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1. Introduction. Let rk0(Y) be the rational toral rank of a simply connected space

Y , that is, the largest integer r such that an r -torus Tr = S1×···×S1 (r -factors) can

act continuously on a CW-complex which has the rational homotopy type of Y with all

its isotropy subgroups finite. For example, rk0(Y) = 1 if Y has the rational homotopy

type of an odd-dimensional sphere S2n+1.

Let Q be the field of the rational numbers. For a finite-dimensional Q-commutative

graded algebra A∗ with A0 =Q and A1 = 0, we put

MA∗ =
{
rational homotopy type of Y |H∗(Y ;Q)�A∗},

rA∗ =
{

rk0(Y) |H∗(Y ;Q)�A∗}, (1.1)

the set of rational toral ranks in MA∗ . For example, we see that if A∗ = Aeven, then

the Euler characteristic is nonzero, so there must be fixed points; hence, rA∗ = {0}.
Note that MA∗ and rA∗ are not empty sets since there exists the formal space whose

cohomology is isomorphic to A∗ (see below), and that rA∗ is at most finite even if MA∗

is infinite. In this paper, we calculate rA∗ for certain commutative graded algebras A∗.

Theorem 1.1. For the following four algebras A∗:

(1) A∗ �H∗(S2∨S2∨S5;Q),
(2) A∗ �H∗((S3×S8)#(S3×S8);Q),
(3) A∗ �H∗((S2∨S2)×S3;Q),
(4) A∗ �H∗((S2×S5)#(S2×S5);Q),

the rational toral ranks in MA∗ are listed in Table 1.1, where MA∗ = {X,Y}with a formal

space X and a nonformal space Y .

Here ∨ and # denote a one point union (wedge) and a connected sum, respectively.

For these A∗, we can check that MA∗ is two points as in [5] or [6].

What do we know about the set rA∗ , namely, the function rk0 : MA∗ → {0,1,2, . . .}?
For example, We consider the following questions.

Question 1.2. Suppose that A∗ is a Poincaré duality algebra. Then, for X,Y ∈MA∗ ,

is rk0(X)≤ rk0(Y) if X is formal?
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Table 1.1. The rational toral ranks in MA∗ .

Algebra rk0(X) rk0(Y)
(1) 0 0
(2) 0 1
(3) 1 0
(4) 1 1

A simply connected space Y is called (rationally) elliptic if dimπ∗(Y)⊗Q <∞ and

dimH∗(Y ;Q) <∞.

Question 1.3. For X,Y ∈MA∗ , is rk0(X)≤ rk0(Y) if Y is elliptic?

Question 1.4. Is rA∗ = {a,a+1, . . . ,b−1,b} for some integers a ≤ b? Namely, are

there no gaps in the sequence of integers of rA∗?

Notice that, for our examples, the answer is positive for these questions.

For the proof of Theorem 1.1, we use the Sullivan minimal model M(Y) of a sim-

ply connected space Y of finite type. It is a free Q-commutative differential graded

algebra (d.g.a.) (∧V,d) with a Q-graded vector space V = ⊕i>1Vi, where dimVi <
∞ and a minimal differential, that is, d(Vi) ⊂ (∧+V · ∧+V)i+1 and d ◦ d = 0. Here

∧V = (the Q-polynomial algebra over V even)⊗ (the Q-exterior algebra over V odd) and

∧+V is the ideal of ∧V generated by elements of positive degree. Denote the degree

of an element x of a graded algebra as |x|. Then xy = (−1)|x||y|yx and d(xy) =
d(x)y+(−1)|x|xd(y). Notice that M(Y) determines the rational homotopy type of Y .

See [3] for a general introduction and notation: for example, for the notion of Koszul-

Sullivan (KS) extension. Especially note that H∗(M(Y)) � H∗(Y ;Q) and a space Y is

said to be formal if there is a d.g.a. map M(Y)→ (H∗(Y ;Q),0) which induces an iso-

morphism of cohomologies. The formal minimal model MA∗ is constructed by a free

commutative resolution of the algebra A∗ [5]. Throughout this paper, Q〈x,y,. . .〉 de-

notes the Q-graded vector space generated by {x,y,. . .}.

