0, then the corre-

sponding classical Calderón-Zygmund operator

TΩf(x)= p.v.
∫
Rn
f (x−y)KΩ(y)dy (1.5)

may fail to be bounded on Lp at any 1<p <∞.

Fefferman [11] and Fefferman and Stein [12] studied singular integrals on product

domains. Namely, they studied operators of the form

(
PΩf

)
(x,y)= p.v.

∫∫
Rn×Rm

f(x−u,y−v)KΩ(u,v)dudv, (1.6)

where n,m≥ 2,

KΩ(u,v)=Ω
(|u|−1u,|v|−1v

)|u|−n|v|−m,
Ω ∈ L1(Sn−1×Sm−1),Ω(tx,sy)=Ω(x,y) for any t,s > 0,∫

Sn−1
Ω(u,·)dσ(u)= 0,

∫
Sm−1

Ω(·,v)dσ(v)= 0.

(1.7)

In [12], it was shown that PΩ is bounded on Lp(Rn+m) for 1 < p < ∞ if Ω satisfies

some regularity conditions. Subsequently, the Lp (1 < p <∞) boundedness of PΩ was

established under weaker conditions onΩ, first in [7] forΩ ∈ Lq(Sn−1×Sm−1)with q > 1

and then in [9] for Ω ∈⋃q>1B
0,1
q (Sn−1×Sm−1) which contains

⋃
q>1Lq(Sn−1×Sm−1) as

a proper subspace, where B0,1
q represents a special class of block space on Sn−1×Sm−1;

for p = 2, it was proved by Jiang and Lu in [13]). The definition of block spaces will be

recalled in Section 2 (see Definitions 2.2 and 2.3).

The analogue of the operators TΦ,Ω in (1.3) on product domains is defined as follows.

For N,M ∈ N, let Φ : Bn(0,r ) → RN and Ψ : Bm(0,r ) → RM be �∞ mappings. Define

the singular integral operator PΩ,Φ,Ψ by

(
PΩ,Φ,Ψf

)
(x,y)= p.v.

∫∫
Bn(0,1)×Bm(0,1)

f
(
x−Φ(u),y−Ψ(v))KΩ(u,v)dudv. (1.8)

Using the ideas developed in [4, 8], we can easily show that PΩ,Φ,Ψ is bounded on Lp

(1 < p <∞) provided that Φ and Ψ are of finite type at 0 and Ω ∈ Lq(Sn−1×Sm−1) for

some q > 1. However, the natural question that arises here is as follows.

Question 1.2. Suppose that Ω ∈ ⋃
q>1B

0,1
q (Sn−1×Sm−1) and Φ and Ψ are of finite

type at 0. Is the operator PΩ,Φ,Ψ bounded on Lp (1<p <∞)?
In this paper, we will answer this question in the affirmative. In fact, we have the

following theorem.
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Theorem 1.3. Let PΩ,Φ,Ψ be given by (1.8). Suppose that Ω ∈ B0,1
q (Sn−1× Sm−1) for

some q > 1. If Φ and Ψ are of finite type at 0, then for 1< p <∞ there exists a constant

Cp > 0 such that

∥∥PΩ,Φ,Ψ(f )∥∥Lp(RN×RM) ≤ Cp‖f‖Lp(RN×RM) (1.9)

for any f ∈ Lp(RN×RM).
Regarding the condition Ω ∈ B0,1

q (Sn−1 × Sm−1) in Theorem 1.3, we should remark

here that in a recent paper [5], Al-Salman was able to obtain a similar result to that in

[2]. More precisely, Al-Salman showed that the size condition Ω ∈ B0,1
q (Sn−1×Sm−1) is

sharp in the sense that if Ω ∈ B0,1
q (Sn−1×Sm−1) is replaced by Ω ∈ B0,1−ε

q (Sn−1×Sm−1)
for some ε > 0, then the operator PΩ may fail to be bounded on Lp for any p.

Also, in this paper we will give a similar result for the truncated singular integral

operator

P∗Ω,Φ,Ψf(x,y)= sup
ε1,ε2>0

∣∣∣∣
∫∫
E(ε1,ε2,r )

f
(
x−Φ(u),y−Ψ(v))KΩ(u,v)dudv

∣∣∣∣, (1.10)

where E(ε1,ε2,r )= {(u,v)∈Rn×Rm : ε1 ≤ |u|< r, ε2 ≤ |v|< r}, x ∈RN and y ∈RM .

In fact, we have the following.

Theorem 1.4. Let P∗Ω,Φ,Ψ be given by (1.1) with r = 1. Suppose that Ω ∈ B0,1
q (Sn−1×

Sm−1) for some q > 1. If Φ and Ψ are of finite type at 0, then for 1<p <∞ there exists a

constant Cp > 0 such that

∥∥P∗Ω,Φ,Ψ(f )∥∥Lp(RN×RM) ≤ Cp‖f‖Lp(RN×RM) (1.11)

for any f ∈ Lp(RN×RM).
It is worth pointing out that, as in the one-parameter setting, we can show that the

Lp boundedness of the operators PΩ,Φ,Ψ and P∗Ω,Φ,Ψ may fail for any p if at least one of

the mappings Φ and Ψ is not of finite type at 0.

