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POWERSUM FORMULA FOR DIFFERENTIAL RESOLVENTS
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We will prove that we can specialize the indeterminate α in a linear differential α-resolvent
of a univariate polynomial over a differential field of characteristic zero to an integer q to
obtain a q-resolvent. We use this idea to obtain a formula, known as the powersum formula,
for the terms of theα-resolvent. Finally, we use the powersum formula to rediscover Cockle’s
differential resolvent of a cubic trinomial.
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1. Introduction. It was proved in [4, Theorem 37, page 67] that for any integer

q, a polynomial P(t) ≡ ∑N
k=0 (−1)N−keN−ktk of a single variable t whose coefficients

{eN−k}Nk=0 lie in an ordinary differential ring R with derivation D possesses an ordinary

linear differential α-resolvent and an ordinary linear differential q-resolvent, where α
is a constant, transcendental over R. With no loss of generality, we assume that P is

monic and has no zero roots. Then the coefficient eN−k is the (N − k)th elementary

symmetric function of the roots of P . We assume that P(t)=∏n
k=1 (t−zk)πk has n≤N

distinct roots and πk is the multiplicity of the root zk in P . It was proved in [2] that for

each root zk, there exists a nonzero solution yk of the logarithmic differential equation

Dyk/yk = α · (Dzk/zk). Obviously, such solutions are unique only up to a constant

multiple. We define the notation zαk to represent any such solution yk. Hence, we will

call yk an α-power of zk. From now on, we will drop the subscript k on zk and yk. It

will be understood that a different z implies a different y .

In this paper, we present the powersum formula as a new method for computing

resolvents, although it remains a conjecture whether the powersum formula always

yields a (nonzero) resolvent rather than an identically zero equation. It was proved in

[5, Theorem 4.1, page 726] that if all the distinct roots of a polynomial are differen-

tially independent over constants, then the powersum formula yields a resolvent. It

was shown in [6, Section 11, pages 344-345], how the solution of the Riccati nonlinear

differential equation is related to the resolvent of a quadratic polynomial.

2. Notation. Let N denote the set of positive integers. Let N0 denote the set of non-

negative integers. Let Z# denote the set of nonzero integers. The following notation has

been slightly modified from Kolchin’s notation in [2] and Macdonald’s notation in [3].

Let Z{e} denote the differential ring generated by the integers Z and the N coefficients

e ≡ {ek}Nk=1 of t in P . Let Q〈e〉 denote the differential field generated by the rational

numbers Q and e. For each m∈N, let Z{e}m denote the ordinary (nondifferential) ring
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generated by Z, e, and the first m derivatives of e. (A differential ring must contain

infinitely many derivatives of any of its elements.) Let Q〈e〉m(z) = Q〈e〉m[z] denote

the field generated by Q, e, the first m derivatives of e, and the single root z. From

this point on, we will write Q〈e〉m[z] instead of Q〈e〉m(z) for this field to emphasize

the fact that elements in this field are polynomial in the root z. If R represents any of

the rings or fields mentioned so far, then let R[t,α] denote the polynomial ring in the

indeterminates t and α over R.

Let θ ≡ (n!) · (∏n
k=1πk) · (

∏n
k=1zk) · (

∏
i<j(zi−zj)2). By our conditions on P , θ ≠ 0.

It is also easy to show that θ ∈ Z[e]. For each m ∈ N, it was proved in [4, Theorem

32, page 60] that there exists a polynomial Gm(t,α) in t and α satisfying the following

definition.

Definition 2.1. Define Gm(t,α) to be the polynomial in t and α such that Gm(z,α)
=Dmy/(α·y) for each root z of P and θm ·Gm(t,α)∈ Z{e}m[t,α].

A specialization φ is a ring homomorphism φ :R→ R̂ from a ring R into an integral

domain R̂. For any polynomial P(t)=∑N
k=0 (−1)N−keN−k ·tk ∈R[t], φ(P) is defined to

be the polynomial(φP)(t)=∑N
k=0 (−1)N−kφ(eN−k)·tk ∈R[t]. A differential specializa-

tion φ is a specialization φ : R→ R̂ from a differential ring R with derivation D into a

differential integral domain R̂ with derivation D̂ such that φD = D̂φ on R.

