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1. Introduction. Among the oldest separation axioms in topology there are three

famous ones, T0, T1, and T2.

The T0-axiom is usually credited to Kolmogoroff and the T1-axiom to Fréchet or Riesz

(and spaces satisfying the axioms are sometimes called Kolmogoroff spaces, Fréchet

spaces, or Riesz spaces, accordingly). The T2-axiom is included in the original list of

axioms for a topology given by Hausdorff [10].

We denote by Top the category of topological spaces with continuous maps as mor-

phisms, and by Topi the full subcategory of Top whose object is Ti-spaces. It is a part of

the folklore of topology that Topi+1 is a reflective subcategory of Topi, for i=−1,0,1,

with Top−1 = Top. Thus Topi is reflective in Top, for each i= 0,1,2 (see MacLane [17]).

In other words, there is a universal Ti-space for every topological space X; we denote it

by Ti(X). The assignment X � Ti(X) defines a functor Ti from Top onto Topi, which

is a left adjoint functor of the inclusion functor Topi↩ Top.

The first section of this paper is devoted to the characterization of morphisms in

Top rendered invertible by the functor T0.

Let X be a topological space. Then Ti(X) is a Ti-space; moreover, Ti(X) may be a

Ti+1-space. The second section deals with space X such that Ti(X) is a Ti+1-space.

Definition 1.1. Let i, j be two integers such that 0≤ i < j ≤ 2. A topological space

X is said to be a T(i,j)-space if Ti(X) is a Tj-space (thus there are three new types of

separation axioms; namely, T(0,1), T(0,2), and T(1,2)).

More generally, one may introduce the following categorical concept.

Definition 1.2. Let C be a category and F, G two (covariant) functors from C to

itself.

(1) An object X of C is said to be a T(F,G)-object if G(F(X)) is isomorphic with F(X).
(2) Let P be a topological property. An object X of C is said to be a T(F,P)-object if

F(X) satisfies the property P.

Recall that a topological space X is said to be a TD-space [1] if every one-point set

of X is locally closed. For the separation axioms T0, T1, T2, TD , we classically have
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the following implications:

T2 �⇒ T1 �⇒ TD �⇒ T0. (1.1)

Following Definition 1.2, one may define another new separation axiom; namely,

T(0,D). Unfortunately, we have no intrinsic topological characterization of T(1,2)-spaces.

However, T(0,D)-, T(0,1)-, and T(0,2)-spaces are completely characterized in Section 3.

Section 4 deals with the separation axioms T(0,S), T(S,D), T(S,1), and T(S,2), where S is

the functor of soberification from Top to itself (following Definition 1.2, a space X is

said to be T(S,D) if S(X) is a TD-space).

One of the two anonymous referees of this paper has notified that the TD property is

not reflective in Top; the second author has asked Professor H. P. Kunzi (University of

Cape Town) for an explanation of this fact. We give this explanation as communicated

by Kunzi.

In [5, Remark 4.2, page 408], Brümmer has proved that the countable product of

the Sierpinski space is not a TD-space. On the other hand, according to Herrlich and

Strecker [12], if a subcategory A is reflective in a category B, then for each category I,

A is closed under the formation of I-limits in B (see [12, Theorem 36.13]). (Taking I a

discrete category, you see that in particular A is closed under products in B.) Therefore

the full subcategory TopD of Top whose objects are TD-spaces is not reflective in Top.

The importance and usefulness of compactness properties in topology and func-

tional analysis is universally recognized. Compactifications of topological spaces have

been studied extensively, as well as the associated Stone-Čech compactification.

In [11], Herrlich has stated that it is of interest to determine if the Wallman com-

pactification may be regarded as a functor, especially as an epireflection functor, on a

suitable category of spaces. This problem was solved affirmatively by Harris in [9].

LetX, Y be two T1-topological spaces and f :X → Y a continuous map. Aw-extension

of f is a continuous map w(f) :wX →wY such that w(f)◦ωX =ωY ◦f , where wX
is the Wallman compactification of X and ωX :X →wX is the canonical embedding of

X into its Wallman compactification wX.

In Section 5, we attempt to characterize when Wallman extensions of maps are home-

omorphisms.

2. Topologically onto quasihomeomorphisms. Recall that a continuous map q :

Y → Z is said to be a quasihomeomorphism if U � �→ q−1(U) defines a bijection �(Z)→
�(Y) [8], where �(Y) is the set of all open subsets of the space Y . A subset S of a

topological space X is said to be strongly dense in X if S meets every nonempty locally

closed subset of X [8]. Thus a subset S of X is strongly dense if and only if the canoni-

cal injection S ↩X is a quasihomeomorphism. It is well known that a continuous map

q : X → Y is a quasihomeomorphism if and only if the topology of X is the inverse

image by q of that of Y and the subset q(X) is strongly dense in Y [8]. The notion of

quasihomeomorphism is used in algebraic geometry and it has recently been shown

that this notion arises naturally in the theory of some foliations associated to closed

connected manifolds (see [3, 4]).

Now, we give some straightforward remarks about quasihomeomorphisms.
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Remark 2.1. (1) If f : X → Y , g : Y → Z are continuous maps and two of the three

maps f , g, g◦f are quasihomeomorphisms, then so is the third one.

(2) Let q :X → Y be a continuous onto map. Then the following statements are equiv-

alent (see [7, Lemma 1.1]):

(i) q is a quasihomeomorphism;

(ii) q is open and for each open subset U of X, we have q−1(q(U))=U ;

(iii) q is closed and for each closed subset C of X, we have q−1(q(C))= C .

We introduce the concept of “topologically onto (resp., one-to-one) maps” as follows.

Definition 2.2. Let q :X → Y be a continuous map.

(1) It is said that q is topologically onto if, for each y ∈ Y , there exists x ∈ X such

that {y} = {q(x)}.
(2) q is said to be topologically one-to-one if, for eachy,x ∈X such that q(x)= q(y),

{y} = {x}.
(3) q is said to be topologically bijective if it is topologically onto and topologically

one-to-one.