2. Some definitions and lemmas. We start by the following definition.

Definition 2.1. Let U be an open set in Rn and Θ :U →Rd a smooth mapping. For

x0 ∈U , it is said that Θ is of finite type at x0 if, for each unit vector η in Rd, there is a

multi-index α so that

∂
α
x
[
Θ(x)·η]x=x0

≠ 0. (2.1)

Definition 2.2. For 1 < q ≤ ∞, it is said that a measurable function b(x,y) on

Sn−1×Sm−1 is a q-block if it satisfies the following:

(i) supp(b)⊆ I, where I is a cap on Sn−1×Sm−1, that is,

I = {x′ ∈ Sn−1 :
∣∣x′ −x′0∣∣<α}×{y ′ ∈ Sm−1 :

∣∣y ′ −y ′0∣∣< β} (2.2)

for some α,β > 0, x′0 ∈ Sn−1, and y ′0 ∈ Sm−1;

(ii) ‖b‖Lq ≤ |I|−1/q′ , where 1/q+1/q′ = 1.
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Definition 2.3. The class B0,1
q (Sn−1 × Sm−1), 1 < q ≤ ∞, consists of all functions

Ω ∈ L1(Sn−1×Sm−1) of the form Ω =∑∞
µ=1 cµbµ , where each cµ is a complex number;

each bµ is a q-block supported on a cap Iµ on Sn−1×Sm−1; and

M0,1
q
({
cµ
})= ∞∑

µ=1

∣∣cµ∣∣
(

1+
(

log
1∣∣Iµ∣∣

)2)
<∞. (2.3)

In dealing with singular integrals along subvarieties with rough kernels, an approach

well-established by now is to decompose the operator into an infinite sum of Borel

measures then to seek certain Fourier transform estimates and certain Lp estimates of

Littlewood-Paley type. For more details, we advise the readers to consult [1, 3, 4, 6, 7,

8, 10], among others. A particular result that we will need to prove our results is the

following result in [4] which is an extension of a result of Duoandikoetxea in [7].

Theorem 2.4. Let M,N ∈ N and let {σ(l,s)k,j : k,j ∈ Z, 0≤l ≤ N, 0 ≤ s ≤ M} be a

family of Borel measures on Rn×Rm with σ(l,0)k,j = 0 and σ(0,s)k,j = 0 for every k,j ∈ Z.

Let {al,bs : 1 ≤ l ≤ N, 1 ≤ s ≤M} ⊆ R+ \(0,2), {B(l),D(s) : 1 ≤ l ≤ N, 1 ≤ s ≤M} ⊆ N,

{αl,βs : 1≤ l≤N, 1≤ s ≤M} ⊆R+, and let Ll :Rn→RB(l) andQs :Rm →RD(s) be linear

transformations for 1 ≤ l ≤ N, 1 ≤ s ≤M . Suppose that for some B > 1 and p0 ∈ (2,∞)
the following hold for k,j ∈ Z, 1≤ l≤N, 1≤ s ≤M , and (ξ,η)∈Rn×Rm:

(i) ‖σ(l,s)k,j ‖ ≤ B2;

(ii) |σ̂ (l,s)k,j (ξ,η)| ≤ B2|akBl Ll(ξ)|−αl/B|bjBs Qs(η)|−βs/B ;

(iii) |σ̂ (l,s)k,j (ξ,η)− σ̂ (l−1,s)
k,j (ξ,η)| ≤ B2|akBl Ll(ξ)|αl/B|bjBs Qs(η)|−βs/B ;

(iv) |σ̂ (l,s)k,j (ξ,η)− σ̂ (l,s−1)
k,j (ξ,η)| ≤ B2|akBl Ll(ξ)|−αl/B|bjBs Qs(η)|βs/B ;

(v) |σ̂ (l,s)k,j (ξ,η)− σ̂ (l−1,s)
k,j (ξ,η)− σ̂ (l,s−1)

k,j (ξ,η)+ σ̂ (l−1,s−1)
k,j (ξ,η)| ≤ B2|akBl Ll(ξ)|αl/B ×

|bjBs Qs(η)|βs/B ;

(vi) |σ̂ (l,s−1)
k,j (ξ,η)− σ̂ (l−1,s−1)

k,j (ξ,η)| ≤ B2|akBl Ll(ξ)|αl/B ;

(vii) |σ̂ (l−1,s)
k,j (ξ,η)− σ̂ (l−1,s−1)

k,j (ξ,η)| ≤ B2|bjBs Qs(η)|βs/B ;

(viii) for arbitrary functions gk,j on Rn×Rm,

∥∥∥∥∥∥

 ∑
k,j∈Z

∣∣∣σ(l,s)k,j ∗gk,j
∣∣∣2




1/2∥∥∥∥∥∥
p0

≤ B2

∥∥∥∥∥∥

 ∑
k,j∈Z

∣∣gk,j∣∣2




1/2∥∥∥∥∥∥
p0

. (2.4)

Then for p′0 < p < p0, where p′0 is the conjugate exponent of p0, there exists a positive

constant Cp such that

∥∥∥∥∥∥
∑
k,j∈Z

σ(N,M)k,j ∗f
∥∥∥∥∥∥
Lp(Rn×Rm)

≤ CpB2‖f‖Lp(Rn×Rm), (2.5)

