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1. Introduction. Let (X,�1) and (Y ,�2) be uniform spaces. Families {di1 : i ∈ I
being indexing set}, {di2 : i ∈ I} of pseudometrics on X, Y , respectively, are called

associated families for uniformities �1, �2, respectively, if families

β1 =
{
V1(i,r) : i∈ I, r > 0

}
,

β2 =
{
V2(i,r) : i∈ I, r > 0

}
,

(1.1)

where

V1(i,r)=
{(
x,x′

)
: x,x′ ∈X, di1

(
x,x′

)
< r

}
,

V2(i,r)=
{(
y,y ′

)
:y,y ′ ∈ Y , di1

(
y,y ′

)
< r

}
,

(1.2)

are subbases for the uniformities �1, �2, respectively. We may assume that β1, β2 them-

selves are a base by adjoining finite intersections of members of β1, β2, if necessary.

The corresponding families of pseudometrics are called an augmented associated fam-

ilies for �1, �2. An associated family for �1, �2 will be denoted by �1, �2, respectively.

For details, the reader is referred to [1, 4, 5, 6, 7, 8, 9, 10, 11].

Let A, B be a nonempty subset of a uniform space X, Y , respectively. Define

P∗1 (A)= sup
{
di1
(
x,x′

)
: x,x′ ∈A, i∈ I},

P∗2 (B)= sup
{
dİ2
(
y,y ′

)
:y,y ′ ∈ B, i∈ I},

(1.3)

where {di1(x,x′) : x,x′ ∈ A, i ∈ I} = P∗1 , {di2(y,y ′) : y,y ′ ∈ B, i ∈ I} = P∗2 . Then,

P∗1 (A), P
∗
2 (B) are called an augmented diameter of A, B. Further, A, B are said to be

P∗1 (A) <∞, P∗2 (B) <∞. Let

2X = {A :A is a nonempty P∗1 -bounded subset of X
}
,

2Y = {B : B is a nonempty P∗2 -bounded subset of Y
}
.

(1.4)
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For each i∈ I and A1,A2 ∈ 2X , B1,B2 ∈ 2Y , define

δi1
(
A1,A2

)= sup
{
di1
(
x,x′

)
: x ∈A1, x′ ∈A2

}
,

δi2
(
B1,B2

)= sup
{
di2
(
y,y ′

)
:y ∈ B1, y ′ ∈ B2

}
.

(1.5)

Let (X,�1) and (X,�2) be uniform spaces and let U1 ∈ �1 and U2 ∈ �2 be arbitrary

entourages. For each A∈ 2X , B ∈ 2Y , define

U1[A]=
{
x′ ∈X :

(
x,x′

)∈U1 for some x ∈A},
U2[B]=

{
y ′ ∈ Y :

(
y,y ′

)∈U2 for some y ∈ B}. (1.6)

The uniformities 2�1 on 2X and 2�2 on 2Y are defined by bases

2β1 = {Ũ1 :U1 ∈�1
}
, 2β2 = {Ũ2 :U2 ∈�2

}
, (1.7)

where

Ũ1 =
{(
A1,A2

)∈ 2X×2X :A1×A2 ⊂U1
}∪∆,

Ũ2 =
{(
B1,B2

)∈ 2Y ×2Y : B1×B2 ⊂U2
}∪∆, (1.8)

where ∆ denotes the diagonal of X×X and Y ×Y .

The augmented associated families P∗1 , P∗2 also induce uniformities �∗
1 on 2X , �∗

2 on

2Y defined by bases

β∗1 =
{
V∗1 (i,r) : i∈ I, r > 0

}
,

β∗2 =
{
V∗2 (i,r) : i∈ I, r > 0

}
,

(1.9)

where

V∗1 (i,r)=
{(
A1,A2

)
:A1,A2 ∈ 2X : δi1

(
A1,A2

)
< r

}∪∆,
V∗2 (i,r)=

{(
B1,B2

)
: B1,B2 ∈ 2Y : δi2

(
B1,B2

)
< r

}∪∆. (1.10)

Uniformities 2�1 and �∗
1 on 2X are uniformly isomorphic and uniformities 2�2 and �∗

2

on 2Y are uniformly isomorphic. The space (2X,�∗
1 ) is thus a uniform space called the

hyperspace of (X,�1). The (2Y ,�∗
2 ) is also a uniform space called the hyperspace of

(Y ,�2).
Now, let {An : n = 1,2, . . .} be a sequence of nonempty subsets of uniform space

(X,�). We say that sequence {An} converges to subset A of X if

(i) each point in a in A is the limit of a convergent sequence {an}, where an is in

An for n= 1,2, . . . ,
(ii) for arbitrary ε > 0, there exists an integer N such that An ⊆Aε for n>N, where

Aε =∪x∈AU(x)=
{
y ∈X : di(x,y) < ε for some x in A, i∈ I}. (1.11)

A is then said to be a limit of the sequence {An}.
It follows easily from the definition that if A is the limit of a sequence {An}, then A

is closed.