3. Specializing α. Let q ∈N. Letφq :Q〈e〉[z,α]→Q〈e〉[z] be the ring specialization

such that φq is the identity on Q〈e〉[z] and φq(α)= q. We may compute Dzq/(q·zq).
Sinceφq is not defined to act on y , we are not able to specialize y to zq in Theorem 3.1.

However, φq is defined to act on Dmy/(α ·y) since Dmy/(α ·y) = Gm(z,α) ∈ θ−m ·
Z{e}m[z,α]. Theorem 3.1 asserts that Gm(z,q) = Dmzq/(q ·zq). Theorem 3.2 asserts

that φq(Dmy/(α·y))=Dmzq/(q ·zq).

Theorem 3.1. Assume all the same definitions and notations as in the introduction.

Then the mth derivative of zq can be expressed as a product of q ·zq and an element

in Q〈e〉m[z]. More specifically, Gm(z,q) = Dmzq/(q ·zq), where Gm(z,q) ∈Q〈e〉m[z]
and Gm(t,α) was given in Definition 2.1.

Proof. For brevity, write Gm = Gm(z,α) for the particular root z. We emphasize

that Gm is Gm(t,α) with t specialized to the particular root z. We find that θ·(Dzq/(q·
zq))= θ ·(Dz/z)= θ ·G1 ∈ Z{e}1[z]. Therefore,

Dzq = q ·zq ·G1 �⇒D2zq = q ·(q ·zq−1Dz ·G1+zq ·DG1
)

= q ·zq
(
q ·
(
Dz
z

)
·G1+DG1

)
= q ·zq(q ·G2

1+DG1
)

= q ·zq ·φq
(
α·G2

1+DG1
)= q ·zq ·φq(G2

)
.

(3.1)

So,Dmzq = q·zq ·φq(Gm) is true form= 1. Now assume that it is true form≥ 2. Then

Dm+1zq = q · (q ·zq−1(Dz) ·φq(Gm)+zq ·D(φq(Gm))). But φq specializes α, whose

derivative is 0, to an integer whose derivative is 0. Thus, D(φq(Gm)) = φq(D(Gm)).
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Hence,

Dm+1zq = q ·(q ·zq−1 ·(Dz)·φq
(
Gm

)+zq ·φq(D(Gm)))

= q ·zq ·
(
q ·Dz

z
·φq

(
Gm

)+φq(D(Gm))
)

= q ·zq ·(φq(α)·G1 ·φq
(
Gm

)+φq(D(Gm)))
= q ·zq ·φq

(
α·G1 ·Gm+D

(
Gm

))
= q ·zq ·φq

(
Gm+1

)
.

(3.2)

Therefore, Dm+1zq = q · zq ·Gm+1(z,q) since φq affects only α. By the principle of

mathematical induction, this equation is true for all positive integers m.

Just because Dy/(α·y)=Dz/z =Dzq/(q ·zq) implies that Dy/(α·y) is indepen-

dent of α, it does not follow that Dmy/(α·y) is independent of α for m ≥ 2. We can

see this by observing that Dmy/(α ·y) ≠ Dmz/z ≠ Dmzq/(q ·zq) ≠ Dmy/(α ·y) for

m≥ 2.

Theorem 3.2. Assume all the same definitions and notations as in Theorem 3.1 and

Section 2. Then, for eachm∈N, the specialization underφq ofDmy/(α·y) isDmzq/(q·
zq). That is, φq(Dmy/(α·y))=Dmzq/(q ·zq).

