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Based on the method of copulas, we construct a parametric family of multivariate distribu-
tions using mixtures of independent conditional distributions. The new family of multivari-
ate copulas is a convex combination of products of independent and comonotone subcopu-
las. It fulfills the four most desirable properties that a multivariate statistical model should
satisfy. In particular, the bivariate margins belong to a simple but flexible one-parameter
family of bivariate copulas, called linear Spearman copula, which is similar but not identical
to the convex family of Fréchet. It is shown that the distribution and stop-loss transform
of dependent sums from this multivariate family can be evaluated using explicit integral
formulas, and that these dependent sums are bounded in convex order between the cor-
responding independent and comonotone sums. The model is applied to the evaluation of
the economic risk capital for a portfolio of risks using conditional value-at-risk measures.
A multivariate conditional value-at-risk vector measure is considered. Its components co-
incide for the constructed multivariate copula with the conditional value-at-risk measures
of the risk components of the portfolio. This yields a “fair” risk allocation in the sense that
each risk component becomes allocated to its coherent conditional value-at-risk.

2000 Mathematics Subject Classification: 62E15, 62H20, 62P05, 91B30.

1. Introduction. A natural framework for the construction of multivariate nonnor-

mal distributions is the method of copulas, justified by the theorem of Sklar [48]. It

permits a separate study and modeling of the marginal distributions and the depen-

dence structure. According to Joe [30, Section 4.1], a parametric family of distributions

should satisfy four desirable properties.

(a) There should exist an interpretation like a mixture or other stochastic represen-

tation.

(b) The margins, at least the univariate and bivariate ones, should belong to the same

parametric family and numerical evaluation should be possible.

(c) The bivariate dependence between the margins should be described by a param-

eter and cover a wide range of dependence.

(d) The multivariate distribution and density should preferably have a closed-form

representation; at least numerical evaluation should be possible.

In general, these desirable properties cannot be fulfilled simultaneously. For exam-

ple, multivariate normal distributions satisfy properties (a), (b), and (c) but not (d).

The method of copulas satisfies property (c) but implies only partial closedness under

the taking of margins, and can lead to computational complexity as the dimension in-

creases. In fact, it is an open problem to find parametric families of copulas that satisfy

all of the desirable properties. In the present paper, such a parametric family, called
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multivariate linear Spearman copula, is constructed (formula (4.9)). It is based on the

method of mixtures of independent conditional distributions.

A growing need for and interest in suitable multivariate nonnormal distributions

stem from applications in actuarial science and finance, especially in risk manage-

ment. Given a risk or portfolio of risks, represented by a random variable X or random

vector X= (X1, . . . ,Xn) with distribution Fx(x), one looks for risk measures suitable to

model the economic risk capital of the risk X or aggregate risk
∑n
i=1Xi. Two simple

measures are the value-at-risk and the conditional value-at-risk. Given a random vari-

able X, one considers the value-at-risk (VaR) to the confidence level α, defined as the

lower α-quantile:

VaRα[X]=QX(α)= inf
{
x : FX(x)≥α

}
, (1.1)

and the upper conditional value-at-risk (CVaR+) to the confidence level α, defined by

CVaR+α[X]= E
[
X |X > VaRα[X]

]
. (1.2)

The VaR quantity represents the maximum possible loss, which is not exceeded with

the probability α. The CVaR+ quantity is the conditional expected loss given that the

loss strictly exceeds its value-at-risk. Next, consider the α-tail transform Xa of X with

distribution

FXα(x)=



0, x < VaRα[X],
FX(x)−α

1−α , x ≥ VaRα[X].
(1.3)

Rockafellar and Uryasev [44] define conditional value-at-risk (CVaR) to the confidence

level α as the expected value of the α-tail transform, that is, by

CVaRα[X]= E[Xα]. (1.4)

The obtained measure is a coherent risk measure in the sense of Artzner et al. [4, 5] and

coincides with CVaR+ in the case of continuous distributions. It is well known that the

VaR measure is not coherent. For simplicity, we restrict throughout the attention to the

case of continuous distributions and identify CVaR with CVaR+. For portfolios of risks,

we define a multivariate conditional value-at-risk vector measure, whose components

coincide for the multivariate linear Spearman copula with the CVaR measures of the

risk components of the portfolio (Theorem 6.1). This yields a “fair” risk allocation in the

sense that each risk component becomes allocated to its coherent univariate conditional

value-at-risk measure.

A more detailed outline of the content follows. Based on the method of copulas

summarized in Section 2.1, we recall in Section 2.2 the construction of parametric fam-

ilies of multivariate copulas using mixtures of independent conditional distributions.

Following this approach, it is first necessary to focus on a simple but sufficiently flex-

ible one-parameter family of bivariate copulas, called linear Spearman copula, which

is similar but not identical to the convex family of Fréchet [23] and is introduced in

Section 3.1. The analytical evaluation of the distribution and stop-loss transform of
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bivariate sums following a linear Spearman copula, required in conditional value-at-

risk calculations, is presented in Section 3.2. Section 4 is devoted to the construction

of the new multivariate family of copulas that satisfies the four desirable properties

(a), (b), (c), and (d). Two important features of the multivariate linear Spearman copula

are presented in Section 5. First, we show that the distribution and stop-loss transform

of dependent sums following a multivariate linear Spearman copula can be evaluated

using explicit integral formulas (Theorem 5.1). Then, we establish that these depen-

dent sums are bounded in convex order between the corresponding independent and

comonotone sums (Theorem 5.2). Finally, Section 6 presents our application to condi-

tional value-at-risk.

2. Multivariate models with arbitrary marginals. Our view of multivariate statisti-

cal modeling is that of Joe [30, Section 1.7]: “Models should try to capture important

characteristics, such as the appropriate density shapes for the univariate margins and

the appropriate dependence structure, and otherwise be as simple as possible.” To ful-

fill this, a parametric family of multivariate distributions should satisfy the desirable

properties (a), (b), (c), and (d) mentioned in Section 1. It is an open problem to find para-

metric families of copulas that satisfy all these desirable properties (Joe [30, Section

4.13, page 138]). In the present paper, such a parametric family is constructed. It is

based on the method of mixtures of independent conditional distributions, discussed

in Section 2.2.

2.1. The method of copulas. Though copulas have been introduced since Sklar [48],

their use in insurance and finance is more recent. Textbooks treating copulas include

those by Hutchinson and Lai [29], Joe [30], Nelsen [41], and Drouet Mari and Kotz [17].