2. Preliminaries. Let Y be a simply connected space of finite type with minimal

model M(Y)= (∧V,d). If an r -torus Tr acts on Y , there is a KS extension, with |ti| = 2

for i= 1, . . . ,r ,

(
Q
[
t1, . . . , tr

]
,0
)
�→ (Q[t1, . . . , tr

]⊗∧V,D) �→ (∧V,d), (2.1)

which is induced from the Borel fibration [2]

Y �→ ETr ×Tr Y �→ BTr . (2.2)

In particular, the fact that (2.1) is a KS extension entails that, Dti = 0 and for v ∈ V ,

Dv ≡ dv modulo the ideal (t1, . . . , tr ), that is,

Dv = dv+
∑

i1+···+ir >0

hi1,...,ir t1
i1 ···tr ir (2.3)

with hi1,...,ir ∈∧V . The differential D also satisfies D◦D = 0.
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Lemma 2.1 [4, Proposition 4.2]. Suppose that dimH∗(Y ;Q) <∞. Then, rk0(Y)≥ r if

and only if there is a KS extension (2.1) satisfying dimH∗(Q[t1, . . . , tr ]⊗∧V,D) <∞.

So we may try to construct inductively for 1, . . . , i, the KS extensions:

(
Q
[
ti
]
,0
)
�→ (Q[t1, . . . , ti

]⊗∧V,Di
)
�→ (Q[t1, . . . , ti−1

]⊗∧V,Di−1
)

(2.4)

satisfying dimH∗(Q[t1, . . . , ti]⊗∧V,D) < ∞ in general. In the following, we consider

the particular case of i= 1.

Lemma 2.2. Suppose that Hn+2(∧V,d) = 0 and Hn(Q[t]⊗∧V,D) = Q〈γ1, . . . ,γm〉.
Then, Hn+2(Q[t]⊗∧V,D) ⊂ Q〈γ1t, . . . ,γmt〉. Moreover, if Hn+1(∧V,d) = 0, then the

inclusion is an equality.

Proof. Let α+α′t be a D-cocycle in (Q[t]⊗∧V)n+2 with α ∈ (∧V)n+2 and α′ ∈
(Q[t]⊗∧V)n. Then we have Dα=−D(α′)t, and consequently, dα= 0.

Since Hn+2(∧V,d)= 0, there is an element β∈ (∧V)n+1 such that dβ= α. Let Dβ=
α+α′′t for some α′′ ∈ (Q[t]⊗∧V)n. Then, since

0=D2β=Dα+D(α′′)t =−D(α′ −α′′)t, (2.5)

we see that α′ −α′′ is a D-cocycle in (Q[t]⊗∧V)n.

SinceHn(Q[t]⊗∧V,D)=Q〈γ1, . . . ,γm〉, we can denote α′−α′′ = c1γ1+···+cmγm+
Dβ′ for some c1, . . . ,cm ∈Q and β′ ∈ (Q[t]⊗∧V)n−1. Then we have

α+α′t =α+(α′′ +c1γ1+···+cmγm+Dβ′
)
t

= c1γ1t+···+cmγmt+D(β+β′t).
(2.6)

Hence [α + α′t] = [c1γ1t + ··· + cmγmt] in Hn+2(Q[t] ⊗ ∧V,D). Thus we have

Hn+2(Q[t]⊗∧V,D)⊂Q〈γ1t, . . . ,γmt〉.
Suppose that c1γ1t+···+cmγmt =D(η+η′t) for someη∈ (∧V)n+1 andη′ ∈ (Q[t]⊗

∧V)n−1. Then we have dη = 0 since dη �∈ Ideal(t). If Hn+1(∧V,d) = 0, there is an

element θ ∈ (∧V)n such that dθ = η. Let Dθ = η+η′′t for some η′′ ∈ (Q[t]⊗∧V)n−1.

Then we have

(
c1γ1+···+cmγm

)
t =D(η+η′t)=D(Dθ−η′′t+η′t)=D(η′ −η′′)t. (2.7)

However, c1γ1+···+cmγm �∈ ImD unless c1 = ··· = cm = 0. Thus, if Hn+1(∧V,d)= 0,

γ1t, . . . ,γmt are linearly independent in Hn+2(Q[t]⊗∧V,D).
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A commutative graded algebra A∗ with dimA∗ < ∞ will be said to have formal di-

mension n if An �= 0 and Ai = 0 for all i > n. For example, the formal dimensions of (1),

(2), (3), and (4) are 5, 11, 5, and 7, respectively.

