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There are several existing ways in developing the asymptotics of the Painlevé transcendents.
But it is always a hard task to justify the existence of these asymptotics. In this note, we
apply the successive approximation to the general fifth Painlevé equation and rigorously
prove the existence of a group of asymptotics of its solutions.
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1. Introduction. The mathematical and physical significance of the six Painlevé tran-

scendents has been well established. Their mathematical importance originates from

the work by Painlevé [7, 8] and Garnier [2]. Their physical significance follows their

applicability to a wide range of important physical problems, such as nonlinear waves

in quantum field theory and statistical mechanics [6]. There have been many results

on the asymptotics of the Painlevé transcendents. In 1980, Hastings and McLeod [4]

developed a method and applied it to the second Painlevé equation. In their paper, they

rigorously proved the existence of a group of asymptotics to the second Painlevé equa-

tion and obtained a connection formula of the asymptotics. In 1997, Abdullayev [1]

further developed the ideas used by Hastings and McLeod, “linearized” a special case

of the fourth Painlevé equation and proved the existence of a group of its asymptotics.

In [5], we studied the general fifth Painlevé equation

(PV)

y ′′ =
(

1
2y

+ 1
y−1

)
y ′2− y

′

x
+ (y−1)2

x2

(
αy+ β

y

)
+ γy
x
− δy(y+1)

y−1
(1.1)

and developed several groups of asymptotics of its negative solutions. In this note, we

apply Abdullayev’s idea to (PV) and prove the following theorem.

Theorem 1.1. If δ > 0, there exists a two-parametric family y(x) = y(x,a,φ0) of

solutions of (PV) such that the following asymptotics hold as x→∞:

y(x)=−1−4ax−1/2 cosφ+O(x−1),
y ′(x)= 4ax−1/2 sinφ+O(x−1),

φ= x−a2 lnx+φ0.

(1.2)
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It is important to notice that this theorem does not only show the existence of the

solutions, but also shows the differentiability of the asymptotics.

Because we are studying (PV)s with the parameter δ > 0, and δ can be scaled to any

positive number when it is positive, we simply prove the theorem for δ= 2. In order to

“linearize” (PV), we first use the transformation

y(x)=−tan2v(x) (1.3)

to transform (PV) into the equation

v′′ +x−1v′ = x
−2

2

(
αtanv sec2v+βcotv csc2v

)+ γ
4
x−1 sin2v+ 1

4
sin4v. (1.4)

It is clear that transformation (1.3) maps the region 0≤ v ≤π/2 onto the region −∞≤
y ≤ 0. y = 0 and y =−∞ are corresponding to v = 0 and v =π/2, respectively.

Corresponding to the asymptotics of y(x) in the theorem, we now seek formally a

solution of (1.4) in the form

v(x)= π
4
+ax−1/2 cosφ+Ax−1. (1.5)

Substituting (1.5) into (1.4), we find A= γ/4.

2. Proof of Theorem 1.1. First, we set

v(x)= π
4
+x−1/2W(x), (2.1)

and “linearize” each term in the right-hand side of (1.4). Using the power series of the

trigonometric functions, we get

tan
(
π
4
+x−1/2W

)
sec2

(
π
4
+x−1/2W

)
= 2+x−1/2W +20x−1W 2+x−3/2f1(W),

cot
(
π
4
+x−1/2W

)
csc2

(
π
4
+x−1/2W

)
= 2−x−1/2W +20x−1W 2+x−3/2f2(W),

sin
(
π
2
+2x−1/2W

)
= 1−2x−1W 2+x−2f3(W),

sin
(
π+4x−1/2W

)=−4x−1/2W + 32
3
x−3/2W 3+x−5/2f4(W),

(2.2)

where f1(W) = O(W 3), f2(W) = O(W 3), f3(W) = O(W 4), and f4(W) = O(W 5). Substi-

tuting (2.1) and (2.2) into (1.4), we can get a “linearized” form of the equation

W ′′(x)+W(x)= γ
4
x−1/2+ 8

3
x−1W 3− γ

2
x−3/2W 2

+(α+β)x−3/2− 1
4
x−2W +x−2f5(W),

(2.3)

where f5(W)= (α/2)x−1f1(W)+(β/2)x−1f2(W)+(γ/4)x−1/2f3(W)+(1/4)f4(W) and

df5/dW is bounded when |x−1/2W | ≤ c0 <π/4.
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To further “linearize” the equation, we need the following transformation:

W(x)= acosφ+ γ
4
x−1/2+W1(x). (2.4)

Substituting this transformation into (2.3), we obtain the equation

W ′′
1 (x)+f(x)W1(x)= g0(x)+x−3/2g1(x)W1+x−1g2(x)W 2

1

+x−1g3(x)W 3
1 +x−2f5(W),

(2.5)

where

f(x)= 1−4a2x−1−4a2 cos2φ,

g0(x)= 2
3
a3x−1 cos3i− a

2γ
2
x−3/2 cos2φ+(α+γ)x−3/2+2a2γx−2 cos2φ

− a
4
x−2 cosφ− aγ

2

4
x−5/2 cosφ+ aγ

2

2
x−3 cosφ+a5x−2 cosφ

+a3x−2 sinφ− 3γ
16
x−5/2− γ

3

32
x−3/2,

g1(x)=−aγ+4aγx−1/2 cosφ− 1
4
x−1/2− γ

2

4
x−1+ γ

2

2
x−3/2,

g2(x)= 8acosφ− γ
2
x−1/2+2γx−1,

g3(x)= 8
3
.

(2.6)

To apply the successive approximation to (2.5), we first need to solve the equation

w′′(x)+f(x)w(x)= 0, (2.7)

where f(x) is the function defined above.

Lemma 2.1. Equation (2.7) has a fundamental system of solutions with the following

asymptotics representations:

w1(x)=
(
cos

(
x−2a2 lnx

)+sin
(
x−2a2 lnx

))
×e(1/2)(cos2(a2 lnx+φ0)+sin2(a2 lnx+φ0))+O(x−1),

w2(x)=
(
cos

(
x−2a2 lnx

)−sin
(
x−2a2 lnx

))
×e(1/2)(cos2(a2 lnx+φ0)−sin2(a2 lnx+φ0))+O(x−1),

w′
1(x)=

(
cos

(
x−2a2 lnx

)−sin
(
x−2a2 lnx

))
×e(1/2)(cos2(a2 lnx+φ0)+sin2(a2 lnx+φ0))+O(x−1),

w′
2(x)=

(−cos
(
x−2a2 lnx

)−sin
(
x−2a2 lnx

))
×e(1/2)(cos2(a2 lnx+φ0)−sin2(a2 lnx+φ0))+O(x−1).

(2.8)
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Proof. Harris Jr. and Lutz [3] and Abdullayev [1] have proved some results on sim-

ilar equations. We use their ideas in this proof. First, we use the transformation

����→w =
(

cosψ sinψ
−ψ′ sinψ ψ′ cosψ

)
�→u, (2.9)

where ����→w =
(
w
w′
)
, �→u =

(
u1
u2

)
, and ψ = x−2a2 lnx, to transform (2.7) into the following

system of linear equations:

�→u′ =
[
a2x−1

(−sin2(φ−ψ) cos2(φ−ψ)
cos2(φ−ψ) −sin2(φ−ψ)

)

+a2x−1

(
sin2(φ+ψ) cos2(φ+ψ)−2cos2φ

cos2(φ+ψ)+2cos2φ sin2(φ+ψ)

)
+R1(x)

]
�→u,

(2.10)

where R1(x)=
(
r11(x) r12(x)
r13(x) r14(x)

)
with r1j(x)=O(x−2) for j = 1,2,3,4.

The first matrix in the right-hand side clearly causes some problems becauseφ−ψ=
a2 lnx+φ0. We solve this problem by diagonalizing this matrix first. Let

�→u =
(

1 1

1 −1

)
�→z . (2.11)

Then,

�→z =
[
−a2x−1

(
sin2Φ1−cos2Φ1 0

0 sin2Φ1+cos2Φ1

)

+a2x−1

(
sin2Ψ1+cos2Ψ1 2cos2φ
−2cos2φ sin2Ψ1−cos2Ψ1

)
+R2(x)

]
�→z ,

(2.12)

where Φ1 = φ−ψ, Ψ1 = φ+ψ, and R2(x) =
(
r21(x) r22(x)
r23(x) r24(x)