We recall the T0-identification of a topological space which is done by Stone [18].

Let X be a topological space and define ∼ on X by x ∼ y if and only if {x} = {y}.
Then ∼ is an equivalence relation on X and the resulting quotient space X/ ∼ is a T0-

space. This procedure and the space it produces are referred to as the T0-identification

of X. Clearly, T0(X) = X/ ∼. The canonical onto map from X onto its T0-identification

T0(X) will be denoted by µX . Of course, µX is an onto quasihomeomorphism.

As recalled in the introduction, T0 defines a (covariant) functor from Top to itself. If

q :X → Y is a continuous map, then the diagram

X

µX

q
Y

µY�

T0(X)
T0(q)

T0(Y)

(2.1)

is commutative.

Example 2.3. (1) Every one-to-one continuous map is topologically one-to-one.

(2) Every onto continuous map is topologically onto.

(3) A topologically bijective map need not be one-to-one.

Let X be a topological space which is not T0. Of course, µX is topologically bijective

and µX is not one-to-one.

For any functor F : C → D between two given categories, the set of all arrows in C

rendered invertible by F has, sometimes, important applications. The following result

characterizes morphisms in Top rendered invertible by the functor T0.
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Theorem 2.4. Let q :X → Y be a continuous map. Then the following statements are

equivalent:

(i) q is a topologically onto quasihomeomorphism;

(ii) T0(q) is a homeomorphism.

Proof. (i)⇒(ii). The map T0(q)◦µX is a quasihomeomorphism, since T0(q)◦µX =
µY ◦q. Hence T0(q) is a quasihomeomorphism, by Remark 2.1(1).

T0(q) is onto. Let µY (y) ∈ T0(Y). Then there exists an x ∈ X such that {y} =
{q(x)}. Hence µY (y)= µY (q(x)). Thus µY (y)= T0(q)(µX(x)).

T0(q) is one-to-one. Let µX(x),µX(x′) ∈ T0(X) be such that T0(q)(µX(x)) =
T0(q)(µX(x′)). Then µY (q(x)) = µY (q(x′)). Hence {q(x)} = {q(x′)}. We are aiming

to prove that {x} = {x′}; it is sufficient to show that {x} ⊆ {x′}. Indeed, let U be an

open subset of X containing x and V an open subset of Y such that U = q−1(V). Then

q(x)∈ V . It follows that q(x′)∈ V ; that is, x′ ∈U .

Therefore, T0(q) is a bijective quasihomeomorphism. But one may check easily that

bijective quasihomeomorphisms are homeomorphisms.

(ii)⇒(i). The equality T0(q)◦µX = µY ◦q forces q to be a quasihomeomorphism, by

Remark 2.1(1). It remains to prove that q is topologically onto. To do so, let y ∈ Y .

Then there exists x ∈ X such that T0(q)(µX(x)) = µY (y). Thus µY (q(x)) = µY (y).
Therefore, {y} = {q(x)}, completing the proof.

As a direct consequence of [6, Lemma 1.2, Theorem 1.3] and Theorem 2.4, one may

give an external characterization of T0-spaces.

Theorem 2.5. (1) For any topological space X, the following statements are equiva-

lent:

(i) X is a T0-space;

(ii) for each topologically onto quasihomeomorphism q : Y → Z and each continuous

map f : Y →X, there is a unique continuous map f̃ : Z →X such that f̃ ◦q = f .

(2) Let q : Y → Z be a continuous map. Then the following statements are equivalent:

(i) q is a topologically onto quasihomeomorphism;

(ii) for each T0-space X and each continuous map f : Y → X, there is a unique con-

tinuous map f̃ : Z →X such that f̃ ◦q = f .

Question 2.6. Give an intrinsic topological characterization of morphisms in Top

rendered invertible by the functor F , where F ∈ {T1,T2}.

3. T(0,D)-, T(0,1)-, and T(0,2)-spaces. We begin by recalling the T1-reflection. Let X be

a topological space and R the intersection of all closed equivalence relations on X (an

equivalence relation on X is said to be closed if its equivalence classes are closed in X).

The quotient space X/R is homeomorphic to the T1-reflection of X.

We begin with some straightforward examples and remarks.

Remark 3.1. (1) Since

T2 �⇒ T1 �⇒ TD, (3.1)



T(α,β)-SPACES AND THE WALLMAN COMPACTIFICATION 3721

then we get

T(0,2) �⇒ T(0,1) �⇒ T(0,D). (3.2)

(2) Each T(0,2)-space is T(1,2).
(3) There is a T(1,2)-space which is not T(0,1). Let X be the Sierpinski space. Then

T1(X) is a one-point set, thus X is a T(1,2)-space. However, T0(X)=X; hence X is not a

T(0,1)-space.

(4) There is a T(0,1)-space which is not T(1,2): it suffices to consider a T1-space which

is not T2.

(5) There is a T(0,1)-space which is not T(0,2): take a T1-space which is not T2.

(6) There is a T(1,2)-space which is not T(0,2): the Sierpinski space does the job.

(7) There is a T(0,D)-space which is not T(0,1): it suffices to consider a TD-space which

is not T1.

(8) There is a T(0,D)-space which is not T(1,2). The example in (4) does the job.

(9) There is a T(1,2)-space which is not T(0,D): let Y be an infinite set. Let w ∉ Y and

X = Y ∪{w}. Equip X with the topology whose closed sets are X and all finite subsets

of Y . Clearly, T1(X) is a one-point set; then X is a T(1,2)-space. But X is not T(0,D)-space,

since X is T0 and {w} is not locally closed.

Remark 3.2. Let X be a topological space. Then T0(X) is a T1-space if and only if,

for each x ∈X, {x} = µ−1
X (µX({x})), where µX :X → T0(X)=X/∼ is the canonical onto

map.

For each point x of a space X, we denote by γ(x) the set

{x}\{y ∈X : {y} = {x}}. (3.3)

With this notation, we have the following.

Theorem 3.3. Let X be a topological space. Then the following statements are equiv-

alent:

(i) X is a T(0,D)-space;

(ii) for each x ∈X, γ(x) is a closed subset of X.