Proof. By Definition 2.1,Dmy/(α·y)=Gm(z,α). By Theorem 3.1,Dmzq/(q·zq)=
Gm(z,q). Putting these results together yields

φq
(
Dmy
α·y

)
=φq

(
Gm(z,α)

)=Gm(z,q)= D
mzq

q ·zq . (3.3)

4. Powersum satisfaction theorem and formula. An α-resolvent of a polynomial

P(t)≡∑N
i=0 (−1)n−ieN−iti ∈ F[t] over a differential field F with derivation D is a linear

ordinary differential equation
∑o
m=0Bm(α)·Dmy = 0 of finite order o such that each

of the coefficient functions Bm(α) lies in the field Q〈e〉(α) (or preferably in the ring

Z{e}[α]) such that not all Bm(α) are identically zero, and which is satisfied by the α-

power of every root z of P . In other words, the coefficient functions of the resolvent

are independent of the choice of root and are not all zero. By [4, Theorem 37, page

67], resolvents for any polynomial are guaranteed to exist. We state this assertion in

Theorem 4.1.

Theorem 4.1. Let P(t) ≡∑N
i=0 (−1)n−ieN−iti ∈ F[t] be a polynomial of degree N in

t over a d-field F with n distinct roots {zi}ni=1. Then there exists an oth order differential

resolvent
∑o
m=0Bm(α)·Dmy = 0 with Bm(α)∈ Z{e}n[α], B0(0)= 0, and degαBm(α)≤

o(o−1)/2−m+1 for some o ∈ [n]. Furthermore, o may be chosen to equal the number

of {yj}nj=1 linearly independent over constants, and all solutions of this resolvent are

linear combinations over constants of these o yj ’s.

Theorem 4.1 gives us an upper bound on the degree in α in an α-resolvent of P .

Theorem 4.2 allows us to specialize the indeterminateα to an integer q (or any number)

to obtain a q-resolvent.
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Theorem 4.2 (powersum satisfaction theorem). Let P ∈ F[t] be a monic polynomial

with n distinct roots z = {zi}ni=1, none of which is zero and not all of which are constants.

Let q ∈ Z. If Rα ≡
∑o
m=0Bm(α)·Dmy is an α-resolvent for P of arbitrary order o, where

Bm(α)=
∑
i≥0bi,mαi ∈ Z{e}[α], with bi,m ∈ Z{e}, then Rα specializes to the q-resolvent

Rq ≡
∑o
m=0Bm(q)·Dmy for q ∈ Z# under φq(α)= q and φq(u)=u for each u∈ Z{e}.

Furthermore, the qth powersum pq satisfies
∑o
m=0Bm(q)·Dmpq = 0 for each q ∈ Z# .

Proof. By Definition 2.1 of Gm(t,α), we have

o∑
m=0

Bm(α)·Dmy = 0⇐⇒
o∑

m=0

Bm(α)·D
my
α·y = 0

⇐⇒
o∑

m=0

Bm(α)·Gm(z,α)= 0.

(4.1)

Now for each q ∈ Z#, specialize this equation underφq to get
∑o
m=0Bm(q)·Gm(z,q)= 0

by Theorem 3.2, since φq|F = I. For any of the roots of P , we have Gm(z,q) = Dmzq/
(q ·zq) by Theorem 3.1. Thus,

o∑
m=0

Bm(q)·D
mzq

q ·zq = 0⇐⇒
o∑

m=0

Bm(q)·Dmzq = 0 (4.2)

for each q ∈ Z#. Therefore, an α-resolvent specializes to a q-resolvent for each q ∈
Z# under φq. Now sum over the N roots of P including their multiplicities to get∑o
m=0Bm(q)·Dmpq = 0 for each q ∈ Z#.

The powersum satisfaction theorem states that for any monic polynomial P , the

coefficients bi,m of α in any α-resolvent Rα ≡
∑
(i,m)∈S bi,m ·αiDmy of P satisfy an

infinite system of homogeneous equations

[
qiDmpq

]
q×(i,m) 1≤q<∞ (i,m)∈S ·

[
bi,m

]
(i,m)∈S =

[
0q
]

1≤q<∞. (4.3)

Here, S denotes the set of pairs (i,m) consisting of a power of α, denoted by i, and an

order of a derivative, denoted by m, such that bi,m ≠ 0. Let |S| denote the size of S. We

will be interested in proving that the rank

rk
[
qiDmpq

]
q×(i,m) 1≤q<∞ (i,m)∈S (4.4)

of the matrix [qiDmpq]q×(i,m) 1≤q<∞ (i,m)∈S equals |S|−1 under certain circumstances.

