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THE ORLICZ SPACE OF ENTIRE SEQUENCES
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Let I denote the space of all entire sequences and A the space of all analytic sequences. This
paper is devoted to the study of the general properties of Orlicz space I'yy of I.
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1. Introduction. An Orlicz function is a function M : [0, ) — [0, ) which is contin-
uous, nondecreasing, and convex with M(0) =0, M(x) > 0 for x > 0, and M (x) — oo as
x — oo, If the convexity of Orlicz function M is replaced by M (x +y) < M(x) + M(y),
then this function is called a modulus function, defined and discussed by Ruckle [5]
and Maddox [4].

An Orlicz function M is said to satisfy the A,-condition for all values of u if there ex-
ists a constant K > 0 such that M(2u) < KM (u) (u = 0). The Ay-condition is equivalent
to M(Pu) < K. ¢M(u), for all values of u and for € > 1.

An Orlicz function M can always be represented in the following integral form:
M(x) = f(f q(t)dt, where g, known as the kernel of M, is right-differentiable for t > 0,
q(0) =0, q(t) >0 for t >0, g is nondecreasing, and q(t) — c as t — . Lindenstrauss
and Tzafriri [3] used the idea of Orlicz function to construct the Orlicz sequence space

ﬁM{xew ZM("Lk{)<oo,forsomep>0}, (1.1)

k=1

where w = {all complex sequences}.
The space £) with the norm

||x||—1nf{p>0 ZM<|’;"|>51} (1.2)

k=1

becomes a Banach space which is called an Orlicz sequence space.

2. A complex sequence whose kth term is xj will be denoted by (xi) or x. A se-
quence x = (xy) is said to be analytic if supy, |xk|1* < co. The vector space of all
analytic sequences will be denoted by A. A sequence x is called an entire sequence if
limy—« | Xk |1/% = 0. The vector space of all entire sequences will be denoted by I.

DEFINITION 2.1. The space consisting of all sequences x in w such that M (|xy|/%/
p) — 0 as k — o« for some arbitrarily fixed p > 0 is denoted by Iy, with M being a
modulus function. In other words, {M(]xx|/*/p)} is a null sequence. The space I} is
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a metric space with the metric

Uk
d(x,y) = supM(%) (2.1)
(k)

for all x = {x}} and v = {yx} in Iy.

Given a sequence x = {xx} whose nth section is the sequence x™ = {x1,x>,...,xn,0,
0,...}, 6™ =(0,0,...,1,0,0,...), with 1 in the nth place and zeros elsewhere; let & =
{all finite sequences}.

An FK-space (or a metric space) X is said to have AK property if (6) is a Schauder
basis for X. Or equivalently x ™ — x.

The space is said to have or be an AD space if ® is dense in X.

We note that AK implies AD by [1].

If X is a sequence space, we give the following definitions:

(i) X’ = the continuous dual of X;
(i) X*={a=(ak):Xrlarxk| < o, for each x € X};
(i) XP ={a=(ay): > ko1 akXk is convergent, for each x € X};
(iv) X¥ ={a = (ak) :sup | Xi-1 arxk| < o, for each x € X};
(v) let X be an FK-space > @, then X/ = {f (™) : f € X'}. X%, XF and XV are called
the o- (or Kothe-Toeplitz-) dual of X, - (or generalized-Kothe-Toeplitz-) dual of
X, and y-dual of X, respectively.
Note that X®* c XA c XY.If X C Y, then Y¥ c X¥ for u=«, 8, or y.

LEMMA 2.2 (see [6, Theorem 7.2.7]). Let X be an FK-space > ®. Then
i) XY cx/f;
(i) if X has AK, XP = X/;

(iii) if X has AD, X = XV.

We note that [* =TF =TY = A.
PROPOSITION 2.3. T c Iy, with the hypothesis that M (|xi|Y/%/p) < |xi| k.

PROOF. Let x €T. Then we have the following implications:
|xk|1/k—»0 as k — oo. (2.2)

But M (|xx|'*/p) < |xk|*’¥, by our assumption, implies that

|Xk’1/k

(2.3)
=xely

=T CIly.

This completes the proof. |
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PROPOSITION 2.4. Ty has AK where M is a modulus function.
PROOF. Let x = {xy} €Iy, but then {M(|xi|'/*/p)} €T, and hence

|Xk | 1/k
sup M T — 0 asn— oo. (2.4)
k=n+1

By using (2.4), d(x,x™!) = supy., .1 M(Ixx|%/p) — 0 as n — oo, which implies that
x[Ml — x as n — oo, implying that Iy has AK. This completes the proof. |

PROPOSITION 2.5. Ty, is solid.