Recall that the copula representation of a continuous multivariate distribution al-

lows for a separate modeling of the univariate margins and the dependence struc-

ture. Denote by Mn := Mn(F1, . . . ,Fn) the class of all continuous multivariate random

variables (X1, . . . ,Xn) with given marginals Fi of Xi. If F denotes the multivariate dis-

tribution of (X1, . . . ,Xn), then the copula associated with F is a distribution function

C : [0,1]n→ [0,1] that satisfies

F(x)= C(F1
(
x1
)
, . . . ,Fn

(
xn

))
, x = (

x1, . . . ,xn
)∈ Rn. (2.1)

Reciprocally, if F ∈Mn and F−1
i are quantile functions of the margins, then

C(u)= F(F−1
1

(
u1

)
, . . . ,F−1

n
(
un

))
, u= (

u1, . . . ,un
)∈ [0,1]n, (2.2)

is the unique copula satisfying (2.1) (theorem of Sklar [48]).

Copulas are especially useful for the modeling and measurement of bivariate de-

pendence. For an axiomatic definition, one needs the important notion of concordance

ordering. A copula C1(u,v) is said to be smaller than a copula C2(u,v) in concordance

order, written C1 ≺ C2, if one has

C1(u,v)≤ C2(u,v), (u,v)∈ [0,1]2. (2.3)
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Definition 2.1 (Scarsini [46]). A numeric measure κ, written κX,Y or κC , of asso-

ciation between two continuous random variables X and Y with copula C(u,v) is a

measure of concordance if it satisfies the following properties:

(C1) κX,Y is defined for every couple (X,Y) of continuous random variables;

(C2) −1≤ κX,Y ≤ 1, and κX,−X =−1, κX,X = 1;

(C3) κX,Y = κY,X ;

(C4) if X and Y are independent, then κX,Y = 0;

(C5) κ−X,Y = κX,−Y =−κX,Y ;

(C6) if C1 ≺ C2, then κC1 ≤ κC2 ;

(C7) if {(Xn,Yn)} is a sequence of continuous random variables with copulas Cn and

if {Cn} converges pointwise to C , then limn→∞κCn = κC .

Two famous measures of concordance are Kendall’s tau,

τ = 1−4·
∫ 1

0

∫ 1

0

∂
∂u
C(u,v)· ∂

∂v
C(u,v)dudv, (2.4)

and Spearman’s rho,

ρS = 12·
∫ 1

0

∫ 1

0

[
C(u,v)−uv]dudv. (2.5)

The latter parameter will completely describe the bivariate dependence in our construc-

tion. When extreme values are involved, tail dependence should also be measured.

Definition 2.2. The coefficient of (upper) tail dependence of a couple (X,Y) of con-

tinuous random variables is defined by

λ= λX,Y = lim
u→1−

Pr
(
Y > F−1

Y (u) |X > F−1
X (u)

)
, (2.6)

provided a limit λ ∈ [0,1] exists. If λ ∈ (0,1], this defines the asymptotic dependence

(in the upper tail), while if λ= 0, this defines the asymptotic independence.

Tail dependence is an asymptotic property. Its calculation follows easily from the

relation

λ= λX,Y = lim
u→1−

1−2u+C(u,u)
1−u . (2.7)

2.2. Mixtures of independent conditional distributions. Our goal is the construc-

tion of a parametric family ofn-dimensional copulas that satisfies the desirable proper-

ties (a), (b), (c), and (d). It uses a simple variant of the method of mixtures of conditional

distributions described by Joe [30, Section 4.5]. To satisfy property (b), we focus on the

n Fréchet classes FCi := FCi(Fij, j �= i), i= 1, . . . ,n, of n-variate distributions for which

the bivariate margins Fij(xi,xj) = F(Xi,Xj)(xi,xj) = Cij�Fi(xi),Fj(xj)	, j �= i, belong to

a given parametric family of copulas Cij�ui,uj	. Assume that the conditional distribu-

tions

Fj|i
(
xj
∣∣xi)= ∂Cij∂ui

[
Fi
(
xi
)
,Fj

(
xj
)]

(2.8)



MULTIVARIATE FRÉCHET COPULAS AND CONDITIONAL VALUE-AT-RISK 349

are well defined. The n-variate distribution such that the random variables Xj , j �= i,
are conditionally independent, given Xi, is contained in FCi and is defined by

F(i)(x)=
∫ xi
−∞

[∏
j �=i
Fj|i

(
xj
∣∣t)

]
·dFi(t). (2.9)

Choosing appropriately the bivariate copulas Cij�ui,uj	, it is possible to construct

n-variate copulas C(i)(u1, . . . ,un), i = 1, . . . ,n, such that F(i) belongs to C(i) and the

bivariate margins Fij , j �= i, belong to Cij . Moreover, any convex combination of the

C(i)’s, that is,

C
(
u1, . . . ,un

)= n∑
i=1

λiC(i)
(
u1, . . . ,un

)
, 0≤ λi ≤ 1,

n∑
i=1

λi = 1, (2.10)

is again an n-variate copula, which, by appropriate choice, may satisfy the desirable

properties.

3. A bivariate model with arbitrary marginals. Our aim is the construction of a

parametric family ofn-variate copulas satisfying the four desirable properties in Section

2. Following the approach through mixtures of independent conditional distributions

described in Section 2.2, it is first necessary to focus on a simple but flexible one-

parameter family of bivariate copulas, called linear Spearman copula, which is intro-

duced in Section 3.1. The analytical evaluation of the distribution and stop-loss trans-

form of bivariate sums following a linear Spearman copula, often required in actuarial

and financial calculations, is presented in Section 3.2.

The dependence parameter of the linear Spearman copula is Spearman’s grade cor-

relation coefficient. In practice, however, often only Pearson’s linear correlation coeffi-

cient is available. Stochastic relationships between these two parameters, which allow

parameter estimation from each other, have been derived by Hürlimann [25].