∥∥∥∥∥∥

 ∑
k,j∈Z

∣∣∣σ(N,M)k,j ∗f
∣∣∣2



(1/2)∥∥∥∥∥∥

Lp(Rn×Rm)
≤ CpB2‖f‖Lp(Rn×Rm) (2.6)

hold for all f in Lp(Rn×Rm). The constant Cp is independent of the linear transforma-

tions {Ll}Nl=1 and {Qs}Ms=1.
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It is clear that inequality (2.4) is one of the key elements in Theorem 2.4. In particular,

the range of the parameter p where (2.5) and (2.6) hold is completely determined by

the largest p0 where (2.4) holds. Clearly, if (2.4) holds for large p0 →∞, then (2.5) and

(2.6) hold for all 1 < p <∞. It turns out that to prove our results, we will indeed run

into the case where we need to obtain (2.5) and (2.6) for all 1<p <∞. However, in our

case this obstacle can be resolved. In fact, we will show that inequality (2.4) holds for

all p0 = 4,8,16, . . . . Our main tools to achieve this are Lemma 2.5 and Theorem 2.6.

By a quick investigation of the proof of [7, Lemma 1], we have the following.

Lemma 2.5. Let {νk,j : k,j ∈ Z} be a sequence of Borel measures in Rn×Rm and let

ν∗(f )= supk,j∈Z ||νk,j|∗f |. Suppose that for some q > 1 and A> 0,

∥∥ν∗(f )∥∥q ≤A‖f‖q (2.7)

for every f in Lq(Rn×Rm). Then the vector-valued inequality

∥∥∥∥∥∥

 ∑
k,j∈Z

∣∣νk,j∗gk,j∣∣2




1/2∥∥∥∥∥∥
p0

≤
√
A sup
k,j∈Z

∥∥νk,j∥∥
∥∥∥∥∥∥

 ∑
k,j∈Z

∣∣gk,j∣∣2




1/2∥∥∥∥∥∥
p0

(2.8)

holds for |1/p0−1/2| = 1/2q and for arbitrary functions {gk,j} on Rn×Rm.

Clearly, if inequality (2.7) holds for all 1 < q < ∞, then inequality (2.8) holds for

all p0 = 4,8,16, . . . which is the case that we will need to prove our results. But in

many applications including the ones in this paper inequality (2.7) is not always freely

available for all 1 < q <∞. However, this problem can be resolved by repeated use of

Theorem 2.4 and Lemma 2.5 along with a certain bootstrapping argument (see (2.15)–

(2.22)). To be more specific, we prove the following theorem.

Theorem 2.6. Let m,n,M,N ∈ N, B > 1, a,b ≥ 2, α,β > 0, and let L : Rn → RN

and Q : Rm → RM be linear transformations. Let {λ(l,s)k,j : k,j ∈ Z, l = 1,2, s = 1,2} be

a sequence of nonnegative Borel measures on Rn×Rm with ‖λ(l,s)k,j ‖ ≤ B2, 1 ≤ l,s ≤ 2.

Suppose that

(i) |λ̂(2,2)k,j (ξ,η)| ≤ B2|akBL(ξ)|−α/B|bjBQ(η)|−β/B ;

(ii) |λ̂(2,2)k,j (ξ,η)− λ̂(1,2)k,j (ξ,η)| ≤ B2|akBL(ξ)|α/B|bjBQ(η)|−β/B ;

(iii) |λ̂(2,2)k,j (ξ,η)− λ̂(2,1)k,j (ξ,η)| ≤ B2|akBL(ξ)|−α/B|bjBQ(η)|β/B ;

(iv) |λ̂(2,2)k,j (ξ,η)−λ̂(1,2)k,j (ξ,η)−λ̂(2,1)k,j (ξ,η)+λ̂(1,1)k,j (ξ,η)| ≤ B2|akBL(ξ)|α/B|bjBQ(η)|β/B ;

(v) |λ̂(2,1)k,j (ξ,η)− λ̂(1,1)k,j (ξ,η)| ≤ B2|akBL(ξ)|α/B ;

(vi) |λ̂(1,2)k,j (ξ,η)− λ̂(1,1)k,j (ξ,η)| ≤ B2|bjBQ(η)|β/B .

Suppose also that the maximal functions M(l,s)(f )= supk,j∈Z ||λ(l,s)k,j |∗f |, 1≤ l, s ≤ 2,

satisfy

∥∥M(l,s)(f )∥∥p ≤ B2‖f‖p (2.9)

for all (l,s)∈ {(1,2),(2,1),(1,1)}, 1<p 
∞, and f ∈ Lp(Rn×Rm).
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Then the inequality

∥∥M(2,2)(f )∥∥p ≤ CB2‖f‖p (2.10)

holds for all 1 < p 
∞, and f in Lp(Rn×Rm). The constant C is independent of B and

the linear transformations L and Q.

Proof. Let d be a fixed positive integer. For 1 ≤ u ≤ d, we let πdu : R
d → Ru be

the projection operator. By a similar argument to that in [10], we may assume that

N ≤ n, M ≤m, L = πnN , and Q = πmM . Choose and fix a Schwartz function φ ∈ �(R)
such that (φ̂)(t) ≡ 1 if |t| ≤ 1/2 and (φ̂)(t) ≡ 0 if |t| ≥ 1. Define ϕk on RN and ψj on

RM by (ϕ̂k)(w) = (φ̂)(|akBw|2) and (ψ̂j)(z) = (φ̂)(|bjBz|2). Define the sequence of

measures {Γk,j} by

Γ̂k,j(ξ,η)= λ̂(2,2)k,j (ξ,η)− λ̂(1,2)k,j (ξ,η)
(
ϕ̂k

)(
πnNξ

)− λ̂(2,1)k,j (ξ,η)

×(ψ̂j)(πmM η)+ λ̂(1,1)k,j (ξ,η)
(
ϕ̂k

)(
πnNξ

)(
ψ̂j
)(
πmM η

)
.