Lemma 2.3 [4, Lemma 5.4]. Suppose that H∗(∧V,d) and H∗(Q[t]⊗∧V,D) have for-

mal dimensions n and n′, respectively. Then n′ =n−1. If one algebra satisfies Poincaré

duality, so does the other.

From Lemma 2.1 the following corollary may be useful to estimate a rational toral

rank to be nonzero.

Corollary 2.4. Suppose thatH∗(∧V,d) has formal dimensionn. Then, dimH∗(Q[t]
⊗∧V,D) <∞ if and only if Hn(Q[t]⊗∧V,D)=Hn+1(Q[t]⊗∧V,D)= 0.

Proof. The “if” part is proved as follows. Since Hn+2i(∧V,d)= 0 for i > 0, we have

Hn+2i(Q[t]⊗∧V,D)= 0 for i≥ 0 from Lemma 2.2. Similarly, since Hn+2i−1(∧V,d)= 0

for i > 0, we have Hn+2i−1(Q[t]⊗∧V,D)= 0 for i > 0 from Lemma 2.2. Hence we have

Hn+i(Q[t]⊗∧V,D)= 0 for i≥ 0, that is, dimH∗(Q[t]⊗∧V,D) <∞.

The “only if” part follows from Lemma 2.3.

Proposition 2.5. Suppose that H∗(∧V,d) has formal dimension n and (∧Z,D) is a

minimal d.g.a. Then H∗(∧Z,D) has formal dimension n−1 and Z≤n =Q〈t〉⊕V≤n with

D ≡ dmod(t) on V≤n if and only if Z =Q〈t〉⊕V and D ≡ dmod(t), that is, there is a KS

extension

(
Q[t],0

)
�→ (∧Z,D)= (Q[t]⊗∧V,D) �→ (∧V,d) (2.8)

such that dimH∗(Q[t]⊗∧V,D) <∞.

Proof. The “if” part is obvious from Lemma 2.3.

Now we show the “only if” part. For some k≥n, assume that Z≤k =Q〈t〉⊕V≤k with

Dv ≡ dvmod(t) for v ∈ V≤k. Then an element in Hk+2(∧Z≤k,D) can be written using

[α+α′t] with α∈ (∧V≤k)k+2 and α′ ∈ (∧Z≤k)k. Since D(α+α′t)= 0, we have dα= 0.

Now we give a map

ρk+1 :Hk+2(∧Z≤k,D) �→Hk+2(∧V≤k,d) (2.9)

where ρk+1([α+α′t]) = [α]. It is well defined. Indeed, if [α1 +α′1t] = [α2 +α′2t] in

Hk+2(∧Z≤k,D), then α1 +α′1t = α2 +α′2t +D(β+ β′t) for some β ∈ (∧V≤k)k+1 and

β′ ∈ (∧Z≤k)k−1. Let Dβ= dβ+β′′t. Then we have

(
α1−α2

)+(α′1−α′2
)
t = dβ+(β′′ +D(β′))t. (2.10)

So α1−α2 = dβ. Hence [α1]= [α2] in Hk+2(∧V≤k,d).
Since ρk+1 is bijective, from the following paragraphs we see that Zk+1 = Vk+1 with

Dv ≡ dvmod(t) for v ∈ Vk+1 from the construction of minimal d.g.a.’s such that

H>k(∧Z,D) = H>k(∧V,d) = 0. Thus we have inductively Z = Q〈t〉 ⊕ V with Dv ≡
dvmod(t) for v ∈ V .
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Now we show that ρk+1 is injective. Suppose that ρk+1([α+α′t]) = [α] = 0. Then

there is an element β ∈ (∧V≤k)k+1 such that dβ = α. Let Dβ = α+α′′t. Since D(α+
α′t) = 0 and D(α+α′′t) = D2β = 0, we have D(α′ −α′′) = 0. Since Hk(∧Z≤k,D) = 0,

α′ −α′′ =Dβ′ for some β′ ∈ (∧Z≤k)k−1. Then we have

α+α′t =α+(α′′ +Dβ′)t =D(β+β′t). (2.11)

Hence [α+α′t]= 0.