3.1. The linear Spearman copula. We consider a one-parameter family of copu-

las Cθ(u,v), which is able to model continuously a whole range of dependence be-

tween the lower Fréchet bound C−1(u,v) =max(u+v−1,0), the independent copula

C0(u,v) = uv , and the upper Fréchet bound C1(u,v) = min(u,v). Such families are

called inclusive or comprehensive (Devroye [14, page 581]). A number of inclusive fami-

lies of copulas are well known, namely, those by Fréchet [23], Plackett [42], Mardia [39],

Clayton [8], and Frank [21]. Another one, which is similar but not identical to the convex

family of Fréchet [23], is the linear Spearman copula defined by

Cθ(u,v)=
(
1−|θ|)·C0(u,v)+|θ|·Csgn(θ)(u,v). (3.1)

For θ ∈ [0,1], this copula is family B11 in Joe [30, page 148]. It represents a mixture

of perfect dependence and independence. If X and Y are uniform (0,1), Y = X with

probability θ, and Y is independent of X with probability 1−θ, then (X,Y) has the

linear Spearman copula. This distribution has been first considered by Konijn [34] and

motivated by Cohen [9] along Cohen’s kappa statistic (see Hutchinson and Lai [29,

Section 10.9]). For the extended copula, the chosen nomenclature linear refers to the
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piecewise linear sections of this copula, and Spearman refers to the fact that the grade

correlation coefficient ρS by Spearman [49] coincides with the parameter θ. This follows

from the calculation

ρS = 12·
∫ 1

0

∫ 1

0

[
Cθ(u,v)−uv

]
dudv = θ. (3.2)

The linear Spearman copula, which leads to the linear Spearman bivariate distribution,

has a singular component, which, according to Joe, should limit its field of applicabil-

ity. Despite this, it has many interesting and important properties, and is suitable for

computation. Moreover, it is a good competitor in fitting bivariate cumulative returns,

as shown by Hürlimann [28].

For the reader’s convenience, we describe first two extremal properties. Kendall’s tau

for this copula is defined as follows:

τ = 1−4·
∫ 1

0

∫ 1

0

∂
∂u
Cθ(u,v)· ∂∂v Cθ(u,v)dudv

= 1
3
ρS ·

[
2+sgn

(
ρS
)
ρS
]
.

(3.3)

Invert this to get

ρS =

−1+√1+3τ, τ ≥ 0,

1−√1−3τ, τ ≤ 0.
(3.4)

Relate this to the convex two-parameter copula by Fréchet [23] defined by

Cα,β(u,v)= β·C−1(u,v)+(1−α−β)·C0(u,v)

+α·C1(u,v), α,β≥ 0, α+β≤ 1.
(3.5)

Since ρS =α−β and τ = ((α−β)/3)(2+α+β) for this copula, one has the inequalities

τ ≤ ρS ≤−1+
√

1+3τ, τ ≥ 0,

1−
√

1−3τ ≤ ρS ≤ τ, τ ≤ 0.
(3.6)

The linear Spearman copula satisfies the following extremal property. For τ ≥ 0, the

upper bound for ρS in Fréchet’s copula is attained by the linear Spearman copula, and

for τ ≤ 0, it is the lower bound, which is attained.

In case τ ≥ 0, a second more important extremal property holds, which is related to a

conjectural statement. Recall that Y is stochastically increasing on X, written SI(Y |X), if

Pr(Y > y |X = x) is a nondecreasing function ofx for ally . Similarly,X is stochastically

increasing on Y , written SI(X|Y), if Pr(X > x | Y = y) is a nondecreasing function of

y for all x. (Note that Lehmann [36] speaks instead of positive regression dependence.)

If X and Y are continuous random variables with copula C(u,v), then one has the
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equivalences (Nelsen [41, Theorem 5.2.10])

SI(Y |X)⇐⇒ ∂
∂u
C(u,v) is nonincreasing in u for all v,

SI(X|Y)⇐⇒ ∂
∂v
C(u,v) is nonincreasing in v for all u.

(3.7)

The Hutchinson-Lai conjecture consists of the following statement. If (X,Y) satisfies

the properties (3.7), then ρS satisfies the inequalities

−1+
√

1+3τ ≤ ρS ≤min
{

3
2
τ,2τ−τ2

}
. (3.8)

The upper bound 2τ−τ2 is attained for the one-parameter copula introduced by Kimel-

dorf and Sampson [33] (see also Hutchinson and Lai [29, Section 13.7]). The lower bound

is attained by the linear Spearman copula, as shown already by Konijn [34, page 277].

Alternatively, if the conjecture holds, the maximum value of Kendall’s tau given by ρS
is attained for the linear Spearman copula. Note that the upper bound ρS ≤ (3/2)τ
has been disproved recently by Nelsen [41, Exercise 5.36]. The remaining conjecture

−1+√1+3τ ≤ ρS ≤ 2τ−τ2 is still unsettled (however, see Hürlimann [27] for the case

of bivariate extreme value copulas).

As an important modeling characteristic, we show that the linear Spearman copula

leads to a simple tail dependence structure. Using (2.7), one obtains

λ(X,Y)= lim
u→1−

1−2u+Cθ(u,u)
1−u = lim

u→1−
(1−u+θu)= θ. (3.9)

Therefore, unless X and Y are independent, a linear Spearman couple is always asymp-

totically dependent. This is a desirable property in insurance and financial modeling,

where data tend to be dependent in their extreme values. In contrast to this, the ubiq-

uitous Gaussian copula always yields asymptotic independence, unless perfect correla-

tion holds (Sibuya [47], Resnick [43, Chapter 5], and Embrechts et al. [20, Section 4.4]).

3.2. Distribution and stop-loss transform of bivariate sums. For several purposes

in actuarial science and finance, it is of interest to have analytical expressions for the

distribution and stop-loss transform of dependent sums S = X +Y , denoted respec-

tively by FS(x)= Pr(S ≤ x) andπS(x)= E[(S−x)+]. If (X,Y) follows a linear Spearman

bivariate distribution, we show in Theorem 3.4 that the evaluation of these quantities

depends on the knowledge of the quantiles and stop-loss transform of the independent

sum of X and Y , denoted by S⊥ =X⊥+Y⊥, where (X⊥,Y⊥) represents an independent

version of (X,Y) such that X⊥ and Y⊥ are independent and X⊥ and Y⊥ are identi-

cally distributed as X and Y . Similarly, if (X+,Y+) is a comonotone version of (X,Y)
with bivariate distribution F(X+,Y+)(x,y) =min{FX(x),FY (y)}, the sum is denoted by

S+ = X+ +Y+, while if (X−,Y−) is a countercomonotone version such that (X−,−Y−)
is a comonotone couple, the sum is denoted by S− = X−+Y−. We assume throughout

that the margins have continuous and strictly increasing distribution functions, hence

the quantile functions are uniquely defined. A linear Spearman random couple (X,Y)
with Spearman coefficient θ is denoted by LSθ(X,Y).
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Lemma 3.1. For each LSθ(X,Y), θ ∈ [−1,1], the distribution and stop-loss transform

of the sum S =X+Y satisfy the relationships

FS(x)=
(
1−|θ|)·FS⊥(x)+|θ|·FSsgn(θ) (x),

πS(x)=
(
1−|θ|)·πS⊥(x)+|θ|·πSsgn(θ) (x).