The proof needs the following lemma.

Lemma 3.4. Let q :X → Y be an onto quasihomeomorphism and C a subset of Y . Then

the following statements are equivalent:

(i) C is locally closed in Y ;

(ii) q−1(C) is locally closed in X.

Proof. Let ��(X), ��(Y) be the sets of all locally closed subsets of X and Y , re-

spectively.

It is well known [8] that the map ��(Y)→��(X) defined by F � q−1(F) is bijective.

It is sufficient to show (ii)⇒(i).

Indeed, if q−1(C) is locally closed inX, then there is an L∈��(Y) such that q−1(C)=
q−1(L); and since q is onto, we get C = L, proving that C is locally closed.
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Proof of Theorem 3.3. Let µX : X → T0(X) be the canonical map from X to its

T0-reflection T0(X).
According to Lemma 3.4, X is a T(0,D)-space if and only if µ−1

X (µX({x})) is locally

closed in X, for each x ∈X.

One may check easily that µ−1
X (µX({x}))\µ−1

X (µX({x}))= γ(x). But it is well known

that a subset S of a space X is locally closed if and only if S \S is closed, completing

the proof.

The following result gives a characterization of T(0,1)-spaces.

Theorem 3.5. Let X be a topological space. Then the following statements are equiv-

alent:

(i) X is a T(0,1)-space;

(ii) for each x,y ∈X such that {x}≠ {y}, there is a neighborhood of x not contain-

ing y ;

(iii) for each x ∈X and each closed subset C of X such that {x}∩C ≠∅, x ∈ C ;

(iv) for each open subset U of X and each x ∈U , {x} ⊆U ;

(v) for each x ∈X,
⋂{U :U ∈ �(x)} =⋂{U :U ∈�(x)} = {x}, where �(x) is the set

of all open subsets of X containing x and �(x) is the set of all neighborhoods of

X.

Proof. Of course, for any topological space X and any x ∈ X, we have
⋂{U : U ∈

�(x)} =⋂{U :U ∈�(x)}.
We show the implications (i)�(ii), (i)⇒(iii)⇒(iv)⇒(i), and (i)⇒(v)⇒(iv).

(i)⇒(ii). Let x,y ∈ X be such that {x} ≠ {y}; then µX(x) ≠ µX(y). Since T0(X) is a

T1-space, there exists a neighborhoodU ′ of µX(x) not containing µX(y). Hence µ−1
X (U ′)

is a neighborhood of x not containing y .

(ii)⇒(i). Let µX(x), µX(y) be two distinct points in T0(X). Then {x} ≠ {y}. Hence

there is a neighborhood U of x not containing y . Since µX is a quasihomeomorphism,

there exists a neighborhood U ′ in T0(X) such that U = µ−1
X (U ′) and thus U ′ is a neigh-

borhood of µX(x) not containing µX(y). Therefore T0(X) is a T1-space.

(i)⇒(iii). Let C be a closed subset of X and x ∈X such that {x}∩C ≠∅. Since µX is a

quasihomeomorphism, there exists a closed subset C0 of T0(X) such that C = µ−1
X (C0).

Hence µ−1
X (C0∩{µX(x)})≠∅; and thus C0∩{µX(x)}≠∅. Therefore, µX(x)∈ C0; that

is, x ∈ C .

(iii)⇒(iv). Let U be an open subset of X and, x ∈ U . Then {x} ∩X\U = ∅, and

consequently, {x} ⊆U .

(iv)⇒(i). It is easily seen that µ−1
X (µX({x})) ⊆ {x}. Conversely, let y ∈ {x}. For each

open subset U of X containing x, we have {x} ⊆ U . Thus y ∈ U ; so that {x} ⊆ {y}.
Hence {x} = {y}; that is, µX(x) = µX(y). This yields {x} ⊆ µ−1

X (µX({x})). Thus

µ−1
X (µX({x}))= {x}. Therefore, T0(X) is a T1-space, by Remark 3.2.

(i)⇒(v). Since T0(X) is a T1-space, we have {x} = µ−1
X ({µX(x)}) and {µX(x)} = ∩{V :

V ∈ �(µX(x))}, for each x ∈ X. On the other hand, since µX is a continuous surjective

open map, we have �(µX(x))= {µX(U) :U ∈ �(x)}. Therefore,

{x} = µ−1
X

(⋂{
µX(U) :U ∈ �(x)

})=⋂{
µ−1
X
(
µX(U)

)
:U ∈ �(x)

}
. (3.4)
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Moreover, since µX is a quasihomeomorphism, we have µ−1
X (µX(U))=U , for each open

subset U of X (see Remark 2.1). It follows that {x} =⋂{U :U ∈ �(x)}.
(v)⇒(iv). Straightforward.

Corollary 3.6. The T(0,1)-property is a productive and hereditary property: any

product of T(0,1)-spaces is T(0,1) and any subspace of a T(0,1)-space is T(0,1).

A subspace Y of X is called irreducible if each nonempty open subset of Y is dense

in Y (equivalently, if C1 and C2 are two closed subsets of X such that Y ⊆ C1∪C2, then

Y ⊆ C1 or Y ⊆ C2). Let C be a closed subset of a space X. We say that C has a generic

point if there exists x ∈ C such that C = {x}.
Recall that a topological space X is said to be quasisober [14] (resp., sober [8]) if any

nonempty irreducible closed subset of X has a generic point (resp., a unique generic

point).

Lemma 3.7. Let q :X → Y be a quasihomeomorphism.

(1) If X is a T0-space, then q is one-to-one.

(2) If Y is a TD-space, then q is onto.

(3) If Y is a TD-space and X is a T0-space, then q is a homeomorphism.

(4) If X is sober and Y is a T0-space, then q is a homeomorphism.

Proof. (1) Let x1, x2 be two points of X with q(x1)= q(x2). Suppose that x1 ≠ x2.

Then there exists an open subset U of X such that, for example, x1 ∈ U and x2 ∉ U .