(2.11)

Then one can easily verify that

∣∣Γ̂k,j(ξ,η)∣∣≤ CB2(akB∣∣L(ξ)∣∣)±α/2B(bjB∣∣Q(η)∣∣)±β/2B (2.12)

for (ξ,η) ∈ Rn×Rm. Let g(f) = (∑k,j∈Z |Γk,j ∗f |2)1/2
and Γ∗(f ) = supk,j∈Z ||Γk,j|∗f |.

By (2.11) we have

M(2,2)f (x,y)≤ g(f)(x,y)+C((�RN ⊗idRn−N
)⊗idRM )(M(1,2)f (x,y))

+C(idRN ⊗(�RM ⊗idRm−M
))(
M(2,1)f (x,y)

)
+C((�RN ⊗idRn−N

)⊗(�RM ⊗idRm−M
))(
M(1,1)f (x,y)

)
,

(2.13)

Γ∗f(x,y)≤ g(f)(x,y)+2C
((

�RN ⊗idRn−N
)⊗idRM )(M(1,2)f (x,y))

+2C
(
idRN ⊗

(
�RM ⊗idRm−M

))(
M(2,1)f (x,y)

)
+2C

((
�RN ⊗idRn−N

)⊗(�RM ⊗idRm−M
))(
M(1,1)f (x,y)

)
,

(2.14)

where �Rd is the classical Hardy-Littlewood maximal function on Rd.

By Plancherel’s theorem and (2.12), we get

∥∥g(f)∥∥L2 ≤ CB2‖f‖L2 (2.15)

which implies by (2.9) and (2.14) that

∥∥Γ∗(f )∥∥L2 ≤ CB2‖f‖L2 . (2.16)

By applying Lemma 2.5 (for q = 2) along with the trivial estimate ‖Γk,j‖ ≤ CB2, we get

∥∥∥∥∥∥

 ∑
k,j∈Z

∣∣Γk,j∗gk,j∣∣2




1/2∥∥∥∥∥∥
p0

≤ Cp0B
2

∥∥∥∥∥∥

 ∑
k,j∈Z

∣∣gk,j∣∣2




1/2∥∥∥∥∥∥
p0

(2.17)
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for all p0 satisfying 1/4= |1/p0−1/2|. By Theorem 2.4, (2.12), and (2.17), we obtain

∥∥g(f)∥∥Lp ≤ CpB2‖f‖Lp for
4
3
<p < 4 (2.18)

which implies by (2.9) and (2.14) that

∥∥Γ∗(f )∥∥Lp ≤ CB2‖f‖Lp for
4
3
<p < 4. (2.19)

Reasoning as above, we get

∥∥g(f)∥∥Lp ≤ CpB2‖f‖Lp for
8
7
<p < 8. (2.20)

By repeating the above argument we eventually get

∥∥g(f)∥∥Lp ≤ CpB2‖f‖Lp for 1<p <∞ (2.21)

which when combined with (2.9) and (2.13) implies that

∥∥M(2,2)(f )∥∥Lp ≤ CpB2‖f‖Lp for 1<p <∞. (2.22)

For p =∞, the inequality holds trivially. The proof of the theorem is complete.

For ρ ≥ 2, k,j ∈ Z−, let D(k,j,ρ)= {(u,v) ∈ Rn×Rm : ρk−1 ≤ |u|< ρk, ρj−1 ≤ |v| <
ρj}. For suitable mappings Γ : Rn → RN , Λ : Rm → RM , and b̃ : Sn−1 × Sm−1 → R, we

define the measures {∆b̃,Γ ,Λ,k,j,ρ : k,j ∈ Z−} and the related maximal operator ∆∗b̃,Γ ,Λ,ρ
on RN×RM by

∫∫
RN×RM

f d∆b̃,Γ ,Λ,k,j,ρ =
∫∫
D(k,j,ρ)

f
(
Γ(x),Λ(y)

)
b̃
(
x′,y ′

)|x|−n|y|−mdxdy,
∆∗b̃,Γ ,Λ,ρf (x,y)= sup

k,j∈Z−

∣∣∣∣∆b̃,Γ ,Λ,k,j,ρ∣∣∗f(x,y)∣∣. (2.23)

For l∈N, let �l denote the class of polynomials of l variables with real coefficients.

For d∈N and �= (�1, . . . ,�d)∈ (�1)d, define the maximal function ��f on Rd by

��f(x)= sup
r>0

1
r

∫ r
−r

∣∣f (x−�(t)
)∣∣dt. (2.24)

The following result can be found in [15].