(3.10)

Proof. This follows without difficulty from the representation (3.1).

Lemma 3.2. Suppose (X+,Y+), respectively (X−,−Y−), is a comonotone couple with

continuous and strictly increasing marginal distributions. Then, for all u ∈ (0,1), one

has the additive relations

F−1
S+ (u)= F−1

X (u)+F−1
Y (u), F−1

S− (u)= F−1
X (u)+F−1

Y (1−u), (3.11)

πS+
⌊
F−1
S+ (u)

⌋=πX⌊F−1
X (u)

⌋+πY ⌊F−1
Y (u)

⌋
, (3.12)

πS−
⌊
F−1
S− (u)

⌋=πX⌊F−1
X (u)

⌋+E[Y]−F−1
Y (1−u)−πY

⌊
F−1
Y (1−u)⌋. (3.13)

Proof. If (X+,Y+) is a comonotone couple, it belongs to the copula C(u,v) =
min(u,v). Inserting the expression for the conditional distribution FY |X=x(y) =
(∂C/∂u)[FX(x),FY (y)]= 1{x≤QX[FY (y)]} into the formula for the distribution of a sum

FX+Y (s)=
∫∞
−∞
FY |X=x(s−x)dFX(x) (3.14)

and making the change of variable FX(x)=u, one obtains

FX+Y (s)=
∫ us

0
du=us, (3.15)

where us solves the equation F−1
X (us)+F−1

Y (us) = s. Therefore, (3.15) is equivalent to

F−1
X+Y (us)= F−1

X (us)+F−1
Y (us), and since s is arbitrary, the first part of (3.11) is shown.

The second part of (3.11) follows similarly using the copula C(u,v)=max(u+v−1,0).
To show (3.13), consider the “spread” function of a random variable X defined by

TX(u) :=πX
[
F−1
X (u)

]=
∫∞
F−1
X (u)

(
x−F−1

X (u)
)
dFX(x)

=
∫ 1

u

(
F−1
X (t)−F−1

X (u)
)
dt.

(3.16)

Using (3.11), one immediately obtains from (3.16) that

TS+(u)=πS+
[
F−1
S+ (u)

]

=
∫ 1

u

(
F−1
X (t)−F−1

X (u)
)
dt+

∫ 1

u

(
F−1
Y (t)−F−1

Y (u)
)
dt

=πX
[
F−1
X (u)

]+πY [F−1
Y (u)

]
,

(3.17)
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which shows the first part of (3.13). For the second part of (3.13), one similarly obtains

TS−(u)=πS−
[
F−1
S− (u)

]

=
∫ 1

u

(
F−1
X (t)−F−1

X (u)
)
dt+

∫ 1

u

(
F−1
Y (1−t)−F−1

Y (1−u))dt
=πX

[
F−1
X (u)

]+
∫ 1

0

(
F−1
Y (z)−F−1

Y (1−u))dz
−
∫ 1

1−u

(
F−1
Y (z)−F−1

Y (1−u))dz
=πX

[
F−1
X (u)

]+E[Y]−F−1
Y (1−u)−πY

[
F−1
Y (1−u)].

(3.18)

The Lemma is shown.

Remark 3.3. In case of continuous and strictly increasing margins, the first additive

relations in (3.11) and (3.13) extend easily to n-variate sums S+ = X+1 + ··· +X+n of

mutually comonotonic random variables:

F−1
S+ (u)=

n∑
i=1

F−1
Xi (u), πS+

[
F−1
S+ (u)

]= n∑
i=1

πXi
[
F−1
Xi (u)

]
. (3.19)

For the quantile, this is already found by Landsberger and Meilijson [35]. Both relations

are given by Dhaene et al. [16], Kaas et al. [32], and Hürlimann [26]. Our elementary

approach has the advantage to yield the additional result for S−. These relations are of

great importance in economic risk capital evaluations using the value-at-risk and con-

ditional value-at-risk measures. They imply that the maximum CVaR for the aggregate

loss L= L1+···+Ln of a portfolio L = (L1, . . . ,Ln) with fixed marginal losses is attained

at the portfolio with mutually comonotone components, and it is equal to the sum of

the CVaR of its components (Hürlimann [26, Theorems 2.2 and 2.3]):

max
{
CVaRα[L]

}= CVaRα
[
L+

]= n∑
i=1

CVaRα
[
Li
]
. (3.20)

In contrast to this, the maximum VaR of a portfolio with fixed marginal losses is not

attained at the portfolio with mutual components. This assertion is related to Kol-

mogorov’s problem treated by Makarov [38], Rüschendorf [45], Frank et al. [22], Denuit

et al. [13], Durrleman et al. [18], Luciano and Marena [37], Cossette et al. [10], and Em-

brechts et al. [19]. In the comonotonic situation, one has with (3.19) only the additive

relation

VaRα
[
L+

]= n∑
i=1

VaRα
[
Li
]
. (3.21)

Theorem 3.4. For each LSθ(X,Y), θ ∈ [−1,1], the distribution and stop-loss trans-

form of the sum S = X+Y are determined as follows. For each u ∈ [0,1], one has with
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uθ = (1/2)[1−sgn(θ)]+sgn(θ)u the formulas

FS
⌊
F−1
X (u)+F−1

Y
(
uθ

)⌋= (
1−|θ|)·FS⊥⌊F−1

X (u)+F−1
Y
(
uθ

)⌋+|θ|·u,
πS

[
F−1
X (u)+F−1

Y
(
uθ

)]= (
1−|θ|)·πS⊥[F−1

X (u)+F−1
Y
(
uθ

)]
+|θ|·

{
πX

[
F−1
X (u)

]+sgn(θ)·πY
[
F−1
Y
(
uθ

)]

+ 1
2

[
1−sgn(θ)

]·[E[Y]−F−1
Y
(
uθ

)]}
.

(3.22)

Proof. Apply Lemmas 3.1 and 3.2.