RELATED FIXED POINTS FOR SET-VALUED . . . 3785

Lemma 1.1. If {An} and {Bn} are sequences of bounded, nonempty subsets of a com-

plete uniform space (X,�) which converge to the bounded subsets A and B, respectively,

then sequence {δi(An,Bn)} converges to δi(A,B).

Proof. For arbitrary ε > 0, there exists an integer N such that

δi
(
An,Bn

)≤ δi
(
Aε,Bε

)= sup
{
di
(
a′,b′

)
: a′ ∈Aε, b′ ∈ Bε

}
(1.12)

for n > N. Now, for each a′ in Aε and b′ in Bε, we can find a in A and b in B with

di(a′,a) < ε, di(b′,b) < ε, and so

di
(
a′,b′

)≤ di
(
a′,a

)+di
(
a,b′

)

≤ di
(
a′,a

)+di(a,b)+di
(
b,b′

)

≤ di(a,b)+2ε.

(1.13)

It follows that

δi
(
An,Bn

)
< sup

{
di(a,b) : a∈A, b ∈ B}+2ε = δi(A,B)+2ε (1.14)

for n > N. Further, there exists an integer N′ such that for each a in A and b in B we

can find an in An and bn in Bn with

di
(
a,an

)
< ε, di

(
b,bn

)
< ε (1.15)

for n>N′, and so

di(a,b)≤ di
(
a,an

)+di
(
an,b

)

≤ di
(
a,an

)+di
(
an,bn

)+di
(
bn,b

)

<di
(
an,bn

)+2ε.

(1.16)

It follows that

δi(A,B)= sup
{
di(a,b) : a∈A, b ∈ B}

≤ sup
{
di
(
an,bn

)
: an ∈An, bn ∈ Bn

}+2ε

= δi
(
An,Bn

)+2ε

(1.17)

for n>N′. The result of the lemma follows from inequalities (1.14) and (1.17).

Remark 1.2. If we replace the uniform space (X,�) in Lemma 1.1 by a metric space

(i.e., a metrizable uniform space), then the result of the second author [2] will follow as

special case of our result.

Theorem 1.3. Let (X,�1) and (Y ,�2) be complete Hausdorff uniform spaces defined

by {di1, i∈ I} = P∗1 , {di2, i∈ I} = P∗2 , and (2X,�∗
1 ), (2Y ,�

∗
2 ) hyperspaces, let F :X → 2Y

and G : Y → 2X satisfy inequalities

δi1
(
GFx,GFx′

)≤ cimax
{
di1
(
x,x′

)
,δi1(x,GFx),δ

i
1

(
x′,GFx′

)
,δi2
(
Fx,Fx′

)}
,

δi2
(
FGy,FGy ′

)≤ cimax
{
di2
(
y,y ′

)
,δi2(y,FGy),δ

i
2

(
y ′,FGy ′

)
,δi1
(
Gy,Gy ′

)} (1.18)
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for all i ∈ I and x,x′ ∈ X, y,y ′ ∈ Y , where 0 ≤ ci < 1. If F is continuous, then GF has

a unique fixed point z in X and FG has a unique fixed point w in Y . Further, Fz = {w}
and Gw = {z}.

Proof. Let x1 be an arbitrary point in X. Define sequences {xn} and {yn} in X and

Y , respectively, as follows. Choose a point y1 in Fx1 and then a point x1 in Gy1. In

general, having chosen xn in X and yn in Y , choose xn+1 in Gyn and then yn+1 in

Fxn+1 for n= 1,2, . . . .
Let U1 ∈�1 be an arbitrary entourage. Since β1 is a base for �1, there exists V1(i,r)∈

β1 such that V1(i,r)⊆U1. We have

di1
(
xn+1,xn+2

)

≤ δi1
(
GFxn,GFxn+1

)

≤ cimax
{
di1
(
xn,xn+1

)
,δi1
(
xn,GFxn

)
,δi1
(
xn+1,GFxn+1

)
,δi2
(
Fxn,Fxn+1

)}

≤ cimax
{
δi1
(
GFxn−1,GFxn

)
,δi1
(
GFxn,GFxn+1

)
,δi2
(
Fxn,Fxn+1

)}

= cimax
{
δi1
(
GFxn−1,GFxn

)
,δi2
(
Fxn,Fxn+1

)}

(1.19)

and, similarly let U2 ∈ �2 be an arbitrary entourage. Since β2 is a base for �2, there

exists V2(i,r)∈ β2 such that V2(i,r)⊆U2. We have

di2
(
yn+1,yn+2

)≤ δi2
(
FGyn,FGyn+1

)

≤ cimax
{
δi2
(
FGyn−1,FGyn

)
,δi1
(
Gyn,Gyn+1

)}
.