Under those circumstances, one can solve this system of equations to get a nonzero so-

lution for bi,m. The solution is given by bi,m=Fi,m≡(−1)sgn(i,m)·|qi′Dm′pq|(i′,m′)≠(i,m)q∈Γ ,
where sgn(i,m) indicates the ordering of the term bi,m in the resolvent, and we take Γ
to be the smallest possible set of positive integers that will guarantee a nonzero solu-

tion. In numerous examples, it has been found that Γ ≡ {k ∈ N � 1 ≤ k ≤ |S|−1}. We

call this the powersum formula for a resolvent of P . We use the notation Fi,m to denote

the terms of the resolvent obtained by this method to suggest the word formula. We

will denote the resolvent obtained by this formula by 
α. So, 
α = {Fi,m}.
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If rk[qiDmpq]q×(i,m) 1≤q<∞ (i,m)∈S = |S|, then the only solution would be bi,m = 0

for all (i,m)∈ S, contradicting the hypothesis that Rα is nonzero. Unfortunately, for a

given polynomial P , one does not know a priori what the set S of nonzero bi,m is or how

large it is. Nevertheless, we may summarize the results obtained so far in a corollary

to the powersum satisfaction theorem.

Corollary 4.3 (the powersum formula). Let Rα ≡
∑
(i,m)∈S bi,m ·αiDmy be an α-

resolvent of P , where S ⊂ N0×N0 is a finite set. If there exists a set of |S|−1 integers

Γ ⊂ N such that not all the Fi,m given by the powersum formula Fi,m ≡ (−1)sgn(i,m) ·
|qi′Dm′pq|(i′,m′)≠(i,m) q∈Γ are zero, then the linear ordinary differential equation (ODE),


α ≡
∑
(i,m)∈S Fi,m ·αiDmy , is an integral α-resolvent of P . If no such set of integers Γ

exists, then the powersum formula yields all zeroes for Fi,m.

The author believes that the resolvent 
α given by the powersum formula will be a

Q〈e〉-multiple, not just a Q〈e〉(α)-multiple of Rα, but this requires proof. For example,

let αM ·DHy denote the highest power of α on the highest derivative of y in Rα. Even

though FM,L/bM,L ·Rα and 
α are both resolvents (provided that FM,L ≠ 0) with the

same coefficient function of αM ·DHy , one must eliminate the possibility that their

other terms may differ due to the possibility that P has resolvents of lower order.

5. Example. We will now apply the powersum formula to compute a particular α-

resolvent of a particular trinomial. It has not yet been proved that this formula yields a

nonzero differential equation for every polynomial. However, in every polynomial the

author has tested, it has been possible to set up an α-resolvent, itself a polynomial in

the power α, and choose the proper set of powersums such that the powersum formula

yields a nonzero answer. If the powersum formula yields a nonzero answer, then it is

guaranteed by Corollary 4.3 that the answer is a (nonzero) resolvent of the polynomial.

By a very long and difficult proof in [4, Theorem 41, page 74] and [5, Theorem 4.1, page

726], it has been shown that in case the distinct roots of the polynomial are differentially

independent over constants (i.e., they satisfy no polynomial differential equations over

Q), then the powersum formula yields a nonzero resolvent.

The powersum formula has the advantage of giving a resolvent in an integral form.

In the next example, this means the powersum formula gives a resolvent all of whose

terms lie in the ring Z[x,α].