Now we show that ρk+1 is surjective. Let [α] ∈ Hk+2(∧V≤k,d). Since dα = 0, we

can denote Dα = γt with γ ∈ (∧Z≤k)k+1. Since Hk+1(∧Z≤k,D) = 0, γ = Dη for some

η∈ (∧Z≤k)k. Then we have

D(α−ηt)=Dα−D(η)t = γt−γt = 0. (2.12)

Hence there is an element [α−ηt]∈Hk+2(∧Z≤k,d) such that f([α−ηt])= [α].
From Lemma 2.1, we have the following.

Corollary 2.6. LetM(Y)= (∧V,d)with cohomology of formal dimensionn. If there

is a minimal d.g.a. (∧Z,D) such that H∗(∧Z,D) has formal dimension n−1 and Z≤n =
Q〈t〉⊕V≤n with D ≡ dmod(t) on V≤n, thenM(ES1×S1 Y)� (∧Z,D), that is, rk0(Y)≥ 1.

In the following, X is formal and Y is nonformal.

3. Examples

Example 3.1. Let X = S2 ∨ S2 ∨ S5. Then χH(X) =
∑
i(−1)idimHi(X;Q) = 2 > 0.

Recall

χH
(
ES1×S1X

)= χH(X)·χH
(
BS1) (3.1)

for a Borel fibration X → ES1 ×S1 X → BS1. Since χH(BS1) = ∞ we have χH(ES1 ×S1

X) = ∞, that is, dimH∗(ES1×S1 X;Q) = ∞. From Lemma 2.1, rk0(X) = 0. By the same

argument, we have rk0(Y)= 0.

Note that χH(X)= χH(Y)= 0 in (2), (3), and (4).

Remark 3.2. Even if X is a wedge of spaces, rk0(X) may not be zero. For example,

M(S3∨S3∨S4) = (∧V,d) = (∧(x,y,z, . . .),d) with |x| = |y| = 3 and |z| = 4 and dx =
dy = dz = 0. On the other hand,M(S2∨S3)≤4 = (∧Z,D)≤4 = (∧(t,x,y,z),D)with |t| =
2,Dt =Dx = 0,Dy = t2, andDz = xt. From Corollary 2.6, we have rk0(S3∨S3∨S4)≥ 1.

Example 3.3. Let X = (S3×S8)#(S3×S8). Then

A∗ =H∗(X;Q)= ∧(x,y)⊗Q[w,u](
xy,xu,xw−yu,yw,w2,wu,u2

) (3.2)

with |x| = |y| = 3, |w| = |u| = 8 and X has the minimal model

(∧VX,d
)= (∧(x,y,w,u,v1,v2,v3,v4,v5,v6,v7,z1, . . .

)
,d
)

(3.3)
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with |v1| = 5, |v2| = |v3| = |v4| = 10, |v5| = |v6| = |v7| = 15, |z1| = 7 and dx = dy =
dw = du = 0, dv1 = xy , dv2 = xu, dv3 = xw−yu, dv4 = yw, dv5 =w2, dv6 =wu,

dv7 =u2, dz1 = xv1, . . . .
From D◦D = 0, we have Dx =Dy = 0, Du= λxt3, and Dw =−λyt3 for λ∈Q. As-

sume dimH∗(Q[t]⊗∧VX,D) <∞. From Lemma 2.3, λ �= 0. Let Dv1 = xy+at3 for a∈
Q and Dz1 = xv1+ht for h ∈ (Q[t]⊗∧VX,D)6. Then 0 = D2z1 = −axt3+D(h)t. But

there is no element h such that Dh= axt2. Hence we have a= 0. Since H∗(X;Q) satis-

fies Poincaré duality with formal dimension 11, so doesH∗(Q[t]⊗∧VX,D) with formal

dimension 10 from Lemma 2.3. SinceH3(Q[y]⊗∧VX,D)=Q〈x,y〉 andHi(∧VX,d)= 0

for 4≤ i≤ 7, we have H7(Q[t]⊗∧VX,D)=Q〈xt2,yt2〉 from Lemma 2.2. But

x ·xt2 = x ·yt2 = 0 (3.4)

inH10(Q[t]⊗∧VX,D) sincea=0. This contradicts Poincaré duality. Thus dimH∗(Q[t]⊗
∧VX,D)=∞. From Lemma 2.1, we have rk0(X)= 0.