Since there exists an open subset V of Y satisfying q−1(V) = U , we get q(x1) ∈ V and

q(x2) ∉ V , which is impossible. It follows that q is one-to-one.

(2) Let y ∈ Y . Then {y} is a locally closed subset of Y . Hence {y}∩q(X)≠∅, since

q(X) is strongly dense in Y . Thus y ∈ q(X), proving that q is onto.

(3) One may check easily that bijective quasihomeomorphisms are homeomorphisms.

(4) By (1), q is one-to-one.

Now, observe that if S is a closed subset of Y , then S is irreducible if and only if so

is q−1(S).
We prove that q is onto. To this end, let y ∈ Y . According to the above observation,

q−1({y}) is a nonempty irreducible closed subset of X. Hence q−1({y}) has a generic

point x. Thus we have the containments

{x} ⊆ q−1({q(x)})⊆ q−1({y})= {x}. (3.5)

So that q−1({q(x)})= q−1({y}). It follows from the fact that q is a quasihomeomor-

phism that {q(x)} = {y}. Since Y is a T0-space, we get q(x) = y . This proves that q
is onto, and thus q is bijective. But a bijective quasihomeomorphism is a homeomor-

phism.

Proposition 3.8. Let q : X → Y be a quasihomeomorphism. If Y is a T(0,1)-space,

then so is X.

Proof. Clearly, T0(q) : T0(X) → T0(Y) is a quasihomeomorphism. Hence, since

T0(X) is a T0-space and T0(Y) is a T1-space, T0(q) is a homeomorphism, by Lemma 3.7.

Thus T0(X) is a T1-space, proving that X is a T(0,1)-space.
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Example 3.9. A quasihomeomorphism q : Y →X such that Y is a T(0,1)-space but X
is not.

Take Y and X as in Remark 3.1(9). Then each nonempty locally closed subset of X
meets Y . Hence, the canonical embedding q : Y →X is a quasihomeomorphism.

Of course, Y is a T(0,1)-space. However, X is not a T(0,1)-space. Indeed, for each x ∈X
\{w}, {x} = {x} and {w} = X; hence X is a T0-space which is not T1. Therefore, X is

not T(0,1).
The following proposition follows immediately from Theorem 2.4.

Proposition 3.10. Let q :X → Y be a topologically onto quasihomeomorphism. Then

the following statements are equivalent:

(i) X is a T(0,1)-space;

(ii) Y is a T(0,1)-space.

It is well known that a space X is a T2-space if and only if, for each x ∈X,
⋂{U :U ∈

�(x)} = {x}, where �(x) is the set of all neighborhoods of x.

Before giving a characterization of T(0,2)-spaces, we need a technical lemma.

Lemma 3.11. Let q : X → Y be an onto quasihomeomorphism. Then the following

properties hold.

(1) For each subset B of Y , q−1(B)= q−1(B).
(2) For each x ∈ X,

⋂{q−1(V) : V ∈ �(q(x))} = q−1(
⋂{V : V ∈ �(q(x))}) = ⋂{U :

U ∈�(x)}.
Proof. (1) We observe that a continuous map q : X → Y is open if and only if, for

each subset B of Y , we have q−1(B) = q−1(B) (see [8, Chapter 0, (2.10.1)]). Now by

Remark 2.1(2) an onto quasihomeomorphism is open, so that (1) follows immediately.

(2) Straightforward.

Theorem 3.12. LetX be a topological space. Then the following statements are equiv-

alent:

(i) X is a T(0,2)-space;

(ii) for each x,y ∈ X such that {x}≠ {y}, there are two disjoint open sets U and V
in X with x ∈U and y ∈ V ;

(iii) for each x ∈X,
⋂{U :U ∈�(x)} = {x}.

Proof. (i)⇒(ii). Let x,y ∈X such that {x}≠ {y}, then µX(x)≠ µX(y). Since T0(X)
is a T2-space, there exist two disjoint open sets U ′ and V ′ in T0(X) with µX(x) ∈ U ′
and µX(y)∈ V ′. Therefore, U = µ−1

X (U ′) and V = µ−1
X (V ′) are two disjoint open sets in

X with x ∈U and y ∈ V .

(ii)⇒(i). Let µX(x), µX(y) be two distinct points in T0(X). Then {x} ≠ {y} and, by

(ii), there are disjoint open sets U and V of X with x ∈ U and y ∈ V . Since µX is a

quasihomeomorphism, there exist two disjoint open sets U ′, V ′ of T0(X) with µX(x)∈
U ′ and µX(y) ∈ V ′ and such that U = µ−1

X (U ′) and V = µ−1
X (V ′), so that T0(X) is a

T2-space.

(i)⇒(iii). Let µX be the canonical map from X onto its T0-reflection. Then for each

x ∈X, we have
⋂{V : V ∈�(µX(x))} = {µX(x)}, since T0(X) is Hausdorff.
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According to Remark 3.2, µ−1
X ({µX(x)})= {x}. Hence

{x} =
⋂{

µ−1
X (V) : V ∈�

(
µX(x)

)}
. (3.6)

Thus, for each x ∈X, we have
⋂{U :U ∈�(x)} = {x}, by Lemma 3.11(2).

(iii)⇒(i). Let x ∈X. First, we prove that

⋂{
U :U ∈�(x)

}=⋂{
U :U ∈�(x)

}= {x}. (3.7)

Clearly,
⋂{U : U ∈ �(x)} ⊆⋂{U : U ∈ �(x)}. Conversely, let y ∈ {x}. Then x ∈ V , for

each V ∈�(y). Hence

x ∈
⋂{

V : V ∈�(y)
}= {y}. (3.8)

Thus y ∈⋂{U : U ∈ �(x)}; so that (3.7) holds for each x ∈ X. Therefore, X is a T(0,1)-
space, by Theorem 3.5. Thus, according to Remark 3.2, {x} = µ−1

X ({µX(x)}). Applying

Lemma 3.11, we have

{
µX(x)

}=⋂{
V : V ∈�

(
µX(x)

)}
, (3.9)

proving that T0(X) is a T2-space and thus X is a T(0,2)-space.