Lemma 2.7. For 1<p ≤∞, there exists a positive constant Cp such that

∥∥��f
∥∥
p ≤ Cp‖f‖p (2.25)

for f ∈ Lp(Rd). The constant Cp may depend on the degrees of the polynomials �1, . . . ,
�d, but it is independent of their coefficients.
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Lemma 2.8. Let Φ : Bn(0,1) → RN and Ψ : Bm(0,1) → RM be C∞ mappings and let,

�= (P1, . . . ,PN) :Rn→RN and � = (Q1, . . . ,QM) :Rm →RM be polynomial mappings. Let

b̃(·,·) be a function on Sn−1×Sm−1 satisfying the following conditions:

(i) ‖b̃‖Lq(Sn−1×Sm−1) ≤ |I|−1/q′ for some q > 1 and for some cap I on Sn−1×Sm−1;

(ii) ‖b̃‖L1(Sn−1×Sm−1) ≤ 1. Let ρ = 2[log(1/|I|)] and B(I,ρ) = log(1/|I|) if |I| < e−1 and

let ρ = 2 and B(I,ρ)= 1 if |I| ≥ e−1, where [·] is the greatest integer function.

If Φ and Ψ are of finite type at 0, then for 1<p ≤∞ and f ∈ Lp(RN×RM) there exists

a positive constant Cp which is independent of b̃ such that

∥∥∥∆∗b̃,�,Ψ ,ρ(f )
∥∥∥
Lp(RN×RM) ≤ Cp

[
B(I,ρ)

]2‖f‖Lp(RN×RM), (2.26)∥∥∥∆∗b̃,Φ,�,ρ(f )
∥∥∥
Lp(RN×RM) ≤ Cp

[
B(I,ρ)

]2‖f‖Lp(RN×RM). (2.27)

Proof. We will only present the proof of (2.26). By the definition of∆∗b̃,�,Ψ ,ρ we notice

that ∆∗b̃,�,Ψ ,ρf (x,y) is dominated by

sup
j∈Z−

∫
ρj−1≤|v|<ρj

1
|v|m

∫
Sn−1

∣∣b̃(u,v)∣∣∣∣(��,ρ,uf
(·,y−Ψ(v)))(x)∣∣dσ(u)dv, (2.28)

where

��,ρ,uh(x)= sup
k∈Z−

∫ ρk
ρk−1

∣∣h(x−�(tu)
)∣∣dt
t
. (2.29)

By Lemma 2.7 we immediately get

∥∥∥∆∗b̃,�,Ψ ,ρ(f )
∥∥∥
Lp(RN×RM) ≤ Cp

[
B(I,ρ)

](∫
RM

∥∥�Ψ ,b̃0
f(·,y)∥∥pLp(RN)dy

)1/p

, (2.30)

where

�Ψ ,b̃0
g(y)= sup

j∈Z−

∫
ρj−1≤|v|<ρj

∣∣g(y−Ψ(v))∣∣ b̃0(v)
|v|m dv (2.31)

and b̃0 is a function on Sm−1 defined by b̃0(v)=
∫
Sn−1 |b̃(u,v)|dσ(u). By the arguments

in the proof of the Lp boundedness of the corresponding maximal function in the one-

parameter setting in [1, Theorem 3.8], we obtain (2.26). This ends the proof of our

theorem.

By Lemma 2.7 we immediately get the following.

Lemma 2.9. Let � = (P1, . . . ,PN) : Rn → RN and � = (Q1, . . . ,QM) : Rm → RM be poly-

nomial mappings. Let b̃(·,·) be as in Lemma 2.8. Then for 1 < p ≤ ∞, there exists a

constant Cp such that

∥∥∥∆∗b̃,�,�,ρ(f )
∥∥∥
p
≤ Cp

[
B(I,ρ)

]2‖f‖Lp(RN×RM) (2.32)

for f ∈ Lp(RN×RM).



ROUGH SINGULAR INTEGRALS ON PRODUCT SPACES 3679

3. Certain Fourier transform estimates. We will need the following two lemmas

from [8].

Lemma 3.1. Let Φ : B(0,1)→ Rd be a smooth mapping and let Ω be a homogeneous

function on Rn of degree 0. Suppose that Φ is of finite type at 0 and Ω ∈ Lq(Sn−1) for

some q > 1. Then there are N0 ∈N, δ∈ (0,1], C > 0, and j0 ∈ Z− such that

∣∣∣∣∣
∫

2j−1≤|y|<2j
e−iξ·Φ(y)

Ω(y)
|y|n dy

∣∣∣∣∣≤ C‖Ω‖Lq(Sn−1)
(
2N0j|ξ|)−δ (3.1)

for all j ≤ j0 and ξ ∈Rd.

Lemma 3.2. Letm∈N and let R(·) be a real-valued polynomial on Rn with deg(R) 

m−1. Suppose that P(y)=∑|α|=maαy

α+R(y),Ω is a homogeneous function of degree

zero, and Ω∈ Lq(Sn−1) for some q > 1. Then there exists a constant C > 0 such that

∣∣∣∣∣
∫

2j−1≤|y|<2j
e−iP(y)

Ω(y)
|y|n dy

∣∣∣∣∣≤ C‖Ω‖Lq(Sn−1)

(
2mj

∑
|α|=m

∣∣aα∣∣
)−1/2q′m

(3.2)

holds for all j ∈ Z− and aα ∈R.