)
with r2j(x) = O(x−2) for

j = 1,2,3,4. To deal with the second matrix whose elements are only conditionally

integrable up to infinity, we apply the transformation

�→z =
(

1 a2x−1 sin2φ
−a2x−1 sin2φ 1

)
�→
h, (2.13)

where a2x−1 sin2φ is the major term of the integral of 2a2x−1 cos2φ, to (2.12) and

obtain

�→
h =

[
−a2x−1

(
sin2Φ1−cos2Φ1 0

0 sin2Φ1+cos2Φ1

)

+a2x−1

(
sin2Ψ1+cos2Ψ1 0

0 sin2Ψ1−cos2Ψ1

)
+R3(x)

]
�→
h,

(2.14)
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where R3(x)=
(
r31(x) r32(x)
r33(x) r34(x)

)
with r3j(x)=O(x−2) for j = 1,2,3,4. We solve the diago-

nalized part of (2.14) and obtain

h10 = exp
{
a2
∫ x
x0

t−1(cos2Φ1−sin2Φ1+sin2Ψ1+cos2Ψ1
)
dt
}

= e(1/2)(cos2(a2 lnx+φ0)+sin2(a2 lnx+φ0))+O(x−1),
h20 = exp

{
a2
∫ x
x0

t−1(−cos2Φ1−sin2Φ1+sin2Ψ1−cos2Ψ1
)
dt
}

= e(1/2)(cos2(a2 lnx+φ0)−sin2(a2 lnx+φ0))+O(x−1).

(2.15)

Now, we can let

�→
h = h0

�→c , (2.16)

where h0 = diag(h10,h20) and �→c =
(
c1
c2

)
, and convert (2.14) to an integral equation

�→c = �→c 0+
∫ x
∞
h−1

0 R3(t)h0
�→c dt. (2.17)

It is clear now that (2.17) has solutions �→c = �→c 0+O(x−1). Thus, we obtain a solution

matrix

(
cosψ sinψ

−ψ′ sinψ ψ′ cosψ

)(
1 1

1 −1

)(
I+O(x−1))h0

(
I+O(x−1)) (2.18)

and complete the proof of the lemma.

Now, we continue the proof of our main theorem. With the fundamental system of

solutions of (2.7) we have found, we can change (2.5) to its corresponding integral form:

W1(x)=W10(x)+c
∫ x
∞

(
e−cos(2a2 lnτ+φ0)+O(τ−1))(w1(x)w2(τ)−w2(x)w1(τ)

)
×[τ−3/2g1(τ)W1+τ−1g2(τ)W 2

1 +τ−1g3(τ)W 3
1 +τ−2f5(W)

]
dτ,

W ′
1(x)= W̄10(x)+c

∫ x
∞

(
e−cos(2a2 lnτ+φ0)+O(τ−1))(w′

1(x)w2(τ)−w′
2(x)w1(τ)

)
×[τ−3/2g1(τ)W1+τ−1g2(τ)W 2

1 +τ−1g3(τ)W 3
1 +τ−2f5(W)

]
dτ,

(2.19)

where

W10(x)=
∫ x
∞

(
e−cos(2a2 lnτ+φ0)+O(τ−1))(w1(x)w2(τ)−w2(x)w1(τ)

)
g0(τ)dτ,

W̄10(x)=
∫ x
∞

(
e−cos(2a2 lnτ+φ0)+O(τ−1))(w′

1(x)w2(τ)−w′
2(x)w1(τ)

)
g0(τ)dτ.

(2.20)
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We pay attention to the first equation of (2.19). Noticing that g0(x)= (2/3)a3x−1 cos3φ
+O(x−3/2) and

w1(x)
∫ x
∞
τ−1e−cos(2a2 lnτ+φ0)w2(τ)cos3φdτ

= 1
4
w1(x)

∫ x
∞
τ−1(cosΦ2+cosΨ2−sinΦ2−sinΨ2

)
×e−(1/2)(sin(2a2 lnτ+φ0)+cos(2a2 lnτ+φ0))dτ

= 1
4
w1(x)

∫ x
∞
τ−1e−(1/2)(sin(2a2 lnτ+φ0)+cos(2a2 lnτ+φ0))

3−a2τ−1
d
(
sinΦ2+cosΦ2

)

+ 1
4
w1(x)

∫ x
∞
τ−1e−(1/2)(sin(2a2 lnτ+φ0)+cos(2a2 lnτ+φ0))