PROOF. Let|xy| < |yl andlety = (y) € Tny. M(|xi Y%/ p) < M(|yi|'*/p), because
M is nondecreasing. But M (|y¢|'/¥/p) € T because y € Iy. That is, M(|yk|'/%/p) — 0
as k — oo and M (|xk|"%/p) — 0 as k — . Therefore x = {xx} € I;. This completes the
proof. |

PROPOSITION 2.6. Let M be an Orlicz function which satisfies the A»-condition. Then
I'cIy.

PROOEF. Let
x eT. (2.5)

Then |x|!/* < ¢ for sufficiently large k and every ¢ > 0. But then by taking p > 1/2,

1/k
M( [ x| ) < M(%) (because M is nondecreasing)
<M (2¢)
30
=M kT <KM(e) (by the Ap-condition, for some K > 0) (2.6)
<¢ <by defining M (&) < %)

|xk|l/k
=M T — 0 ask — co.

Hence x € Iy.
From (2.5) and since

x €Ty, (2.7)
we get

I CIy. (2.8)
This completes the proof. O

PROPOSITION 2.7. If M is a modulus function, then I, is a linear set over the set of
complex numbers C.
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PROOF. Letx,y €Iy and «, B € C. In order to prove the result, we need to find some

p3 such that

1/k
M(M)ﬁo S ko,
3

Since x,y €I}, there exist some positive p; and p» such that

|xk|l/k
M T — 0 ask— oo,
1

1/k

M(|yk|)—»0 as k — oo.
P2

Since M is a nondecreasing modulus function, we have

1/k 1/k 1/k
M | xxi + By M | x| +|Byk|
P3 P3 P3

<

P3 P3
A IR Y
h P3 P3

Take p3 such that

1 .{1 1 1 1}
— =miny — —,— —r.
P3 x| p17 1Bl p2

Then
1/k 1/k 1/k
ar [ Looxi+ By BV RE N Y
P3 P1 p2
1/k 1/k
sM(L"' )+M(L"|
P1 p2
— 0 (by (2.10)).
Hence

1/k
M(W) L0 ask— o
3

So (ax + By) € Iy. Therefore Ty is linear. This completes the proof.

1/k 1/k 1/k 1/k
M(Ial | x| L 1Bl | vk |

)

)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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DEFINITION 2.8. Let p = (pk) be any sequence of positive real numbers. Then

1/k Pk
FM(p)—{x—{xk}:(M(p(kp'>) —»Oask—»ooj». (2.15)

Suppose that py is a constant for all k, then Ty, (p) =Ty
PROPOSITION 2.9. Let 0 < py < qx and let {qx/px} be bounded. Then Ty (q) C Ty (p).

PROOF. Let

x elvu(q), (2.16)

BN
M kT —0 ask— oo. (2.17)

Let ty = (M(|xk|Y%/p))ak and A = pi/qxk. Since px < qx, we have 0 < A, < 1.
Take 0 < A < Ag. Define

{tk (ty=1)
Uk =

0 (tx<1),
0 (tx=1) (2.18)
Vi =
tr (tx<1),
by = Uk + Vg, t,/: —M2k+v,/<\k.
Now it follows that
u?\k <ur <t Ak A
k. Sug <ty, v < Vg (2.19)

Sincety* = upk + v,k then tp* <ty +v).
Ak
1/k 1/k
IEAEA S NP
p p
ax\ PK/k ax
( ka\”k ) S<M 1xk|”k>) (2.20)
P
l/k 17k \ I*
= <M |xk| .
p

EARAN
(M(kp)) — 0 (by(2.17)). (2.21)

But



3760 K. C. RAO AND N. SUBRAMANIAN

Hence (M (|xy|*%/p))Pk — 0 as k — co. Hence
x €lu(p).
From (2.16) and (2.22), we get
Im(q) CTu(p).

This completes the proof.

PROPOSITION 2.10. (a) Let O <infpy < px < 1. Then Ty (p) CI)y.
(b) Let 1 < py < suppy < . Then Ty C Iy (p).

PROOF. (a) Let x €Ty (p),

BN
M kT — 0 ask — .

Since 0 <infpy < px <1,

e el "))
M IRkl <M ATkl ,
p p
From (2.24) and (2.25) it follows that
x €Iy.
Thus

v (p) CIy.

We have thus proven (a).
(b) Let px > 1 for each k and sup py < o and let x € Iy.

|xk|1/k
M T — 0 ask— oo.

Since 1 < py < sup px < o, we have

(7)) < ((=57)

EARAN
(M(kT)) — 0 as k — o (by using (2.28)).

Therefore x € Iy (p). This completes the proof.

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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PROPOSITION 2.11. Let 0 < py < gy < o for each k. Then Ty (p) < (q).

