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We construct multivariate polynomials attached to a function f ofm variables,m≥ 2, which
approximate f with Jackson-type rate involving a multivariate Ditzian-Totik ωϕ

2 -modulus
and preserve some natural kinds of multivariate monotonicity and convexity of function.
The result extends the bivariate case in Gal (2002), but does not follow straight from it and
requires a careful calculation.
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1. Introduction. In a very recent paper [2] the following approximation result for

the bivariate case was proved.

Theorem 1.1. If f : [−1,1]×[−1,1]→R is continuous, then there exists a sequence of

bivariate polynomials {Pn1,n2(f )(x,y); n1,n2 ∈ N}, where degree (Pn1,n2(f )(x,y)) ≤
nk with respect to the kth variable, k= 1,2, such that

∥∥f −Pn1,n2(f )
∥∥≤ Cωϕ

2

(
f ;

1
n1
,

1
n2

)
, ∀n1,n2 ∈N, (1.1)

where C > 0 is independent of f , n1, and n2, satisfying, moreover, the following shape-

preserving properties:

(i) if f is convex of order (0,0), then so is Pn1,n1(f );
(ii) if f is simultaneously convex of orders (−1,0), (0,−1), and (0,0) (i.e., totally

upper monotone), then so is Pn1,n2(f );
(iii) if f is convex of order (1,1), then so is Pn1,n2(f );
(iv) if f is simultaneously convex of orders (−1,1), (1,−1), (0,1), (1,0), and (1,1)

(i.e., totally convex), then so is Pn1,n2(f ).

Here the convexity of order (m,n) for bivariate functions was defined by Popoviciu

in [6, page 78] and ωϕ
2 (f ;δ1,δ2) is the bivariate modulus of smoothness defined by

Ditzian and Totik in [1, Chapter 12].

By using the convexity of order (n1, . . . ,nm) and the Ditzian-Totik modulus of smooth-

ness ωϕ
2 (f ;δ1, . . . ,δm) for functions of m variables defined on [−1,1]m, in this paper

we extend Theorem 1.1 to the case of functions of m variables, m> 2.

A simple comparison between the statements of Theorem 1.1(ii), (iv) and Theorem

3.1(ii), (iv), shows that Theorem 3.1 cannot be trivially suggested (by mathematical
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induction) from Theorem 1.1, that is, we can say that the m = 2 case is not repre-

sentative for the general case m∈N (as, e.g., would be the m= 3 case). Also, the proof

of Theorem 3.1 requires more intricate calculation than in the case of Theorem 1.1,

which motivates us in Section 3 to prove the main result in its full generalization.

2. Preliminaries. This section contains the concepts of convexity and of modulus of

smoothness for multivariate functions, which will be used in Section 3.

Following the ideas in [6, page 78], we can introduce the following definition.

Definition 2.1. The function f : [−1,1]m → R, m ∈ N, is called convex of order

(n1, . . . ,nm), where ni ∈ {−1,0,1,2, . . .}, i = 1,m, if for any ni + 2 distinct points in

[−1,1], x(i)1 <x(i)2 < ···<x(i)ni+2, i= 1,m, it follows that




x(1)1 ,x(1)2 , . . . ,x(1)n1+2

x(2)1 ,x(2)2 , . . . ,x(2)n2+2
...

x(m)1 ,x(m)2 , . . . ,x(m)nm+2

;f



≥ 0, (2.1)

where the above symbol [·;f] means the divided difference of the function f and it is

defined (by means of the divided difference of univariate functions) as [x(1)1 , . . . ,x(1)n1+2;

[x(2)1 , . . . ,x(2)n2+2; . . . ;[x(m)1 , . . . ,x(m)nm+2;f]]] (here each univariate divided difference [x(i)1 ,
. . . ,x(i)ni+2;·] is considered with respect to the xi variable, respectively, for all i= 1,m).

Remark. (1) For m= 2, we get the concept in [6, page 78].

(2) If f is of Cn1+···+nm+m class on [−1,1]m, then by the mean value theorem, it

follows that the condition

∂n1+···+nm+mf
(
x1, . . . ,xm

)
∂xn1+1

1 ···∂xnm+1
m

≥ 0 on [−1,1]m, (2.2)

implies that f is convex of order (n1, . . . ,nm).
The method in [1, Chapter 12] suggests introducing the following definition.