3−5a2τ−1
d
(
sinΨ2+cosΨ2

)
=O(x−1),

(2.21)

where Φ2 = 3τ−a2 lnτ+4φ0 and Ψ2 = 3τ−5a2 lnτ+2φ0, we can conclude W10(x) =
O(x−1/2). We let V(x)= x1/2W1(x) and V0(x)= x1/2W10(x). Then, the equation corre-

sponding to (2.19) is

V(x)= V0(x)+cx1/2
∫ x
∞

(
e−cos(2a2 lnτ+φ0)+O(τ−1))(w1(x)w2(τ)−w2(x)w1(τ)

)
×τ−2[g1(τ)V +g2(τ)V 2+τ−1/2g3(τ)V 3+f5(W)

]
dτ

= V0(x)+K
(
x,V(x)

)
.

(2.22)

To apply the successive approximation method, we define the sequence

Vn(x)= V0(x)+K
(
x,Vn−1(x)

)
, n= 1,2, . . . . (2.23)

Let q be a constant such that

∣∣c∥∥e−cos(2a2 lnτ+φ0)+O(τ−1)∥∥w1(x)w2(τ)−w2(x)w1(τ)
∣∣

×(∣∣g1

∣∣M0+
∣∣g2

∣∣M2
0 +τ−1/2∣∣g3

∣∣M3
0 +

∣∣f5(W)
∣∣)

≤ q ∀x ≥ x0, τ ≥ x0,

(2.24)

and letM0 be another constant such that |V0(x)|<M0 for all x ≥ x0 and q <M0. Then,

∣∣V1(x)−V0(x)
∣∣≤ qx−1/2. (2.25)

Assume that

∣∣Vn(x)−Vn−1(x)
∣∣≤ qx−1/2(kx−1/2)n−1,

∣∣Vn(x)∣∣≤M0+qx−1/2 1−(kx−1/2)n
1−kx−1/2 for some n≥ 1,

(2.26)
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where k is a constant such that

∣∣c∥∥e−cos(2a2 lnτ+φ0)+O(τ−1)∥∥w1(x)w2(τ)−w2(x)w1(τ)
∣∣

×
(∣∣g1

∣∣M0+
∣∣g2

∣∣M2
0 +τ−1/2∣∣g3

∣∣M3
0 +

∣∣∣∣df5

dW
(W)

∣∣∣∣
)
≤ k, for x ≥ x0, τ ≥ x0,

(2.27)

then

∣∣Vn+1(x)−Vn(x)
∣∣

≤−x1/2M1

∫ x
∞
τ−2

∣∣∣∣g1(τ)+g2(τ)
(
Vn+Vn−1

)+τ−1/2g3(τ)
(
V 2
n+Vn−1Vn+V 2

n−1

)

+τ−1/2df5

dW
(
W∗
n
)∣∣∣∣∣∣Vn−Vn−1

∣∣dτ
≤−x1/2M1

∫ x
∞
τ−2

(∣∣g1

∣∣+2
∣∣g2

∣∣M0+12τ−1/2∣∣g3

∣∣M2
0 +τ−1/2

∣∣∣∣df5

dW
(
W∗
n
)∣∣∣∣
)

×qτ−1/2(kτ−1/2)n−1dτ

≤ qx−1/2(kx−1/2)n,∣∣Vn+1(x)
∣∣≤ ∣∣Vn(x)∣∣+∣∣Vn+1(x)−Vn(x)

∣∣
≤M0+qx−1/2 1−(kx−1/2)n

1−kx−1/2 +qx−1/2(kx−1/2)n

≤M0+qx−1/2 1−(kx−1/2)n+1

1−kx−1/2 .

(2.28)

By the mathematical induction, we have proved that

∣∣Vn(x)−Vn−1(x)
∣∣≤ qx−1/2(kx−1/2)n−1 ∀n= 1,2,3, . . . . (2.29)

Therefore, the sequence {Vn(x)} uniformly converges and we can conclude that the

first equation in (2.19) has a solution satisfying

W1(x)=O
(
x−1/2). (2.30)

Similarly, we can apply the same method to the second equation in (2.19) and prove

that

W ′
1(x)=O

(
x−1/2). (2.31)

Substituting (2.1), (2.4), (2.30), and (2.31) back into transformation (1.3), we obtain the

asymptotics stated in Theorem 1.1 and finish the proof.
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