Lemma 3.3. Let Φ : Bn(0,1) → RN and Ψ : Bm(0,1) → RM be C∞ mappings and let

b̃(·,·), I, ρ, and B(I,ρ) be as in Lemma 2.8. Suppose that Φ and Ψ are of finite type at

0. Then there are N0,M0 ∈N, δ∈ (0,1], C > 0, and j0,k0 ∈ Z− such that

∣∣∆̂b̃,Φ,Ψ ,k,j,ρ(ξ,η)∣∣≤ C[B(I,ρ)]2(ρN0k|ξ|)−δ/B(I,ρ)(ρM0j|η|)−δ/B(I,ρ) (3.3)

for all k≤ k0, j ≤ j0, and (ξ,η)∈RN×RM .

Proof. We start by the proof of (3.3) for the case |I| < e−1. By the definition of

∆b̃,Φ,Ψ ,k,j,ρ , we get

∣∣∆̂b̃,Φ,Ψ ,k,j,ρ(ξ,η)∣∣≤ C
[

log
(

1
|I|
)]∫

Sm−1
Sk(y,ξ)dσ(y), (3.4)

where

Sk(y,ξ)=
∣∣∣∣∣
∫
ρk−1≤|x|<ρk

e−iξ·Φ(x)
b̃(x,y)
|x|n dx

∣∣∣∣∣. (3.5)

Now, by Lemma 3.1,

∣∣Sk(y,ξ)∣∣≤
[log1/|I|]−1∑

s=0

∫
Sm−1

∣∣∣∣∣
∫
ρ(k−1)2s≤|x|<ρ(k−1)2(s+1)

e−iξ·Φ(x)
b̃(x,y)
|x|n dx

∣∣∣∣∣
≤ C

[log1/|I|]−1∑
s=0

∫
Sm−1

∥∥b̃(·,y)∥∥Lq(Sn−1)
(
ρN0(k−1)2N0(s+1)|ξ|)−δ

≤ CρδN0

∫
Sm−1

∥∥b̃(·,y)∥∥Lq(Sn−1)
(
ρN0k|ξ|)−δ.

(3.6)
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Therefore, by Lemma 2.8(i) and Hölder’s inequality, we have

∣∣∆̂b̃,Φ,Ψ ,k,j,ρ(ξ,η)∣∣≤ CρδN|I|−1/q′(ρN0k|ξ|)−δ (3.7)

which, when combined with the trivial bound |�̂b̃,Φ,Ψ ,k,j,ρ(ξ,η)| ≤ C[log(1/|I|)]2, im-

plies

∣∣∆̂b̃,Φ,Ψ ,k,j,ρ(ξ,η)∣∣≤ C
[

log
(

1
|I|
)]2(

ρN0k|ξ|)−δ/[log(1/|I|)]. (3.8)

Similarly, we have

∣∣∆̂b̃,Φ,Ψ ,k,j,ρ(ξ,η)∣∣≤ C
[

log
(

1
|I|
)]2(

ρM0j|η|)−δ/[log(1/|I|)]. (3.9)

Combining estimates (3.8) and (3.9) yields the estimate in (3.3) when |I|< e−1.

The proof of (3.3) for the case |I| ≥ e−1 follows by exactly the same argument as

that for the case |I| < e−1 but this time we replace ρ and log(1/|I|) by 2 and log(2),
respectively, and use the observation that |I|−1/q′ ≤ e. This concludes the proof of our

lemma.

By Lemma 3.2 and the same argument employed in the proof of Lemma 3.3, we get

the following.

Lemma 3.4. Let N0,M0 ∈ N, and let b̃(·,·), I, ρ, and B(I,ρ) be as in Lemma 2.8. Let

R1(·) and R2(·) be real-valued polynomials on Rn and Rm, respectively, with deg(R1) 

N0−1 and deg(R2) 
M0−1. Let P(x)=∑|α|=N0

aαx
α+R1(x) andQ(y)=∑|β|=M0

bβy
β+

R2(y). Then there exists a constant C > 0 such that for all k,j ∈ Z and aα,bβ ∈R,

∣∣∣∣∣
∫∫
D(k,j,ρ)

ei(P(x)+Q(y))
b̃(x,y)
|x|n|y|mdxdy

∣∣∣∣∣
≤ C[B(I,ρ)]2

(
ρN0k

∑
|α|=N0

∣∣aα∣∣
)−1/2q́N0B(I,ρ)(

ρM0j
∑

|β|=M0

∣∣bβ∣∣
)−1/2q́M0B(I,ρ)

.
(3.10)

Theorem 3.5. Let Φ : Bn(0,1)→ RN and Ψ : Bm(0,1)→ RM be C∞ mappings and let

b̃(·,·), I, ρ, and B(I,ρ) be as in Lemma 2.8. Suppose that Φ and Ψ are of finite type at

0. Then for 1<p ≤∞ and f ∈ Lp(RN×RM), there exists a positive constant Cp which is

independent of b̃ such that

∥∥∆∗b̃,Φ,Ψ ,ρ(f )∥∥p ≤ Cp[B(I,ρ)]2‖f‖p. (3.11)
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Proof. Without loss of generality, we may assume that b̃ ≥ 0. Let N0,M0 ∈ N,

δ ∈ (0,1], C > 0, and k0,j0 ∈ Z− be as in Lemma 3.3. For Φ = (Φ1, . . . ,ΦN) and Ψ =
(Ψ1, . . . ,ΨM), we let �= (P1, . . . ,PN) and � = (Q1, . . . ,QM), where