Corollary 3.13. It is clear that the T(0,2)-property is a productive and hereditary

property.

Proposition 3.14. Let q : X → Y be a quasihomeomorphism. Then the following

statements are equivalent:

(i) X is a T(0,2)-space;

(ii) Y is a T(0,2)-space.

Proof. (i)⇒(ii). Clearly, T0(q) : T0(X) → T0(Y) is a quasihomeomorphism. On the

other hand, since T0(X) is a T2-space, it is a sober space; and since in addition T0(Y)
is a T0-space, then T0(q) is a homeomorphism, by Lemma 3.7. Therefore, T0(Y) is a

T2-space. This means that Y is a T(0,2)-space.

(ii)⇒(i). Again T0(q) : T0(X) → T0(Y) is a quasihomeomorphism. Now, since T0(X)
is a T0-space and T0(Y) is a T1-space, then T0(q) is a homeomorphism, by Lemma 3.7.

Therefore, T0(X) is a T2-space. This means that X is a T(0,2)-space.

Example 3.15. A quasihomeomorphism q : X → Y such that X is a T2-space and Y
is not a T2-space.

Let Y = {0,1,2} equipped with the topology {∅,Y ,{1,2},{0}} and let X = {0,1} be

provided with a discrete topology. Then X is a T2-space and Y is not a T2-space. The

canonical embedding of X into Y does the job.
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4. T(0,S)-, T(S,D)-, T(S,1)-, and T(S,2)-spaces. Let X be a topological space and S(X) the

set of all nonempty irreducible closed subset of X [8]. Let U be an open subset of X; set

Ũ = {C ∈ S(X) :U∩C ≠∅}; then the collection {Ũ : U is an open subset of X} provides

a topology on S(X) and the following properties hold [8].

(i) The map ηX : X → S(X) which carries x ∈ X to ηX(x)= {x} is a quasihomeomor-

phism.

(ii) S(X) is a sober space.

(iii) The topological space S(X) is called the soberification of X, and the assignment

S(X) defines a functor from the category Top to itself.

(iv) Let q :X → Y be a continuous map, then the diagram

X

ηX

q
Y

ηY�

S(X)
S(q)

S(Y)

(4.1)

is commutative.

In [14, Proposition 2.2], Hong has proved that a space is quasisober if and only if its

T0-reflection is sober. The following result makes [14, Proposition 2.2] more precise.

Theorem 4.1. Let q : X → Y be a quasihomeomorphism. Then the following proper-

ties hold.

(1) If X is a T(0,S)-space, then so is Y .

(2) Suppose that Y is a T(0,S)-space. Then the following statements are equivalent:

(i) X is a T(0,S)-space;

(ii) q is topologically onto.

(3) If q is topologically onto, then the following statements are equivalent:

(i) X is a T(0,S)-space;

(ii) Y is a T(0,S)-space.

Proof. (1) Since T0(q) is a quasihomeomorphism and T0(X) is sober, we deduce

that T0(q) is a homeomorphism, by Lemma 3.7(4). Hence T0(Y) is sober, proving that

Y is a T(0,S)-space.

(2) (i)⇒(ii). According to Lemma 3.7(4), T0(q) is a homeomorphism. Thus q is topo-

logically onto, by Theorem 2.4.

(ii)⇒(i). Again, according to Theorem 2.4, T0(q) is a homeomorphism. Hence T0(X)
is sober, since T0(Y) is.

(3) Combine (1) and (2).

Proposition 4.2 [14, Proposition 2.2]. A topological space is quasisober if and only

if its T0-reflection is sober.

Proof. The canonical map µX : X → T0(X) is an onto quasihomeomorphism. Then,

applying Theorem 4.1(3), the proof is complete.
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Now, the result follows from the following simple facts: if q :X → Y is a quasihome-

omorphism and X is quasisober, then Y is quasisober; if q is an onto quasihomeomor-

phism and Y is quasisober, then X is quasisober.

Remark 4.3. (1) Each T(S,2)-space is a T(S,1)-space.

(2) Each T(S,1)-space is a T(S,D)-space.

(3) Each T(0,2)-space is a T(0,S)-space.

(4) There is a T(0,1)-space which is not a T(0,S)-space. It suffices to consider a T1-space

which is not sober.

(5) There is a T(S,1)-space which is not a T(S,2)-space. It suffices to consider a sober

T1-space which is not T2 (see [19, pages 675-676] and [13, pages 12-13]).

(6) There is a T(0,S)-space which is not T(S,1)-space.

Take X as in Remark 3.1(9). Note that a nonempty closed subset C of X is irreducible

if and only if C =X or C = {y}, where y ∈ Y , and thus X is a sober space. Therefore X
is a T(0,S)-space which is not a T(S,1)-space.

Example 4.4. A quasihomeomorphism q : Y →X such that X is a T(0,S)-space, but Y
is not.

Take X and Y as in Remark 3.1(9). Then T0(X) = X is a sober space, but T0(Y) = Y
is not because Y is a nonempty irreducible closed subset without a generic point. Thus

the canonical embedding Y ↩X does the job.

We next give a characterization of T(S,D)-spaces.

Theorem 4.5. Let X be a topological space. Then the following statements are equiv-

alent:

(i) X is a T(S,D)-space;

(ii) X is a quasisober T(0,D)-space.

Proof. (i)⇒(ii). Let µX :X → T0(X) (resp., ηX :X → S(X)) be the canonical map from

X onto its T0-reflection T0(X) (resp., soberification S(X)). Then the diagram

X

µX

ηX
S(X)

µS(X)�

T0(X)
T0(ηX)

T0
(
S(X)

)
(4.2)

is commutative.

Hence T0(ηX) is a quasihomeomorphism. Thus T0(X) is homeomorphic to the sub-

space T0(ηX)(T0(X)), since T0(X) is a T0-space.