Example 5.1 (Sir James Cockle’s resolvent of a trinomial). Cockle [1] gave a formula

for a linear differential α-resolvent (although he did not call it that) for any trinomial

of the form tn +x · tp − 1, where Dx ≡ 1. Consider the particular trinomial P(t) ≡
t3+x ·t2−1, where n= 3 and p = 2. Then, Cockle’s resolvent specializes to 27·D3y =
4·(x ·D+α/2)(x·D+3/2+α/2)(x ·D−α)y . This expands to 27·D3y = (4·(x·D)3+
6·(x·D)2−3·α·(1+α)·(x·D)−α2 ·(3+α))y . Replacing (x·D)3 with x3 ·D3+3·x2 ·
D2+x·D and (x·D)2 with x2·D2+x·D yields (4x3−27)·D3y+18·x2·D2y+(10−3·
α−3·α2)·x ·Dy−α2 ·(3+α)·y = 0, which has the form f1 ·D3y+f2 ·D2y+(f3+f4 ·
α+f5 ·α2)·Dy+(f6 ·α2+f7 ·α3)·y = 0. The powersum formula requires one to know

a priori the various powers of α appearing in a resolvent. Specialize α to one of the

six integers q ∈ {1,2,3,4,5,6}, then sum the resulting equation over each of the three
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roots. Doing this for each q ∈ {1,2,3,4,5,6}, one gets a system of six linear equations

in the undetermined coefficient functions {fk}7
k=1 of the form M·

⇀
f =

⇀
0, where M is the

6×7 matrix defined by

M≡




D3p1 D2p1 Dp1 1·Dp1 12 ·Dp1 12 ·p1 13 ·p1

D3p2 D2p2 Dp2 2·Dp2 22 ·Dp2 22 ·p2 23 ·p2

D3p3 D2p3 Dp3 3·Dp3 32 ·Dp3 32 ·p3 33 ·p3

D3p4 D2p4 Dp4 4·Dp4 42 ·Dp4 42 ·p4 43 ·p4

D3p5 D2p5 Dp5 5·Dp5 52 ·Dp5 52 ·p5 53 ·p5

D3p6 D2p6 Dp6 6·Dp6 62 ·Dp6 62 ·p6 63 ·p6



, (5.1)

⇀
f is the 7×1 column vector defined by

⇀
f ≡




f1

f2

f3

f4

f5

f6

f7




, (5.2)

and
⇀
0 is the 6×1 column vector defined by

⇀
0 ≡




0

0

0

0

0

0



. (5.3)

The following program, written in Mathematica 4.0 for Students and run on a Dell Di-

mension XPS R400 computer using Windows 98 operating system, computes the seven

terms {fk}7
k=1 by setting each fk to the appropriate cofactor of M. This matrix is de-

noted by T in the program. The symbol s[k] stands for the kth powersum pk of the

roots of P . The output is denoted by f , which is defined as the transpose of
⇀
f . The

result is

[
−27+4x3 18x2 10x −3x −3x −3 −1

]
, (5.4)

which is the Cockle resolvent. The computation time is less than 5 seconds.

x=.; s[0]=3; s[1]=-x; s[2]=xˆ2;

Table[s[k+3]=Expand[-x*s[k+2]+s[k]],{k,0,3}];

T=Table[{D[s[k],{x,3}],D[s[k],{x,2}],D[s[k],x],

k*D[s[k],x],kˆ2*D[s[k],x],kˆ2*s[k],kˆ3*s[k]},{k,1,6}];

M=Minors[t,6];

f=Table[Simplify[m[[1,k]]*(-1)ˆ(7-k)/(466560*x)],{k,1,7}].



POWERSUM FORMULA FOR DIFFERENTIAL RESOLVENTS 371

To see the output in Mathematica for other variables, remove the semicolon after its

formula. For the record, the first six powersums are (written in the form Mathematica

gives)p1 =−x,p2 = x2,p3 = 3−x3,p4 =−4x+x4,p5 = 5x2−x5, andp6 = 3−6x3+x6.

The cofactors of the matrix M had to be divided by 466560·x = 27 ·36 ·51 ·x to get the

resolvent in Cohnian form, that is, such that the only divisors in Z[x,α] among all the

terms of the resolvent are ±1.
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