Let M(Y) = (∧VY ,d) = (∧(x,y,z),d) with |x| = |y| = 3, |z| = 5 and dx = dy = 0,

dz = xy . Then H∗(Y ;Q)�A∗.

Put Dx = Dy = 0 and Dz = xy + t3. Then dimH∗(Q[t] ⊗ ∧VY ,D) < ∞. From

Lemma 2.1, we have rk0(Y)≥1. Also for anyD, we haveDx=Dy=0. Thus dimH∗(Q[t1,
t2]⊗∧VY ,D)=∞. From the case of r = 2 in Lemma 2.1, we have rk0(Y)= 1.

Example 3.4. Let X=(S2∨S2)×S3. Then A∗=H∗(X;Q)=Q[x1,x2]⊗∧(y)/(x2
1 ,x1x2,

x2
2) with |xi| = 2, |y| = 3. When D = d, except for Dy = t2, (Q[t]⊗∧VX,D) is the

minimal model of (S2 ∨ S2)× S2. Hence rk0(X) ≥ 1. In general, if Dy = 0, [xiy] �=
0 ∈ H5(Q[t]⊗∧VX,D), then dimH∗(Q[t]⊗∧VX,D) = ∞ from Lemma 2.2. If Dy �=
0, Hodd(Q[t]⊗∧VX,D) = 0 from Lemma 2.3. In each case, dimH∗(Q[t1, t2]⊗∧VX,D)
cannot be finite. From the case of r = 2 in Lemma 2.1, we have rk0(X)= 1.

Let Y be the nonformal space with H∗(Y ;Q)�A∗. ThenM(Y)= (∧VY ,d) is given by

VY≤5 =Q〈x1,x2,y,z1,z2,z3,u1,u2,v1,v2,v3
〉

(3.5)

with |xi| = 2, |y| = |zi| = 3, |ui| = 4, |vi| = 5 and dx1 = dx2 = dy = 0, dz1 = x2
1, dz2 =

x1x2, dz3 = x2
2, du1 = x1z2−x2z1, du2 = x1z3−x2z2−x2y , dv1 = x1u1−z1z2, dv2 =

x1u2+x2u1−z1z3+z2y , dv3 = x2u2−z2z3+z3y . Here H5(∧VY ,d)=Q〈x1y,x2y〉.
Now we show that t3 �= 0 in H6(Q[t]⊗∧VY ,D). Let Dx1 = Dx2 = 0, Dy = ax1t+

bx2t+ct2 for a,b,c ∈Q and Dzi = dzi+aix1t+bix2t+cit2 for ai,bi,ci ∈Q. Assume

that t3 =D(px1y+qx2y+eyt+fz1t+gz2t+hz3t) for some p,q,e,f ,g,h∈Q. Since

the right-hand side is equal to

(pa+f)x1
2t+(pb+qa+g)x1x2t+(qb+h)x2

2t

+(pc+ea+fa1+ga2+ha3
)
x1t2+(qc+eb+fb1+gb2+hb3

)
x2t2

+(ec+fc1+gc2+hc3
)
t3,

(3.6)
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we have

pc+ea−paa1−pba2−qaa2−qba3 = 0,

qc+eb−pab1−pbb2−qab2−qbb3 = 0,

ec−pac1−pbc2−qac2−qbc3 = 1.
(3.7)