According to [13, Theorem 2.2], every subspace of a sober TD-space is sober. Thus

T0(X) is sober and, consequently, T0(ηX) is a homeomorphism, by Lemma 3.7. There-

fore, T0(X) is a sober TD-space; this means that X is a T(0,S)- and a T(0,D)-space; but the

axiom T(0,S) is equivalent to quasisober, by Proposition 4.2.
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(ii)⇒(i). By Proposition 4.2, T0(X) is a sober space. On the other hand, X is quasi-

homeomorphic to T0(X); then S(X) is homeomorphic to S(T0(X)), by [2, Theorem 2.2].

Thus S(X) is homeomorphic to T0(X) so that S(X) is a TD-space, proving that X is a

T(S,D)-space.

Now, we give a characterization of T(S,1)-spaces.

Theorem 4.6. Let X be a topological space. Then the following statements are equiv-

alent:

(i) X is a T(S,1)-space;

(ii) whenever F and G are distinct nonempty irreducible closed subsets of X, there is

an open subset U of X such that U∩F ≠∅ and U∩G =∅;

(iii) for each nonempty irreducible closed subsets F and G of X, F ⊆ G if and only if

F =G.

Proof. (i)⇒(ii). Let F and G be two distinct nonempty irreducible closed subsets of

X. Since S(X) is a T1-space and F ≠ G, there exists an open set Ũ of S(X) such that

F ∈ Ũ and G ∉ Ũ . Thus U is an open subset of X with U∩F ≠∅ and U∩G =∅.

(ii)⇒(iii). Straightforward.

(iii)⇒(i). First, note that if H is a closed subset of X, then {G ∈ S(X) : G ⊆ H} is a

closed subset of S(X). Now, let F be a nonempty irreducible closed subset of X. Then,

by (iii), {G ∈ S(X) :G ⊆ F} = {F} is a closed subset of S(X). Hence each point of S(X) is

closed. Therefore, X is a T(S,1)-space.

We finish this section by characterizing T(S,2)-spaces.

Theorem 4.7. Let X be a topological space. Then the following statements are equiv-

alent:

(i) X is a T(S,2)-space;

(ii) whenever F and G are distinct nonempty irreducible closed subsets of X, there

are disjoint open subsets U and V of X such that F∩U ≠∅ and G∩V ≠∅.

Proof. (i)⇒(ii). Let F and G be two distinct nonempty irreducible closed subsets of

X. Since S(X) is a T2-space and F ≠G, then there exist two disjoint open subsets Ũ and

Ṽ in S(X) such that F ∈ Ũ and G ∈ Ṽ , so that the two open sets U and V satisfy (ii).

(ii)⇒(i). Let F and G be two distinct points in S(X) and let U and V be as in (ii). Then

it is clear that F ∈ Ũ and G ∈ Ṽ . Clearly Ũ ∩ Ṽ = Ũ∩V = ∅̃ = ∅; therefore, X is a

T(S,2)-space.

Proposition 4.8. Let q :X → Y be a quasihomeomorphism. Then the following state-

ments are equivalent:

(i) X is a T(S,1)- (resp., T(S,D)-, resp., T(S,2)-)space;

(ii) Y is a T(S,1)- (resp., T(S,D)-, resp., T(S,2)-)space.

Proof. This follows easily from the fact that S(q) : S(X) → S(Y) is a homeomor-

phism, by [2, Theorem 2.2].

5. The Wallman compactification. The Wallman compactification of a T1-space is

introduced and studied by Wallman [20] as follows.
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Let X be a T1-space, and let wX be the collection of all closed ultrafilters on X. For

each closed set D ⊆ X, define D∗ to be the set D∗ = {� ∈ wX : D ∈ �} if D ≠ ∅
and ∅∗ = ∅. Then {D∗ : D is a closed subset of X} is a base for the closed sets of

a topology on wX. Let U be an open subset of X; we define U∗ ⊆ wX to be the set

U∗ = {� ∈wX : A ⊆ U for some A in �}. The class {U∗ : U is an open subset of X} is

a base for the open sets of the topology of wX.

The following properties are well known and may be found in any standard textbook

on general topology (see, e.g., Kelley [16]).

Properties 5.1. Let X be a T1-space. Consider the map ωX : X →wX which takes

x ∈ X to ωX(x) = {A : A is a closed subset of X and x ∈ A}. Then the following prop-

erties hold.

(1) If D is closed in X, then ωX(D)=D∗. In particular, ωX(X) is dense in wX.

(2) ωX is continuous and it is an embedding ofX inwX if and only ifX is a T1-space.

(3) If A and B are closed subsets of X, then ωX(A∩B)=ωX(A)∩ωX(B).
(4) wX is a compact T1-space.

(5) Every continuous map on X to a compact Hausdorff space K can be extended to

wX.

For a T(0,1)-space X, we define WX =w(T0(X)) and we call it the Wallman compacti-

fication of X. The notation wX is reserved only for T1-spaces so that it is better to use

some other notation for T(0,1)-spaces; the same for ωX : ωX is reserved for T1-spaces;

for T(0,1)-spaces, we define wX =ωT0(X) ◦µX .

Since µX is an onto quasihomeomorphism, one obtains immediately that WX can

be described exactly as wX is for T1-spaces. Properties 5.1 are also true for T(0,1)-
spaces.

Remark 5.2. Let X be a T(0,1)-space. Then the following properties hold:

(1) For each open subset U of X, we have wX(U)⊆U∗.

(2) For each closed subset D of X, we have wX(D)⊆D∗.

(3) Let U be open and D closed in a T(0,1)-space. Then U ∩D ≠ ∅ if and only if

U∗∩D∗ ≠∅.

Now we give some new observations about Wallman compactifications.

Proposition 5.3. Let X be a T(0,1)-space and U an open or closed subset of X. If U
is compact, then U∗ =wX(U).

Proof. Suppose that U is open in X. Let � ∈ U∗. Then there exists F ∈ � such

that F ⊆ U . F is compact, by the compactness of U . Thus
⋂{H⋂F : H ∈ �} ≠ ∅. Let

x ∈⋂{H∩F :H ∈�}; then �=wX(x). Hence, �∈wX(U).
On the other hand, according to Remark 5.2, wX(U)⊆U∗. Therefore, wX(U)=U∗.