Though not always of simple form, analytical expressions for one of density, distri-

bution, and stop-loss transform of the independent sum S⊥ =X⊥+Y⊥ from parametric

families of margins often exist. A numerical evaluation using computer algebra systems

is then easy to implement. For example, this is possible for the often encountered mar-

gins from the normal, gamma, and lognormal families of distributions (see Johnson et

al. [31] and Hürlimann [25]).

4. A multivariate generalization. We restrict our attention to the construction of

n-variate distributions F(x1, . . . ,xn) whose positive dependent bivariate margins

Frs(xr ,xs) belong to linear Spearman copulas with general Spearman coefficients ρSrs ∈
[0,1]. The more complicated case ρSrs ∈ [−1,1] has been illustrated for trivariate dis-

tributions by Hürlimann [25, Section 9].

For each i ∈ {1, . . . ,n}, the n-variate distribution F(i)(x1, . . . ,xn) belongs to the n-

variate copula C(i)(u1, . . . ,un) and has bivariate margins Fij(xi,xj), j �= i, which belong

to the linear Spearman copula

Cij
(
ui,uj

)= (
1−θij

)
uiuj+θijmin

(
ui,uj

)
, (4.1)

where θij ∈ [0,1], and by symmetry, θji = θij . Applying the method of mixtures of

independent conditional distributions, one considers the conditional distributions

Fj|i
(
xj|xi

)= ∂Cij
∂ui

[
Fi
(
xi
)
,Fj

(
xj
)]

= (
1−θij

)·Fj(xj)+θij ·1{xi≤F−1
i [Fj(xj)]}.

(4.2)

Denote by θ(i) = (θij, j �= i) the vector of the (1/2)n(n−1) dependence parameters,

and let ∆(i) be the set of the 2n−1 vectors δ(i) = (δij, j �= i), where δij ∈ {0,1}. Then the

n-variate mixture F(i) of independent conditional distributions (4.2), defined in (2.9),

belongs to the n-variate copula

C(i)
(
u1, . . . ,un

)= ∑
δ(i)∈∆(i)

[∏
j �=i

(
1−θij

)1−δij θ
δij
ij

]
·u

∏
j �=i(1−δij)

i

·
[∏
j �=i
u

1−δij
j

]
·min
j �=i

(
u

1−δij
j ,u

1−∏j �=i (1−δij)
i

)
.

(4.3)
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This representation shows that each C(i) is a convex combination of the n different

elementary copulas

ECr
(
u1, . . . ,un

)= min
1≤j≤r

(
uj

)·
[ n∏
i=r+1

ui

]
, r = 0,2,3, . . . ,n. (4.4)

A distribution with copula ECr is the convolution of a distribution with r comonotone

components and a distribution withn−r independent components. This observation is

useful for the analytical evaluation of the distribution and stop-loss transform of depen-

dent sums from convex combinations of these elementary copulas (see Theorem 5.1).

To obtain the bivariate copula C(i)rs (ur ,us), which belongs to the bivariate margin Frs
of F(i), one sets uk = 1 for all k �= r ,s in (4.3) to get the bivariate linear Spearman copula

C(i)rs
(
ur ,us

)=


(
1−θrs

)
urus+θrsmin

(
ur ,us

)
, i= r or i= s,(

1−θirθis
)
urus+θirθismin

(
ur ,us

)
, i �= r ,s. (4.5)

It follows that the Spearman correlation coefficient of C(i)rs is equal to

(
ρS

)(i)
rs =


θrs, i= r or i= s,
θirθis , i �= r ,s. (4.6)

Therefore, for r = i or s = i, the distribution F(i) has the desired linear Spearman

bivariate margins Frs with Spearman’s rho θrs . Unfortunately, for the other indices

r ,s �= i, the bivariate margin Frs has the Spearman correlation coefficient θirθis , which

in general differs from the parameter θrs . To construct an n-variate distribution F ,

whose linear Spearman bivariate margins Frs may have more general Spearman’s rho

ρSrs ∈ [0,1], we consider the convex combination of the copulas C(i), i ∈ {1, . . . ,n},
defined for all θ = (θij), θij �= 1, by

C(u1, . . . ,un)= 1
cn(θ)

·
n∑
i=1

[∏
j �=i

1
1−θij

]
·C(i)(u1, . . . ,un

)
,

cn(θ)=
n∑
i=1

∏
j �=i

1
1−θij .

(4.7)

If θij = 1 for all i, j, one sets C(u1, . . . ,un) = min1≤j≤n(uj), which is the copula of n
comonotone random variables. Using (4.6), one sees that the linear Spearman bivariate

margins Frs have Spearman’s rho determined by

ρSrs =
1

cn(θ)
·
n∑
i=1

[∏
j �=i

1
1−θij

]
·[θrs(εri +εsi )+θirθis(1−εri )(1−εsi )], (4.8)

where εji is a Kronecker symbol such that εji = 1 if j = i and εji = 0 if j �= i. Though it

has not been shown that the functions (4.8), which map θ = (θij), θij �= 1, to ρS = (ρSij),
ρSij �= 1, are one-to-one, the constructed copula (4.7) is sufficiently general and simple to

yield tractable positive dependent n-variate distributions with bivariate margins equal
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or at least close to given linear Spearman bivariate margins. By appropriate choice of the

univariate margins, say gamma or lognormal margins, the obtained parametric family

of n-variate copulas satisfies the four desirable properties in Section 2.

To obtain expressions which can be implemented, insert (4.3) into (4.7) and rearrange

terms to get the formula

C
(
u1, . . . ,un

)= 1
cn(θ)

·
{
n·

[ n∏
i=1

ui

]

+
n∑
r=2

∑
i1 �=···�=ir

[ r∏
j=2

θi1ij
1−θi1ij

]
· min

1≤j≤r
(
uij

)·
[ ∏
k∉{i1,...,ir }

uk

]}
.

(4.9)

In particular, this shows that the constructed n-variate copula is a convex combination

of elementary copulas of the type defined in (4.4). Regrouping these terms further, one

obtains simpler expressions. For example, if n= 3, one has

C
(
u1,u2,u3

)= c3(θ)−1 ·
{

3u1u2u3+2
∑
i<j

(
θij

1−θij

)
min

(
ui,uj

)[ ∏
k �=i,j

uk

]

+
[ ∑
k �=j �=i

θijθik(
1−θij

)(
1−θik

)
]

min
(
u1,u2,u3

)}
.