On the other hand, let Dui = dui+eiyt+fiz1t+giz2t+hiz3t for ei,fi,gi,hi ∈Q and

Dvi = dvi+liu1t+miu2t for li,mi ∈Q. Since

0=D2u1

= (a2+f1
)
x1

2t+(b2−a1+g1
)
x1x2t+

(−b1+h1
)
x2

2t

+(c2+e1a+f1a1+g1a2+h1a3
)
x1t2

+(−c1+e1b+f1b1+g1b2+h1b3
)
x2t2

+(e1c+f1c1+g1c2+h1c3
)
t3,

0=D2u2

= (a3+f2
)
x1

2t+(b3−a2−a+g2
)
x1x2t+

(−b2−b+h2
)
x2

2t

+(c3+e2a+f2a1+g2a2+h2a3
)
x1t2

+(−c2−c+e2b+f2b1+g2b2+h2b3
)
x2t2

+(e2c+f2c1+g2c2+h2c3
)
t3,

0=D2v1

= e1x1yt+
(
f1+a2

)
x1z1t+

(
g1−a1+l1

)
x1z2t+

(
h1+m1

)
x1z3t

−m1x2yt+
(
b2−l1

)
x2z1t+

(−b1−m1
)
x2z2t

+(l1e1+m1e2
)
yt2+(c2+l1f1+m1f2

)
z1t2

+(−c1+l1g1+m1g2
)
z2t2+(l1h1+m1h2

)
z3t2,

0=D2v2

= (e2+a2
)
x1yt+

(
f2+a3

)
x1z1t

+(g2−a+l2
)
x1z2t+

(
h2−a1+m2

)
x1z3t

+(e1+b2−m2
)
x2yt+

(
f1+b3−l2

)
x2z1t

+(g1−b−m2
)
x2z2t+

(
h1−b1

)
x2z3t

+(c2+l2e1+m2e2
)
yt2+(c3+l2f1+m2f2

)
z1t2

+(−c+l2g1+m2g2
)
z2t2+(−c1+l2h1+m2h2

)
z3t2,

0=D2v3

= a3x1yt+
(
a3+l3

)
x1z2t+

(−a2−a+m3
)
x1z3t

+(e2+b3−m3
)
x2yt+

(
f2−l3

)
x2z1t

+(g2+b3−m3
)
x2z2t+

(
h2−b2−b

)
x2z3t

+(c3+l3e1+m3e2
)
yt2+(l3f1+m3f2

)
z1t2

+(c3+l3g1+m3g2
)
z2t2+(−c2−c+l3h1+m3h2

)
z3t2,

(3.8)
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we have

a=−2a2+b3, b = a1−2b2, c =−a1a2+a1b3−b2b3,

a3 = b1 = 0, c1 =
(
a1−b2

)
b2, c2 = a2b2, c3 =−

(
a2−b3

)
a2.

(3.9)

Hence (3.7) will be

(−2a2+b3
)(
e−pb2−qa2

)= 0, (3.10)
(
a1−2b2

)(
e−pb2−qa2

)= 0, (3.11)
(−a1a2+a1b3−b2b3

)(
e−pb2−qa2

)= 1, (3.12)

respectively. By (3.12), e−pb2−qa2 �= 0 and −a1a2+a1b3−b2b3 �= 0. Then, by (3.10)

and (3.11), b3 = 2a2 and a1 = 2b2, respectively. But this contradicts −a1a2+a1b3−
b2b3 �= 0. Thus t3 �= 0 in H6(Q[t]⊗∧VY ,D).

Since H∗(∧VY ,d) has formal dimension 5, from Lemma 2.3, we have dimH∗(Q[t]⊗
∧VY ,D)=∞. From Lemma 2.1, we have rk0(Y)= 0.

Example 3.5. Let X = (S2×S5)#(S2×S5). Then

A∗ =H∗(X;Q)= Q
[
x1,x2

]⊗∧(y1,y2
)

(
x2

1 ,x1x2,x2
2 ,x1y1−x2y2,x1y2,x2y1,y1y2

) (3.13)

with |xi| = 2, |yi| = 5 and X has a minimal model M(X)=MA∗ = (∧VX,d) where

VX≤7 =Q〈x1,x2,z1,z2,z3,u1,u2,y1,y2,v1,v2,v3,w1, . . . ,w9,s1, . . . ,s18
〉

(3.14)

with |xi| = 2, |zi| = 3, |ui| = 4, |yi| = |vi| = 5, |wi| = 6, |si| = 7 and

dx1 = dx2 = dy1 = dy2 = 0,

dz1 = x2
1 , dz2 = x1x2, dz3 = x2

2 ,

du1 = x1z2−x2z1, du2 = x1z3−x2z2,

dv1 = x1u1−z1z2, dv2 = x1u2+x2u1−z1z3, dv3 = x2u2−z2z3,

dw1 = x1y1−x2y2, dw2 = x1y2, dw3 = x2y1,

dw4 = x1v1−z1u1, dw5 = x1v2−z1u2−z2u1, dw6 = x1v3−z2u2,

dw7 = x2v1−z2u1, dw8 = x2v2−z2u2−z3u1, dw9 = x2v3−z3u2,

ds1 = x1w1−z1y1+z2y2, ds2 = x1w2−z1y2, ds3 = x1w3−z2y1,

ds4 = x1w4−z1v1, ds5 = x1w5−z1v2+ 1
2
u2

1,
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ds6 = x1w6+x1w8−z1v3−z2v2+u1u2, ds7 = x1w7−x2w4+ 1
2
u2