Now suppose that U is closed in X. Let �∈U∗; then U ∈�. Since
⋂{H :H ∈�}≠∅,

pick an x ∈ ⋂{H : H ∈ �}. It is easily seen that � = wX(x). Therefore, according to

Remark 5.2, wX(U)=U∗.

Corollary 5.4. Let U be a compact open subset of X. Then U∗ is compact.
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Remark 5.5. The converse of Corollary 5.4 does not hold. Let X be a noncompact

T(0,1)-space. Thus X∗ =WX is compact; however, X is not compact.

Question 5.6. Let U be an open subset of a T(0,1)-space with U ≠∅ and U ≠ X. If

we suppose that U∗ is compact, is U compact?

Proposition 5.7. Let D be a closed subset of a T(0,1)-space. Then D is irreducible if

and only if D∗ is irreducible in WX.

Proof. Let D be an irreducible closed subset of X. Since D∗ = wX(D), D∗ is irre-

ducible.

Conversely, suppose that D∗ is irreducible. Let U , V be two open subsets of X such

that U∩D ≠∅ and V ∩D ≠∅. Hence U∗∩D∗ ≠∅ and V∗∩D∗ ≠∅, by Remark 5.2.

Thus U∗ ∩ V∗ ∩D∗ ≠ ∅, so that (U ∩ V)∗ ∩D∗ ≠ ∅. Therefore, U ∩ V ∩D ≠ ∅, by

Remark 5.2.

We need to introduce new concepts.

Definition 5.8. (1) A subset C of a topological space X is said to be closedly dense

if C meets each nonempty closed subset of X.

(2) A subset S of a topological space X is said to be sufficiently dense if S meets each

nonempty closed subset and each nonempty open subset of X.

(3) By an almost-homeomorphism (a-homeomorphism, for short), we mean a contin-

uous map q : X → Y such that q(X) is sufficiently dense in Y and the topology of X is

the inverse image of that of Y by q.

(4) By a Wallman morphism (W -morphism, for short), we mean a continuous map

q : X → Y such that q(X) is closedly dense in Y and the topology of X is the inverse

image of that of Y by q.

Thus we have the following implications:

Strongly dense Sufficiently dense closedly dense

Dense

Homeomorphism quasihomeomorphism a-homeomorphism W -morphism.

(5.1)

The converses fail, as shown by the following examples.

Example 5.9. Consider X = [0,ω] to be the set of all ordinal numbers less than or

equal to the first limit ordinal ω. We equip X with the natural order ≤.

The discrete Alexandroff topology on X associated to the reverse order is �(X) =
{∅,X,[0,ω[}∪ {(↓ x) : x ∈ X}, where (↓ x) = {y ∈ X : y ≤ x}. Set D = [0,ω[, C =
X−{0} and K = {0,ω}.

Note that usually the Alexandroff topology is defined by the upper sets (see Johnstone

[15]); here the topology used is associated with the reverse order.

(a) Since {ω} is a closed subset of X and {ω}∩D =∅, D is not closedly dense in X.

However, D is a dense subset of X.
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(b) Since {0} is open and {0}∩C = ∅, C is not dense in X. However, C is closedly

dense in X.

(c) The subset K is sufficiently dense but not strongly dense in X.

(d) It is easily seen that the canonical embedding iC : C →X is a W -morphism which

is not an a-homeomorphism. The canonical embedding iK : K → X is an a-homeomor-

phism which is not a quasihomeomorphism.

(e) It is well known that a quasihomeomorphism need not be a homeomorphism.

Remark 5.10. An onto W -morphism q :X → Y is a quasihomeomorphism. Indeed it

suffices to show that if F and G are two closed subsets of Y such that q−1(F)= q−1(G),
then F =G which is clear since q is an onto map.

Proposition 5.11. (1) The composite of two a-homeomorphisms (resp., W -morph-

isms) is an a-homeomorphism (resp., W -morphism).

(2) If q :X → Y is a W -morphism and X is T0, then q is one-to-one.

(3) If q :X → Y is a W -morphism and Y is T1, then q is an onto quasihomeomorphism.

(4) If q is a W -morphism and if X is T0 and Y is T1, then q is a homeomorphism.

Proof. (1) We show (1) for two a-homeomorphisms. Let p :X → Y and q : Y → Z be

two a-homeomorphisms. Clearly, the topology of X is the inverse image of that of Z
by q◦p.

LetA be a closed (resp., an open) subset of Z . Since q−1(A) is closed (resp., open) in Y ,

then p(X)∩q−1(A)≠∅, so that A∩q(p(X))≠∅. Hence q◦p is an a-homeomorphism.

(2) and (3) have the same proof as Lemma 3.7.

(4) follows immediately from (2), (3), and Remark 5.10.

Let f : X → Y and g : Y → Z be two continuous maps. One may check easily that if

two among the three maps g◦f , f , g are quasihomeomorphisms, then so is the third

one (see Remark 2.1).

For a-homeomorphisms and W -morphisms, we get the following result which has a

straightforward proof.

Proposition 5.12. Let f :X → Y and g : Y → Z be two continuous maps.

(1) Suppose that g◦f and g are a-homeomorphisms (resp., W -morphisms). Then f is

an a-homeomorphism (resp., a W -morphism).

(2) Suppose that g◦f is an a-homeomorphism (resp., aW -morphism) and f is a quasi-

homeomorphism. Then g is an a-homeomorphism (resp., a W -morphism).

The following example shows that Remark 2.1(1) fails to be true for a-homeomor-

phisms or W -morphisms.

Example 5.13. Let f : X → Y and g : Y → Z be two continuous maps such that

g◦f and f are a-homeomorphisms (resp.,W -morphisms). Then g is not necessarily an

a-homeomorphism (resp., a W -morphism).

In fact, let X = [0,ω] be equipped with the discrete Alexandroff topology as in

Example 5.9, Y = {0,ω} and Z = {0,1,ω} considered as subspaces of X.
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Let f : {0,ω} → {0,1,ω} be the canonical embedding and let g : {0,1,ω} → X be

defined by g(0)= 0, g(1)= 0, g(ω)=ω. Clearly, g◦f and f are a-homeomorphisms.