(1.20)

It follows that

di1
(
xn,xn+m

)≤ di1
(
xn,xn+1

)+di1
(
xn+1,xn+2

)+···+di1
(
xn+m−1,xn+m

)

≤ δi1
(
GFxn−1,GFxn

)+···+δi1
(
GFxn+m−2,GFxn+m−1

)

≤ cimax
{
δi1
(
GFxn−2,GFxn−1

)
,δi2
(
Fxn−1,Fxn

)}

+···+cimax
{
δi1
(
GFxn+m−3,GFxn+m−2

)
,δi2
(
Fxn+m−2,Fxn+m−1

)}

≤ (cni +cn+1
i +···+cn+m−1

i
)
δi1
(
x1,GFx1

)

(1.21)

for n greater than some N. Since ci < 1, it follows that there exists p such that di1(xn,
xm) < r and hence (xn,xm)∈U1 for all n,m≥ p. Therefore, sequence {xn} is Cauchy

sequence in the di1-uniformity on X.

Let Sp = {xn : n ≥ p} for all positive integers p and let �1 be the filter basis {Sp :

p = 1,2, . . .}. Then, since {xn} is a di1-Cauchy sequence for each i ∈ I, it is easy to see

that the filter basis �1 is a Cauchy filter in the uniform space (X,�1). To see this, we

first note that family {V1(i,r) : i ∈ I, r > 0} is a base for �1 as P∗1 = {di1 : i ∈ I}. Now,

since {xn} is a di1-Cauchy sequence in X, there exists a positive integer p such that

di1(xn,xm) < r for m ≥ p, n ≥ p. This implies that Sp×Sp ⊂ V1(i,r). Thus, given any

U1 ∈ �1, we can find an Sp ∈ �1 such that Sp×Sp ⊂ U1. Hence, �1 is a Cauchy filter

in (X,�1). Since (X,�1) is a complete Hausdorff space, the Cauchy filter �1 = {Sp}
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converges to a unique point z ∈ X. Similarly, the Cauchy filter �2 = {Sk} converges to

a unique point w ∈ Y .

Further,

δi1
(
z,GFSp

)≤ di1
(
z,Sm+1

)+δi1
(
Sm+1,GFSp

)

≤ di1
(
z,Sm+1

)+δi1
(
GFSm,GFSp

) (1.22)

since Sm+1 ⊆GFSm. Thus, on using inequality (1.20), we have

δi1
(
z,GFSp

)≤ di1
(
z,Sm+1

)+ε (1.23)

for n,m≥ p. Letting m tend to infinity, it follows that

δi1
(
z,GFSp

)
< ε (1.24)

for n>p, and so

lim
n→∞GFSp = {z} (1.25)

since ε is arbitrary. Similarly,

lim
n→∞FGSk = {w} = lim

n→∞FSp (1.26)

since Sk+1 ∈GSk. Using the continuity of F , we see that

lim
p→∞FSp = Fz = {w}. (1.27)

Now, let W ∈ �1 be an arbitrary entourage. Since β1 is a base for �1, there exists

V1(j,t)∈ β1 such that V1(j,t)⊆W . Using inequality (1.14), we now have

δi1
(
GFSp,GFz

)≤ cimax
{
di1
(
Sp,z

)
,δi1
(
Sp,GFSp

)
,δi1(z,GFz),δ

i
2

(
Fz,FSp

)}
. (1.28)

Letting p tend to infinity and using (1.24) and (1.26), we have

δi1(z,GFz)≤ ciδi1(z,GFz). (1.29)

Since ci < 1, we have δi1(z,GFz) = 0 < t. Hence, (z,GFz) ∈ V1(j,t) ⊆ W . Again, since

W is arbitrary and X is Hausdorff, we must have GFz = {z}, proving that z is a fixed

point of GF .