(4.10)

5. Properties of the multivariate linear Spearman copula. In the present section,

some interesting and useful properties of the multivariate Spearman copula will be de-

rived. We begin with the analytical exact evaluation of the distribution and stop-loss

transform of dependent sums from an n-variate distribution with copula (4.9). In gen-

eral, suppose an n-dimensional copula is a convex combination of other copulas, say

C = ∑
λjCj . Then the distribution FS(s) and stop-loss transform πS(s) of dependent

sums S =∑n
i=1X

j
i from the multivariate model with copula C are the convex combina-

tions of the distributions FSj (s) and stop-loss transform πSj (s) of the dependent sums

Sj =∑n
i=1X

j
i from the multivariate models with copulas Cj , that is, FS(s)=

∑
λjFSj (s)

and πS(s) =
∑
λjπSj (s). Since this result applies to the n-variate copula (4.9), it suf-

fices, up to permutations of variables, to discuss the evaluation of the distribution and

stop-loss transform of sums from an elementary copula of the type ECr in (4.4).

A multivariate distribution with copula EC0 belongs to a random vector (X1, . . . ,Xn)
with independent components, while a distribution with copula ECn belongs to a ran-

dom vector with comonotone components. For EC0, the distribution and stop-loss

transform of sums are obtained using convolution formulas, while for ECn, they are ob-

tained through the addition of the same quantities from the individual components as

stated in Remark 3.3. For example, the case of gamma marginals has been thoroughly

discussed by Hürlimann [26]. There remains the derivation of summation formulas for

the other n−2 copulas. We restrict the attention to nonnegative random variables with

continuous and strictly increasing distributions whose densities exist.
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Given random variables Xi, 1 ≤ i ≤ n, with fixed marginal distributions Fi(x), sup-

pose that the distribution of the random vector (X+1 , . . . ,X+r ,X
⊥
r+1, . . . ,X⊥n) belongs to the

copula ECr , 2 ≤ r ≤ n−1. More precisely, X+1 , . . . ,X+r represent the comonotonic ver-

sion of X1, . . . ,Xr , X⊥r+1, . . . ,X⊥n represent the independent version of Xr+1, . . . ,Xn, and

(X+1 , . . . ,X+r ) is independent from Xi, r +1≤ i≤n.

Theorem 5.1. Suppose (X+1 , . . . ,X+r ,X
⊥
r+1, . . . ,X⊥n) is a random vector whose distri-

bution belongs to the copula ECr , 2 ≤ r ≤ n − 1. Assume that the continuous and

strictly increasing marginal distributions Fi(x) with support [0,∞) have densities fi(x),
1 ≤ i ≤ n, and set X =∑n

i=r+1X
⊥
i . Then the distribution and stop-loss transform of the

sum S =X+∑r
i=1X

+
i are determined by the formulas

FS(s)=
∫ us

0
ufX

[
s−

r∑
i=1

F−1
i (u)

]
·
[ r∑
i=1

fi
[
F−1
i (u)

]−1

]
du, (5.1)

πS(s)= E[S]−s+
∫ us

0
uFX

[
s−

r∑
i=1

F−1
i (u)

]
·
[ r∑
i=1

fi
[
F−1
i (u)

]−1

]
du, (5.2)

where us solves the equation

r∑
i=1

F−1
i
(
us
)= s. (5.3)

Proof. Set Y =∑r
i=1X

+
i and use Dhaene and Goovaerts [15, Lemma 2] to obtain the

formulas πS(s)= E[S]−s+I(s) and FS(s)= 1+(d/ds)πS(s)= I′(s), with

I(s)=
∫ s

0
F(X,Y)(x,s−x)dx. (5.4)

By assumption, X is independent from Y , hence F(X,Y)(x,w)= FX(x)·FY (w). Inserting

in (6.4) and making the change of variable FY (t)=u, one successively obtains

I(s)=
∫ s

0
FX(s−t)FY (t)dt =

∫ FY (s)
0

uFX
[
s−QY(u)

]·Q′
Y (u)du

=
∫ us

0
uFX

[
s−

r∑
i=1

F−1
i (u)

]
·
[ r∑
i=1

fi
[
F−1
i (u)

]]
du,

(5.5)

where the last equality follows from the fact that Y =∑r
i=1X

+
i is a comonotone sum,

and the definition of us in (5.3). The formula (5.2) is shown. Formula (5.1) follows from

FS(s)= I′(s)= FX(0)·FY (s)+
∫ s

0
fX(s−t)FY (t)dt

=
∫ s

0
fX(s−t)FY (t)dt

(5.6)

making the same change of variable FY (t)=u.
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Next, taking pattern from the recent contributions by Denuit et al. [12, Theorem

3.1] and Hürlimann [26, Remark 2.1], it is important to know if the constructed n-

variate “positive dependent” distributions associated to random vectors (X1, . . . ,Xn) are

such that the dependent sums S =∑n
i=1Xi are always bounded in convex order by the

corresponding independent sum S⊥ =∑n
i=1X

⊥
i and the comonotone sum S+ =∑n

i=1X
+
i .

Theorem 5.2. Suppose (X1, . . . ,Xn) is a random vector whose distribution belongs to

the copula (4.9). Then one has the stochastic inequalities S⊥ ≤sl≤ S ≤sl S+.

Proof. Since the copula (4.9) is a convex combination of elementary copulas of

the type (4.4) and the operation of building dependent sums from random vector with

such copulas is preserved under stop-loss order, it suffices to show the assertion for

the elementary ECrn in (4.4) (the lower dimension is added for distinction). One applies

induction on n. For n= 2, the result is trivial because EC0
2 yields S⊥ and EC2

2 yields S+.

Assume that the result holds for the dimension n and show it for n+1. One has the

product representation

ECrn+1

(
u1, . . . ,un+1

)=

EC

r
n
(
u1, . . . ,un

)·un+1, r ∈ {0,2,3, . . . ,n},
min

(
u1, . . . ,un

)·un+1, r =n+1,
(5.7)

which shows that Xn+1 is independent of (X1, . . . ,Xn), hence also of Sn =
∑n
i=1Xi. Since

the stop-loss order is preserved under convolutions, it follows from the induction as-

sumption S⊥n ≤sl≤ Sn ≤sl S+n that S⊥n+1 = S⊥n +X⊥n+1 ≤sl≤ Sn+X⊥n+1 = Sn+1 ≤sl S+n+1.