However, since the closed subset {1,ω} of {0,1,ω} is not an inverse image by g of a

closed subset of X, g is not a W -morphism.

Recall from [9] that a continuous map q :X → Y between T1-spaces is said to be a w-

extension if there is a continuous map w(q) :wX →wY such that ωY ◦q =w(q)◦ωX .

In an analogous manner, one may define W -extensions for T(0,1)-spaces.

The following gives a class of morphisms q :X → Y which yield aW -extensionW(q) :

WX →WY that is a homeomorphism.

Proposition 5.14. Let X, Y be two T(0,1)-spaces and q :X → Y a W -morphism. Then

q has a W -extension which is a homeomorphism.

Proof. We first remark that diagram (2.1) commutes. Hence T0(q) ◦µX = µY ◦ q.

Thus T0(q) ◦ µX is a W -morphism. Now, since µX is a quasihomeomorphism, T0(q)
is a W -morphism, by Proposition 5.12(2). Therefore, T0(q) is a homeomorphism, by

Proposition 5.11(4). It follows that T0(q) has a canonical w-extension w(T0(q)) which

is a homeomorphism. Thus the diagram

T0(X)

ωT0(X)

T0(q)
T0(Y)

ωT0(Y)�

w
(
T0(X)

)=WY ω(T0(q))
w
(
T0(Y)

)=WY

(5.2)

commutes.

If we denote W(q) =w(T0(q)), then the above diagrams indicate clearly that W(q)
is a W -extension of q which is a homeomorphism.

It is well known that the Wallman compactification of a T1-space X is Hausdorff if

and only if X is normal and in this case wX = β(X) (the Stone-Čech compactification

of X) (see, e.g., Wallman [20]).

Corollary 5.15. WX is Hausdorff if and only if T0(X) is a normal space. In this

case WX = β(T0(X)).

Remark 5.16. If a continuous map q :X → Y has a W -extension which is a homeo-

morphism, then q need not be a homeomorphism. To see this it suffices to take a

noncompact T1-space X. Of course, 1wX is a w-extension of ωX ; however, ωX is not a

homeomorphism.

Definition 5.17. Let X be a T(0,1)-space and Y a subspace of X.

(1) It is said that Y is a Wallman generator (W -generator, for short) of X, if WY is

homeomorphic to WX.
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(2) Y is called a strong Wallman generator (sW -generator, for short) ofX if the canon-

ical embedding i : Y ↩X has a W -extension W(i) which is a homeomorphism.

Clearly, each sW -generator is a W -generator.

As an immediate consequence of Proposition 5.14, we get the following examples.

Example 5.18. Let X be a T(0,1)-space.

(1) wX(X) is an sW -generator of WX.

(2) Each closedly dense subset of X is an sW -generator of X.

We think that it is of interest to answer the following questions.

Questions 5.19. Let X be a T(0,1)-space.

(1) Characterize W -generators of X.

(2) Characterize sW -generators of X.

(3) Is there a W -generator which is not an sW -generator?

Now we are in a position to give a characterization of continuous maps between T(0,1)-
spaces having an extension to Wallman compactifications that is a homeomorphism.

Theorem 5.20. Let X, Y be two T(0,1)-spaces and q : X → Y a continuous map. Then

the following statements are equivalent:

(i) q has a W -extension which is a homeomorphism;

(ii) q(X) is an sW -generator of Y and the topology of X is the inverse image of that

of Y by q.

Proof. (i)⇒(ii). (a) The topology of X is the inverse image of that of Y by q. Let C be a

closed subset of X. Since W(q) is a homeomorphism, W(q)(C∗)=K is a closed subset

of WY .

Set H =w−1
Y (K). We prove that C = q−1(H).

(1) Let x ∈ C . Then wX(x) ∈ wX(C) ⊆ C∗. Hence W(q)(wX(x)) ∈ W(q)(C∗) = K,

which gives wY(q(x))∈K. It follows that q(x)∈w−1
Y (K)=H. Therefore, x ∈ q−1(H).

(2) Conversely, let x ∈ q−1(H). Then q(x) ∈ H = w−1
X (K); this means that (wY ◦

q)(x) ∈ K, so that W(q)(wX(x)) ∈ K = W(q)(C∗). Since W(q) is bijective, wX(x)
∈ C∗. Hence x ∈w−1

X (C∗) = C . We have thus proved that C = q−1(H). In other words,

the topology of X is the inverse image of that of Y by q.

(b) q(X) is an sW -generator of Y . According to (a), the induced map q1 : X → q(X)
by q is aW -morphism. Hence q1 has aW -extensionW(q1) which is a homeomorphism,

by Proposition 5.14. Thus the diagrams

X

wX

q1 q(X)

wq(X)�

WX
W(q1) Wq(X)

X

wX

q
Y

wY�

WX
W(q)

WY

(5.3)

commute.
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Let j : q(X)↩ Y be the canonical embedding. Clearly, the diagram

q(X)

wq(X)

j
Y

wY�

wq(X)
W(q)◦(W(q1))−1

WY

(5.4)

commutes. Therefore, j has W(q)◦(W(q1))−1 as a W -extension which is a homeomor-

phism. This means that q(X) is an sW -generator of Y .

(ii)⇒(i). Under the assumptions of (ii), the induced map q1 : X → q(X) by q is a W -

morphism. Thus, according to Proposition 5.14, q1 has a W -extension W(q1) which is

a homeomorphism. On the other hand, the canonical embedding j : q(X) ↩ Y has a

W -extension which is a homeomorphism, by Proposition 5.14. It follows that the two

diagrams

X
q1

wX

q(X)

wq(X)

j
Y

wY� �

WX
W(q1) Wq(X)

W(j)
WY

(5.5)

commute. Therefore, W(j)◦W(q1) is a W -extension of q :X → Y which is a homeomor-

phism.

Question 5.21. Is it possible to replace the word “sW -generator” in Theorem 5.20

by “W -generator”?
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