Further, using (1.26), we have

FGw = FGFz =w, (1.30)

proving that w is a fixed point of FG.
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Now, suppose that GF has a second fixed point z′. Then, using inequalities (1.18),

we have

δi1
(
z′,GFz′

)≤ δi1
(
GFz′,GFz′

)

≤ cimax
{
di1
(
z′,z′

)
,δi1
(
z′,GFz′

)
,δi2
(
Fz′,Fz′

)}

≤ ciδi2
(
Fz′,Fz′

)≤ ciδi2
(
Fz′,FGFz′

)≤ ciδi2
(
FGFz′,FGFz′

)

≤ c2
i max

{
δi2
(
Fz′,FGFz′

)
,δi2
(
Fz′,FGFz′

)
,δi1
(
GFz′,GFz′

)}

≤ c2
i δ

i
2

(
GFz′,GFz′

)
,

(1.31)

and so Fz′ is a singleton and GFz′ = {z′}, since ci < 1. Thus,

di1
(
z,z′

)≤ δi1
(
GFz,GFz′

)

≤ cimax
{
di1
(
z,z′

)
,δi1(z,GFz),δ

i
1

(
z′,GFz′

)
,δi2
(
Fz,Fz′

)}
.

(1.32)

But

di2
(
Fz,Fz′

)≤ δi2
(
FGFz,FGFz′

)

≤ cimax
{
δi2
(
Fz,Fz′

)
,δi2(Fz,FGFz),δ

i
2

(
Fz′,FGFz′

)
,δi1
(
GFz,GFz′

)}

= cimax
{
di2
(
Fz,Fz′

)
,di2(Fz,Fz),d

i
2

(
Fz′,Fz′

)
,di1

(
z,z′

)}

= cidi1
(
z,z′

)
,

(1.33)

and so

di1
(
z,z′

)≤ c2
i d

i
1

(
z,z′

)
. (1.34)

Since ci < 1, the uniqueness of z follows.

Similarly,w is the unique fixed point of FG. This completes the proof of the theorem.

If we let F be a single-valued mapping T of X into Y and G a single-valued mapping

S of Y into X, we obtain the following result.

Corollary 1.4. Let (X,�1) and (Y ,�2) be complete Hausdorff uniform spaces. If

T is a continuous mapping of X into Y and S is a mapping of Y into X satisfying the

inequalities

di1
(
STx,STx′

)≤ cimax
{
di1
(
x,x′

)
,di1(x,STx),d

i
1

(
x′,STx′

)
,di2

(
Tx,Tx′

)}
,

di2
(
TSy,TSy ′

)≤ cimax
{
di2
(
y,y ′

)
,di2(y,TSy),d

i
2

(
y ′,TSy ′

)
,di1

(
Sy,Sy ′

)} (1.35)

for all x,x′ ∈ X and y,y ′ ∈ Y , i∈ I where 0≤ ci < 1, then ST has a unique fixed point

z in X and TS has a unique fixed point w in Y . Further, Tz =w and Sw = z.
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Theorem 1.5. Let (X,�1) and (Y ,�2) be compact uniform spaces defined by {di1 :

i ∈ I} = P∗1 and {di2 : i ∈ I} = P∗2 , and, (2X,�∗
1 ) and (2Y ,�∗

2 ) hyperspaces. If F is a

continuous mapping of X into 2Y and G is a continuous mapping of Y into 2X satisfying

the inequalities

δi1
(
GFx,GFx′

)
<max

{
di1
(
x,x′

)
,δi1(x,GFx),δ

i
1

(
x′,GFx′

)
,δi2
(
Fx,Fx′

)}
,

δi2
(
FGy,FGy ′

)
<max

{
di2
(
y,y ′

)
,δi2(y,FGy),δ

i
2

(
y ′,FGy ′

)
,δi1
(
Gy,Gy ′

)} (1.36)

for all x,x′ ∈ X and y,y ′ ∈ Y , i ∈ I for which the right-hand sides of the inequalities

are positive, then, FG has a unique fixed point z ∈ X and GF has a unique fixed point

w ∈ Y . Further, FGz = {z} and GFw = {w}.
Proof. We denote the right-hand sides of inequalities (1.35) by h(x,x′) and

k(y,y ′), respectively. First of all, suppose that h(x,x′) ≠ 0 for all x,x′ ∈ X and

k(y,y ′)≠ 0 for all y,y ′ ∈ Y . Define the real-valued function f(x,x′) on X×X by

f
(
x,x′

)= δ
i
1

(
GFx,GFx′

)

h
(
x,x′

) . (1.37)

Then, if {(xn,x′n)} is an arbitrary sequence in X×X converging to (x,x′), it follows

from the lemma and the continuity of F and G that the sequence {f(xn,x′n)} converges

to f(x,x′). The function f is therefore a continuous function defined on the compact

uniform space X×X and so achieves its maximum value ci1 < 1.