Pl(x)=
∑

|α|=N0−1

1
α!
∂αΦl
∂xα

(0)x
α
,

Qs(y)=
∑

|β|
M0−1

1
β!
∂βΨs
∂yβ

(0)y
β
,

(3.12)

for 1
 s 
M and 1
 l 
N. Then,

∣∣∆̂b̃,Φ,Ψ ,k,j,ρ(ξ,η)−∆̂b̃,�,Ψ ,k,j,ρ(ξ,η)∣∣≤ C(ρN0k|ξ|)
∫

Sn−1
Hj(x,η)dσ(x), (3.13)

where

Hj(x,η)=
∣∣∣∣∣
∫
ρj−1≤|y|<ρj

e−iη·Ψ(y)
b̃(x,y)
|y|m dy

∣∣∣∣∣. (3.14)

By Lemma 3.1 and the argument in the proof of (3.3), we get

∣∣∆̂b̃,Φ,Ψ ,k,j,ρ(ξ,η)−∆̂b̃,�,Ψ ,k,j,ρ(ξ,η)∣∣
≤ C[B(I,ρ)]2(ρN0k|ξ|)δ/[B(I,ρ)](ρM0j|η|)−δ/[B(I,ρ)]. (3.15)

Similarly, it is easy to verify that the following estimates hold:

∣∣∆̂b̃,Φ,Ψ ,k,j,ρ(ξ,η)−∆̂b̃,Φ,�,k,j,ρ(ξ,η)∣∣
≤ C[B(I,ρ)]2(ρN0k|ξ|)−δ/[B(I,ρ)](ρM0j|η|)δ/[B(I,ρ)],∣∣∆̂b̃,Φ,Ψ ,k,j,ρ(ξ,η)−∆̂b̃,�,Ψ ,k,j,ρ(ξ,η)−∆̂b̃,Φ,�,k,j,ρ(ξ,η)+∆̂b̃,�,�,k,j,ρ(ξ,η)∣∣
≤ C[B(I,ρ)]2(ρN0k|ξ|)δ/[B(I,ρ)](ρM0j|η|)δ/[B(I,ρ)],∣∣∆̂b̃,Φ,�,k,j,ρ(ξ,η)−∆̂b̃,�,�,k,j,ρ(ξ,η)∣∣≤ C[B(I,ρ)]2(ρN0k|ξ|)δ/[B(I,ρ)],∣∣∆̂b̃,�,Ψ ,k,j,ρ(ξ,η)−∆̂b̃,�,�,k,j,ρ(ξ,η)∣∣≤ C[B(I,ρ)]2(ρM0j|η|)δ/[B(I,ρ)].

(3.16)

By (3.3), (3.15)–(3.16), Theorem 2.6, and Lemmas 2.8 and 2.9, we get (3.11). This con-

cludes the proof of the theorem.

4. Proof of Theorem 1.3. By assumption, Ω can be written as Ω=∑∞
µ=1 cµbµ , where

cµ ∈ C, bµ is q-block supported on a cap Iµ on Sn−1× Sm−1, and M0,1
q ({cµ}) satisfies
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(2.3). Every q-block function bµ(·,·) has a companion function b̃µ(·,·) defined by

b̃µ(x,y)= bµ(x,y)−
∫

Sn−1
bµ(u,y)dσ(u)−

∫
Sm−1

bµ(x,v)dσ(v)

+
∫∫

Sn−1×Sm−1
bµ(u,v)dσ(u)dσ(v).

(4.1)

It is easy to verify that each b̃µ enjoys the following properties:

∫
Sn−1

b̃µ(u,·)dσ(u)=
∫

Sm−1
b̃µ(·,v)dσ(v)= 0;

∥∥b̃µ∥∥Lq(Sn−1×Sm−1) ≤ 4|I|−1/q′ ;
∥∥b̃µ∥∥L1(Sn−1×Sm−1) ≤ 4.

(4.2)

By the vanishing property on Ω we have

Ω=
∞∑
µ=1

cµb̃µ (4.3)

and this yields

∥∥PΩ,Φ,Ψf∥∥p 

∞∑
µ=1

∣∣cµ∣∣∥∥∥Tb̃µf
∥∥∥
p
, (4.4)

where

Tb̃µf (x,y)= p.v.
∫∫
Bn(0,1)×Bm(0,1)

f
(
x−Φ(u),y−Ψ(v)) b̃µ(u,v)|u|n|v|mdudv. (4.5)

LetN0,M0, �, and � be given as in the proof of Theorem 3.5. For 1
 l 
N, 1
 s 
M ,

let al,α = (1/α!)(∂αΦl/∂x
α)(0) and bs,β = (1/β!)(∂βΨs/∂y

β)(0). For 0
 τ 
N0, 0
 κ 

M0, we define Pτ = (Pτl , . . . ,P

τ
N) and Qκ = (Qκ

1 , . . . ,Q
κ
M) by

P
τ
l (x)=

∑
|α|
τ

al,αx
α
, for l= 1, . . . ,N, 0
 τ 
N0−1;

Q
κ
s (y)=

∑
|β|
κ

bs,βy
β
, for s = 1, . . . ,M, 0
 κ 
M0−1;

(4.6)