6. Multivariate conditional value-at-risk and risk allocation. Given a random vari-

able X with survival function SX(x)= Pr(X > x), consider the univariate stop-loss trans-

form defined by πX(x) = E[(X−x)+] =
∫∞
x SX(t)dt. It is related to the mean excess

function mX(x) = E[X−x | X > x] through πX(x) = SX(x)·mX(x). The extension of

these notions to a multivariate setting is straightforward.

Let X = (X1, . . . ,Xn) be a random vector with n-variate survival function SX(x) =
Pr(X1 > x1, . . . ,Xn > xn). Then the ith component of the stop-loss transform vector

(π1
X(x), . . . ,π

n
X (x)) is defined byπiX(x)=

∫∞
xi SX(x1, . . . ,xi−1, t,xi+1, . . . ,xn)dt, i=1, . . . ,n.

It is related to the mean excess vector (m1
X(x), . . . ,m

n
X(x)), m

i
X(x) = E�Xi−xi | Xj >

xj, j = 1, . . . ,n	, through the relationships πiX(x)= SX(x)·mi
X(x), i= 1, . . . ,n.

In the univariate case, the conditional value-at-risk of X to the confidence level α
satisfies the relations

CVaRα[X]= E
[
X |X > VaRα[X]

]
= VaRα[X]+mX

[
VaRα[X]

]
= VaRα[X]+ 1

1−απX
[
VaRα[X]

]
.

(6.1)

In the multivariate situation, the conditional value-at-risk vector to the confidence level

α, denoted by CVaRα[X] = (CVaR1
α[X], . . . ,CVaRnα[X]), satisfies similarly the defining
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relations

CVaRiα[X]= E
⌊
Xi |Xj > VaRα

[
Xj
]
, j = 1, . . . ,n

⌋
= VaRα[Xi]+mi

X
[
VaRα[X]

]

= VaRα
[
Xi
]+ πiX

[
VaRα[X]

]
SX

[
VaRα[X]

] , i= 1, . . . ,n,

(6.2)

where VaRα[X]= (VaRα[X1], . . . ,VaRα[Xn]) defines a value-at-risk vector.

We point out the usefulness of this multivariate extension to the evaluation of the

economic risk capital of a portfolio of risks X = (X1, . . . ,Xn). It is natural to define the

economic risk capital of the aggregate risk S = ∑n
i=1Xi as a multivariate conditional

value-at-risk vector to the confidence level α by setting

CVaRα
[
S|X]= E⌊S |Xj > VaRα

[
Xj
]
, j = 1, . . . ,n

⌋
. (6.3)

Allocating to the risk Xi the ith component of the conditional value-at-risk vector (6.2)

defines the multivariate conditional value-at-risk allocation principle, which by (6.3)

turns out to be an additive allocation principle, which satisfies the identity

CVaRα

[ n∑
i=1

Xi|X
]
=

n∑
i=1

CVaRiα
[
Xi
]
. (6.4)

The proposed risk allocation rule yields a simple solution to the difficult risk allocation

problem (e.g., Tasche [50] and Denault [11]).

For continuous univariate marginals, the univariate conditional value-at-risk mea-

sures CVaRα[
∑n
i=1Xi] and CVaRα[Xi], i = 1, . . . ,n, are coherent risk measures in the

sense of Artzner et al. [4, 5] (e.g., Acerbi [1] and Acerbi and Tasche [2, 3]). In view of

this fact, it seems important to derive connections between these risk measures and

their multivariate counterparts. The following main result yields an interesting and

surprising result.

Theorem 6.1. Suppose X = (X1, . . . ,Xn) is a random vector with strictly increasing

continuous margins whose distribution belongs to the multivariate linear Spearman cop-

ula (4.9). Then one has CVaRiα[X] = CVaRα[Xi], i = 1, . . . ,n, that is, each component of

the conditional value-at-risk vector coincides with the conditional value-at-risk of the

corresponding risk component.

Proof. In a first step, we show the result for X with elementary copula (4.4). For

simplicity, set xi,α = VaRα[Xi], i= 1, . . . ,n, xα = (x1,α, . . . ,xn,α), and ε = 1−α. From the

form of the survival copula (4.4), one obtains the survival function

SX(x)= min
1≤j≤r

{
SXi

(
xi
)}[ n∏

i=r+1

SXi
(
xi
)]
. (6.5)
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Using that SXi(xi) = ε and the definition of the stop-loss transform components, one

obtains

SX
(
xα

)= εn−r+1, πiX
(
xα

)=πXi(xi,α)εn−r . (6.6)

Inserted in (6.2) one gets, CVaRiα[X]= xi,α+(1/ε)πXi(xi,α)= CVaRα[Xi], which shows

the result in this special case. The copula (4.9) is a convex combination of elemen-

tary copulas ECr (up(1), . . . ,up(n)) with appropriate permutations (p(1), . . . ,p(n)) of

(1, . . . ,n), for which (6.6) still holds. Since multivariate survival functions and stop-

loss transforms are preserved under convex combinations, one sees that ε ·πiX(xα) =
πXi(xi,α)·SX(xα) for all X with copula (4.9), which implies the desired result.

This result has a remarkable economic implication. In a world of multivariate lin-

ear Spearman distributed risks with copula (4.9), the evaluation of the economic risk

capital of the aggregate risk using (6.3) automatically yields a “fair” risk allocation

in the sense that each risk component becomes allocated to its coherent univariate

conditional value-at-risk. Of course, this rule is only applicable in situations where

additivity is a desirable property. Whenever a discount for aggregation is prevalent

and a subadditive risk allocation is preferred, the economic risk capital is better evalu-

ated using CVaRα[
∑n
i=1Xi]. In this situation, a nonnegative diversification effect, defined

by CVaRα[
∑n
i=1Xi]−

∑n
i=1 CVaRα[Xi], which can be evaluated using Theorem 5.1, will

occur.

As a topic for future research, it is interesting to study the largest class of distribu-

tions or copulas for which the property of Theorem 6.1 holds. As the following example

shows, this class is bigger than the convex hull of all permuted elementary copulas (4.4).

Example 6.2 (a bivariate distribution with the property of Theorem 6.1). Consider

a random couple (X,Y) with survival function S(X,Y)(x,y)= (1/2)�e−x−y+e−max(x,y)	,
x,y ≥ 0. One has π1

(X,Y)(x,y) = S(X,Y)(x,y)+ (1/2)(y − x)+e−y , SX(x) = πX(x) =
(1/2)e−x , and SY (y)=πY(y)= (1/2)e−y . An elementary calculation shows that

CVaR1
α
[
(X,Y)

]= CVaRα[X]= CVaR2
α
[
(X,Y)

]
= CVaRα[Y]= 1− ln

{
2(1−α)}. (6.7)

For a more comprehensive understanding, it will be necessary to discuss in the future

the impact of the dependence structure of various multivariate distributions on the

calculation of the multivariate conditional value-at-risk vector, which in general differs

from the vector of the univariate conditional value-at-risk measures. We illustrate this

issue at some simple parametric families of bivariate distributions with exponential

margins.