PROOF. Let x €Iy (p)

BN
M kT —0 ask— . (2.30)

This implies that (M (|xx|*’¥/p)) < 1 for sufficiently large k. Since M is nondecreas-

ing, we get
1/k dk 1/k Pk
M | x| <M EN
p p
2.31
EARANN -
— (M kT — 0 as k — oo (by using (2.30)).
Since x €Iy (q), hence I'yy(p) =Ty (q). This completes the proof. O

PROPOSITION 2.12. Ty (p) is v-convex for all v, where 0 < v < inf py. Moreover, if
prx =p <1 for all k, then they are p-convex.

PROOF. We will prove the theorem for Ty (p).Let x € [y (p) and r €(0,lim,,. . inf p,,).
Then, there exists ko such that » < py for all k > k.
Now, define

k\ " 1/k\ Pn
g*(x)_mf{p:M(%) +M(%) } (2.32)

Since v < py < 1 for all k > ko, g* is subadditive. Further, for 0 < |A| <1,

[AIPk < |A]" Vk > ko. (2.33)
Therefore, for each A, we have
g (Ax) < [A]"- g™ (x). (2.34)
Now, for0 < 6 < 1,
U={x:9*"x) <56}, (2.35)

which is an absolutely r-convex set, for

A"+ |u|" <1, x,y eU. (2.36)
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Now

g Ax+uy) < g*(Ax) +g* (uy)
< [AI"g*(x) +ul"g* ()
<|AI"6+|ul"6 (using (2.34) and (2.35))

(2.37)
< (A" +ul")6
<1-6 (byusing (2.36))
<.

If pp =p <1forall k,thenforO0<r <1,U = {x:g*(x) <35} is an absolutely p-convex
set. This can be obtained by a similar analysis and therefore we omit the details. This
completes the proof. |

PROPOSITION 2.13. (Iiy)? = A.
PROOF
STEP 1. T c Iy by Proposition 2.3; this implies that (I'iy)? ¢ T# = A. Therefore,

(tw)? < A. (2.38)

STEP 2. Let y € A. Then |yi| < M¥ for all k and for some constant M > 0.

Let x € Tyy. Then M (|xi|/¥/p) — 0 as k — . Hence M (|xi|/¥/p) < & for given € > 0
for sufficiently large k.

Take € = 1/2M so that M(|xk|/p) < 1/(2M)k.

But then M(|xxvkl/p) < 1/2% so that Seo1M(Ixkykl/p) converges. Therefore
S o1 M(xxyi/p) converges. Hence 3 p_; xxyx converges so that y € (Ty)B. Thus

AC (Tn)”. (2.39)
STEP 3. From (2.38) and (2.39), we obtain
(Tn)® = A. (2.40)

This completes the proof. O
PROPOSITION 2.14. (Iy)* = A foru=o,B,y, f.
PROOF
STEP 1. Ty has AK by Proposition 2.4. Hence, by Lemma 2.2(i), we get (Iyy)? = (In)-.
But (Iyy)? = A. Hence
()’ = A. (2.41)

STEP 2. Since AK implies AD, hence by Lemma 2.2(iii) we get (Iy)# = (I;)?. Therefore

(Tn)? = A. (2.42)
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STEP 3. Ty is normal by Proposition 2.5. Hence, by [2, Proposition 2.7], we get
(Tn)* = (Tw)” = A (2.43)
From (2.41), (2.42), and (2.43), we have
(T) ™ = (0)* = (T)” = (1) = . (2.44)

PROPOSITION 2.15. The dual space of Ty is A. In other words, Ty = A.

PROOF. We recall that 6% has 1 in the kth place and zeros elsewhere, with

’ yrrry ’

x =5k {M('xk}”k)}={M(0)l MO M(1)VE M)k |

p p Pl/k p p (2.45)
foo,. MO ]
p

which is a null sequence. Hence 6% € Ty. f(x) = Yg_; Xk vk with x € Tyy and f € T},
where Tj; is the dual space of Ty;. Take x = 5% € Ty. Then

|vi| < IfIld(5%,0) <0 Vk. (2.46)

Thus (yk) is a bounded sequence and hence an analytic sequence. In other words,
¥ € A. Therefore I}; = A. This completes the proof. |

LEMMA 2.16 [6, Theorem 8.6.1]. Y > X < Y/ c X/, where X is an AD-space and Y
an FK-space.

PROPOSITION 2.17. LetY be any FK-space > ®. Then'Y D Iy if and only if the sequence
5 is weakly analytic.

PrROOF. The following implications establish the result: since Iy has AD and by
Lemma 2.16,

Y oIy < Y/ ¢ (Ty)”
=Y/ cn (since () = /\)
< for each f € Y’, the topological dual of Y - f(6®) € A (2.47)
= f(6™) is analytic

< 5™ is weakly analytic,

this completes the proof. |
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