PN0 = Φ and QM0 = Ψ . For each µ, let ρµ and B(Iµ,ρµ) be given by the same formulas

for ρ and B(I,ρ) in Lemma 2.8 with ρ, I, and B(I,ρ) replaced by ρµ , Iµ , and B(Iµ,ρµ),
respectively. For each 0 
 τ 
 N0, 0 
 κ 
 M0, let ∆(τ,κ)b̃µ ,k,j,ρµ

= ∆b̃µ ,Pτ ,Qκ ,k,j,ρµ . Then by
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Lemma 3.4 and the same argument as in the proofs of (3.3) and (3.15), we get

∥∥∥∥∆(τ,κ)b̃µ ,k,j,ρµ

∥∥∥∥
C[B(Iµ,ρµ)]2
;

∣∣∣∣∆̂(τ,κ)b̃µ ,k,j,ρµ
(ξ,η)

∣∣∣∣
C[B(Iµ,ρµ)]2


ρτkµ

∑
|α|=τ

∣∣∣∣∣∣
N∑
l=τ
al,αξl

∣∣∣∣∣∣


−ατ/[B(Iµ,ρµ)]

×

ρκjµ ∑

|β|=κ

∣∣∣∣∣∣
M∑
s=κ
bs,βηs

∣∣∣∣∣∣


−ακ[B(Iµ,ρµ)]

;

∣∣∣∣∆̂(τ,κ)b̃µ ,k,j,ρµ
(ξ,η)−∆̂(τ−1,κ)

b̃µ ,k,j,ρµ
(ξ,η)

∣∣∣∣
C[B(Iµ,ρµ)]2


ρτkµ ∑

|α|=τ

∣∣∣∣∣∣
N∑
l=τ
al,αξl

∣∣∣∣∣∣


ατ[B(Iµ,ρµ)]

×

ρκjµ ∑

|β|=κ

∣∣∣∣∣∣
M∑
s=κ
bs,βηs

∣∣∣∣∣∣


−ακ/[B(Iµ,ρµ)]

;

∣∣∣∣∆̂(τ,κ)b̃µ ,k,j,ρµ
(ξ,η)−∆̂(τ,κ−1)

b̃µ ,k,j,ρµ
(ξ,η)

∣∣∣∣
C[B(Iµ,ρµ)]2


ρτkµ ∑

|α|=τ

∣∣∣∣∣∣
N∑
l=τ
al,αξl

∣∣∣∣∣∣


−ατ/[B(Iµ,ρµ)]

×

ρκjµ ∑

|β|=κ

∣∣∣∣∣∣
M∑
s=κ
bs,βηs

∣∣∣∣∣∣


ακ/[B(Iµ,ρµ)]

;

∣∣∣∣∆̂(τ,κ)b̃µ ,k,j,ρµ
(ξ,η)−∆̂(τ−1,κ)

b̃µ ,k,j,ρµ
(ξ,η)−∆̂(τ,κ−1)

b̃µ ,k,j,ρµ
(ξ,η)+∆̂(τ−1,κ−1)

b̃µ ,k,j,ρµ
(ξ,η)

∣∣∣∣


C
[
B
(
Iµ,ρµ

)]2


ρτkµ ∑

|α|=τ

∣∣∣∣∣∣
N∑
l=τ
al,αξl

∣∣∣∣∣∣


−ατ/[B(Iµ,ρµ)]

×

ρκjµ ∑

|β|=κ

∣∣∣∣∣∣
M∑
s=κ
bs,βηs

∣∣∣∣∣∣


ακ/[B(Iµ,ρµ)]

;

∣∣∣∣∆̂(τ,κ−1)
b̃µ ,k,j,ρµ

(ξ,η)−∆̂(τ−1,κ−1)
b̃µ ,k,j,ρµ

(ξ,η)
∣∣∣∣
C[B(Iµ,ρµ)]2


ρτkµ ∑

|α|=τ

∣∣∣∣∣∣
N∑
l=τ
al,αξl

∣∣∣∣∣∣


ατ/[B(Iµ ,ρµ)]

;

∣∣∣∣∆̂(τ−1,κ)
b̃µ ,k,j,ρµ

(ξ,η)−∆̂(τ−1,κ−1)
b̃µ ,k,j,ρµ

(ξ,η)
∣∣∣∣
C[B(Iµ,ρµ)]2


ρκjµ ∑

|β|=κ

∣∣∣∣∣∣
M∑
s=κ
bs,βηs

∣∣∣∣∣∣


ακ/[B(Iµ,ρµ)]

;

(4.7)

for µ = 1,2, . . . ;1
 τ 
N0−1; 1
 κ 
M0−1.
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By (3.3), (3.15)-(3.16), (4.7)-(4.8), Lemma 2.5, Theorems 2.4 and 3.5, and Lemma 2.9,

we get

∥∥Tb̃µf‖p =
∥∥∥∥∥

∑
k,j∈Z−

∆(N0,M0)
b̃µ ,k,j,ρµ

∗f
∥∥∥∥∥
p
≤ Cp

[
B
(
Iµ,ρµ)

]2‖f‖p, (4.8)

for every f ∈ Lp(RN×RM), µ = 1,2, . . . , and for all p, 1<p <∞. Hence, (1.9) follows by

(2.3), (4.4), and (4.8).

Finally, a proof of Theorem 1.4 can be obtained using the above estimates and the

techniques in [4]. We omit the details.
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