1,

ds8 = x1w8−x2w5+u1u2, ds9 = x1w9−x2w6+ 1
2
u2

2,

ds10 = x2w1−z2y1+z3y2, ds11 = x2w2−z2y2, ds12 = x2w3−z3y1,

ds13 = x2w4−z2v1− 1
2
u2

1, ds14 = x2w5+x2w7−z2v2−z3v1−u1u2,

ds15 = x2w6−z2v3, ds16 = x2w7−x1w6+z1v3−z3v1−u1u2,

ds17 = x2w8−z3v2− 1
2
u2

2, ds18 = x2w9−z3v3.
(3.15)

Let (∧Z,D) be the formal minimal model MB∗ for the Poincaré duality algebra

B∗ = Q
[
t,x1,x2

]
(
x1t2,x2t2,x2

1+x2t,x1x2−t2,x2
2+x1t

) (3.16)

with |t| = |xi| = 2. Note B∗ has formal dimension 6. Then

Z≤7 =Q〈t〉⊕VX≤7 (3.17)

with

Dt =Dx1 =Dx2 = 0, Dy1 = x2t2, Dy2 = x1t2,

Dz1 = dz1+x2t, Dz2 = dz2−t2, Dz3 = dz3+x1t,

Du1 = du1+z3t, Du2 = du2−z1t,

Dv1 = dv1−u2t, Dv2 = dv2, Dv3 = dv3−u1t,

Dw1 = dw1, Dw2 = dw2+y1t−z1t2, Dw3 = dw3+y2t−z3t2,

Dw4 = dw4+v2t, Dw5 = dw5+v3t, Dw6 = dw6+v1t,

Dw7 = dw7+v3t, Dw8 = dw8+v1t, Dw9 = dw9+v2t,

Ds1 = ds1+w3t+u1t2, Ds2 = ds2−w1t, Ds3 = ds3−w2t+u2t2,

Ds4 = ds4−w5t+w7t, Ds5 = ds5−w6t+w8t, Ds6 = ds6−2w4t+w9t,

Ds7 = ds7−w6t+w8t, Ds8 = ds8−w4t+w9t, Ds9 = ds9−w5t+w7t,

Ds10 = ds10−w2t+u2t2, Ds11 = ds11−w3t−u1t2, Ds12 = ds12+w1t,

Ds13 = ds13−w8t, Ds14 = ds14+w4t−2w9t, Ds15 = ds15−w7t,

Ds16 = ds16+2w4t−2w9t, Ds17 = ds17+w5t−w7t, Ds18 = ds18+w6t−w8t,
(3.18)

that is, D ≡ dmod(t) on VX≤7. From Corollary 2.6, we have rk0(X) ≥ 1. Also for any

D satisfying dimH∗(Q[t]⊗∧VX,D) <∞, we see Hodd(Q[t]⊗∧VX,D)= 0 from Lemma

2.3. From the case of r = 2 in Lemma 2.1, we have rk0(X)= 1.

LetM(Y)= (∧VY ,d)= (∧(x1,x2,z1,z2,z3),d)with |xi| = 2, |zi| = 3 and dx1 = dx2 =
0, dz1 = x2

1, dz2 = x1x2, dz3 = x2
2. Then H∗(Y ;Q)�A∗.
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Put D = d except for Dz2 = x1x2− t2. Then we have dimH∗(Q[t]⊗∧VY ,D) < ∞.

From the case of r = 1 in Lemma 2.1, rk0(Y)≥ 1. From [1], we have rk0(Y)= 1. Indeed,

rk0(Y)≤−χπ(Y)=−
∑

i
(−1)idimπi(Y)⊗Q= dimV odd

Y −dimV even
Y = 1. (3.19)
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