Thus,

δi1
(
GFx,GFx′

)≤ ci1 max
{
di1
(
x,x′

)
,δi1(x,GFx),δ

i
1

(
x′,GFx′

)
,δi2
(
Fx,Fx′

)}
(1.38)

for all x,x′ in X, i∈ I.
Similarly, there exists ci2 < 1 such that

δi2
(
FGy,FGy ′

)≤ ci2 max
{
di2
(
y,y ′

)
,δi2(y,FGy),δ

i
2

(
y ′,FGy ′

)
,δi1
(
Gy,Gy ′

)}
(1.39)

for all y,y ′ ∈ Y , i ∈ I. It follows that the conditions of Theorem 1.3 are satisfied with

ci =max{ci1,ci2} and so, once again there exists z in X and w in Y such that GFz = {z}
and FGw = {w}.

Now, suppose that h(x,x′)= 0 for some x,x′ in X. Then, GFx =GFx′ = {x} = {x′}
is a singleton {w}. It follows that z is a fixed point of GF and GFz = {z}. Further,

FGw = FGFz = Fz = {w} (1.40)

and so w is a fixed point of FG.

It follows similarly that if k(y,y ′)= 0 for some y,y ′ ∈ Y , then again GF has a fixed

point z and FG has a fixed point w.
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Now, we suppose that GF has a second fixed point z′ in X so that z′ is in GFz′. Then,

on using inequalities (1.36), we have, on assuming that δi2(Fz′,Fz′)≠ 0 for each i∈ I,

δi1
(
z′,GFz′

)≤ δi1
(
GFz′,GFz′

)

<max
{
di1
(
z′,z′

)
,δi1
(
z′,GFz′

)
,δi2
(
Fz′,Fz′

)}

= δi2
(
Fz′,Fz′

)≤ δi2
(
Fz′,FGFz′

)≤ δi2
(
FGFz′,FGFz′

)

<max
{
δi2
(
Fz′,Fz′

)
,δi2
(
Fz′,FGFz′

)
,δi1
(
GFz′,GFz′

)}

= δi2
(
GFz′,GFz′

)
,

(1.41)

a contradiction, and so Fz′ is a singleton and GFz′ = {z′}. Thus, if z ≠ z′

di1
(
z,z′

)= δi1
(
GFz,GFz′

)

<max
{
di1
(
z,z′

)
,δi1(z,GFz),δ

i
1

(
z′,GFz′

)
,δi2
(
Fz,Fz′

)}

= di2
(
Fz,Fz′

)
.

(1.42)

But if Fz ≠ Fz′, we have

di2
(
Fz,Fz′

)≤ δi2
(
FGFz,FGFz′

)

<max
{
δi2
(
Fz,Fz′

)
,δi2(Fz,FGFz),δ

i
2

(
Fz′,FGFz′

)
,δi1
(
GFz,GFz′

)}

=max
{
δi2
(
Fz,Fz′

)
,di2(Fz,Fz),d

i
2

(
Fz′,Fz′

)
,di1

(
z,z′

)}

= di
(
z,z′

)
,

(1.43)

and so

di
(
z,z′

)
<di

(
z,z′

)
, (1.44)

a contradiction. The uniqueness of z follows.

Similarly,w is the unique fixed point of FG. This completes the proof of the theorem.

If we let F be a single-valued mapping T of X into Y and G a single-valued mapping

of Y into X, we obtain the following result.

Corollary 1.6. Let (X,�1) and (Y ,�2) be compact Hausdorff uniform spaces. If T
is a continuous mapping of X into Y and S is a continuous mapping of Y into X satisfying

the inequalities

di1
(
STx,STx′

)
<max

{
di1
(
x,x′

)
,di1(x,STx),d

i
1

(
x′,STx′

)
,di2

(
Tx,Tx′

)}
,

di2
(
TSy,TSy ′

)
<max

{
di2
(
y,y ′

)
,di2(y,TSy),d

i
2

(
y ′,TSy ′

)
,di1

(
Sy,Sy ′

)} (1.45)

for all x,x′ ∈ X and y,y ′ ∈ Y , i ∈ I for which the right-hand sides of the inequalities

are positive, then ST has a unique fixed point z in X and TS has a unique fixed point w
in Y . Further, Tz =w and Sw = z.
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Remark 1.7. If we replace the uniform spaces (X,�1) and (Y ,�2) in Theorems 1.3

and 1.5 and Corollaries 1.4 and 1.6, by a metric space (i.e., a metrizable uniform space),

then the results of the authors [3] will follow as special cases of our results.
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