Let (X,Y) be a random couple with exponential survival margins SX(x)=exp(−x/µX)
and SY (y)= exp(−y/µY ). For comparison, we use the Marshall-Olkin [40] bivariate ex-

ponential, which exhibits positive dependence, the negatively dependent exponential

Gumbel [24], and the bivariate linear Spearman, which allows both positive and negative



MULTIVARIATE FRÉCHET COPULAS AND CONDITIONAL VALUE-AT-RISK 361

Table 6.1. Conditional value-at-risk comparisons.

Univariate CVaR Bivariate CVaR

ρ = 0.5 Marshall-Olkin Linear Spearman Marshall-Olkin Linear Spearman

X 4.80445 4.80445 4.80445 4.80445

Y 4.20389 4.20389 4.47718 4.20389

S 7.56412 8.03684 9.28162 9.00835

ρ =−0.3 Gumbel Linear Spearman Gumbel Linear Spearman

X 4.80445 4.80445 4.18356 4.80445

Y 4.20389 4.20389 3.66058 4.20389

S 5.37364 5.82982 7.84414 9.00835

dependence. The conditional value-at-risk measures of the margins are CVaRα[X] =
(1− lnε)µX , CVaRα[Y] = (1− lnε)µY , with ε = 1−α. Formulas for the other risk mea-

sures are derived in a straightforward way. For the dependent sum S =X+Y , we use the

formula CVaRα[S] = F−1
S (α)+ (1/ε)πS[F−1

S (α)], which requires expressions for FS(s)
and πS(s). Pearson’s rho is denoted by ρ. A typical numerical example is summarized

in Table 6.1, where µX = 0.85715 and µY = 0.75.

Marshall-Olkin bivariate exponential [40]. The survival distribution of this

model and the required formulas to evaluate Table 6.1 are summarized by the following

formulas:

S(x,y)= exp
(−αx−βy−γmax(x,y)

)
, α,β > 0, γ ≥ 0,

µX = 1
α+γ , µY = 1

β+γ , ρ = γ
α+β+γ ≥ 0,

CVaR1
α
[
(X,Y)

]= 1
α

[
1− γ

α+γ ε
α(µY−µX)+

]
− lnε ·µX,

CVaR2
α
[
(X,Y)

]= 1
β

[
1− γ

β+γ ε
α(µX−µY )+

]
− lnε ·µY ,

FS(x)= 1− 1
2
(α+β+γ)

(
1

α+γ−β +
1

β+γ−α
)
e−(1/2)(α+β+γ)x

+ β
α+γ−βe

−(α+γ)x+ α
β+γ−αe

−(β+γ)x,

πS(x)=
(

1
α+γ−β +

1
β+γ−α

)
e−(1/2)(α+β+γ)x

−
(

1
α+γ−β −

1
α+γ

)
e−(α+γ)x−

(
1

β+γ−α −
1

β+γ
)
e−(β+γ)x.

(6.8)

Bivariate exponential Gumbel [24]. The survival distribution of this model and

the required formulas to evaluate Table 6.1 are summarized by the following formulas:

S(x,y)= exp(−αx−βy−θxy), α,β > 0, 0≤ θ ≤αβ,

µX = 1
α
, µY = 1

β
, ρ =αβ

∫∞
0

e−αtdt
β+θt −1≤ 0,
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CVaR1
α
[
(X,Y)

]= [
1

1−θµXµY lnε
− lnε

]
µX,

CVaR2
α
[
(X,Y)

]= [
1

1−θµXµY lnε
− lnε

]
µY

FS(x)= 1−e−αx−e−βx

+
{
g′(x)−

[
β+ θ

4

(
x+ α−β

θ

)]
g(x)

}
exp

{
−βx− θ

4

(
x+ α−β

θ

)2
}
,

πS(x)= µXe−αx+µYe−βx+g(x)exp

{
−βx− θ

4

(
x+ α−β

θ

)2
}
,

g(x)=
∞∑
k=0

θk

k!
1

(2k+1)22k+1

[(
x− α−β

θ

)2k+1

−(−1)2k+1
(
x+ α−β

θ

)2k+1
]
.

(6.9)

Linear Spearman bivariate exponential. The survival distribution of this

model and the required formulas to evaluate Table 6.1 are summarized by the following

formulas:

S(x,y)=


(1−θ)e−αx−βy+θmin

(
e−αx,e−βy

)
, θ ∈ [0,1],

(1+θ)e−αx−βy−θmax
(
e−αx+e−βy−1,0

)
, θ ∈ [−1,0],

µX = 1
α
, µY = 1

β
,

ρ = θ
{

1+ 1
2

[
1−sgn(θ)

] 1

µ2
Y

∫∞
0
y ln(1−e−βy)e−βydy

}
,

CVaR1
α
[
(X,Y)

]= CVaRα[X], CVaR2
α
[
(X,Y)

]= CVaRα[Y] (Theorem 6.1).

(6.10)

The quantities FS(x) and πS(x) are calculated using Theorem 3.4.

Some comments and recommendations are in order. By positive dependence, the

multivariate conditional value-at-risk for the Marshall-Olkin is greater than for the lin-

ear Spearman, while by negative dependence, it is smaller for the Gumbel than for the

linear Spearman. If the risk measure should be invariant with respect to the depen-

dence structure, or if the diversification effect should vanish (additive risk allocation),

we recommend the use of the multivariate conditional value-at-risk for the linear Spear-

man. A discrimination of the risk measure with respect to the dependence structure is

obtained by using either CVaR[S] or CVaR[S|X] for copulas different from the linear

Spearman one. A maximal diversification effect is obtained by using CVaR[S] with the

Marshall-Olkin by positive dependence and with the Gumbel by negative dependence. A

more stable diversification effect is obtained with the linear Spearman. Whether these

observations generalize to other bivariate distributions and extend to the multivariate

situation is left to future investigations.

Finally, we want to mention that the approach of the present paper has a lot of alter-

native significant applications including very recent ones like Cherubini and Luciano

[6, 7].
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