Definition 2.2. If f : [−1,1]m →R, then

ωϕ
2

(
f ;δ1, . . . ,δm

)= sup
{∣∣∣∆2

h1ϕ(x1),...,hmϕ(xm)f
(
x1, . . . ,xm

)∣∣∣;

0≤ hi ≤ δi, i= 1,m, x1, . . . ,xm ∈ [−1,1]
}
,

(2.3)

where ϕ(t)=√1−t2,

∆2
h1ϕ(x),...,hmϕ(x)f

(
x1, . . . ,xm

)

=
2∑
k=0

C2
k(−1)kf

(
x1+(1−k)h1ϕ

(
x1
)
, . . . ,xm+(1−k)hmϕ

(
xm

)) (2.4)
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if (x1±h1ϕ(x1), . . . ,xm±hmϕ(xm))∈ [−1,1]m,

∆2
h1ϕ(x1),...,hmϕ(xm)f

(
x1, . . . ,xm

)= 0 elsewhere, (2.5)

where C2
k denotes the usual binomial coefficients.

Remark. For m= 2, we get the concept in [1, Chapter 12].

3. Main result. Our main result can be stated as follows.

Theorem 3.1. If f : [−1,1]m →R, m≥ 2, is continuous, then there exists a sequence

of multivariate polynomials {Pn1,...,nm(f)(x1, . . . ,xm); n1, . . . ,nm ∈ N}, where degree

(Pn1,...,nm(f)(x1, . . . ,xm))≤nk with respect to the kth variable, k= 1,m, such that

∥∥f −Pn1,...,nm(f)
∥∥≤ Cmω2

ϕ

(
f ;

1
n1
, . . . ,

1
nm

)
, ∀n1, . . . ,nm ∈N, (3.1)

where Cm > 0 is independent of f and ni, i = 1,m, satisfying moreover the following

shape-preserving properties:

(i) if f is convex of order (0, . . . ,0) on [−1,1]m, then so is Pn1,...,nm(f);
(ii) if f is simultaneously convex of orders (s1, . . . ,sm) ∈ {(s1, . . . ,sm); si ∈ {−1,0},

∀i= 1,m and ∃k with sk = 0}, then so is Pn1,...,nm(f);
(iii) if f is convex of order (1, . . . ,1) on [−1,1]m, then so is Pn1,...,nm(f);
(iv) if f is simultaneously convex of orders (s1, . . . ,sm)∈ {(s1, . . . ,sm);si ∈ {−1,0,1},

∀i= 1,m and ∃k with sk = 1}, then so is Pn1,...,nm(f).

Proof. If g : [−1,1] → R, then, according to [4, relation (5)], the approximation

polynomials are given by

Pn(g)(x)= g(−1)+
n−1∑
j=0

sj,n
(
Rj,n(x)−Rj+1,n(x)

)
, (3.2)

where sj,n = (g(ξj+1,n)−g(ξj,n))/(ξj+1,n − ξj,n), ξj,n, j = 0,n, are suitable nodes in

[−1,1], and Rj,n(x) are suitable chosen polynomials of degree less than or equal to n.

According to [4, Theorem 1], we have

∥∥g−Pn(g)∥∥≤ Cωϕ
2

(
g;

1
n

)
, ∀n∈N, (3.3)

where ωϕ
2 (g;δ) is the usual Ditzian-Totik modulus of smoothness and C > 0 is inde-

pendent of g and n.

We will construct the polynomials Pn1,...,nm(f)(x1, . . . ,xm) by applying the tensor-

product method (see, e.g., [5, pages 195–296]). We obtain (by mathematical induction)
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Pn1,...,nm(f)
(
x1, . . . ,xm

)

= f(−1, . . . ,−1)+
m∑
k=1



nk−1∑
ik=0

[·;f]k ·
[
Rik,nk

(
xk
)(
xk
)−Rik+1,nk

(
xk
)]

+
m∑

k,j=1

k<j



nk−1∑
ik=0

nj−1∑
ij=0

[·;f]j,k ·
[
Rik,nk

(
xk
)−Rik+1,nk

(
xk
)]

·[Rij,nj (xj)−Rij+1,nj
(
xj
)]

+···+
m∑

p1,...,pm−1=1
p1<···<pm−1



np1−1∑
ip1=0

···
npm−1−1∑
ipm−1=0

[·;f]p1,...,pm−1

·
m−1∏
s=1

[
Rips ,nps

(
xps

)−Rips+1,nps
(
xps

)]
+
n1−1∑
i1=0

···
nm−1∑
im=0

[·;f]1,...,m ·
m∏
k=1

[
Rik,nk

(
xk
)−Rik+1,nk

(
xk
)]
,

(3.4)

where ξ(k)ik,nk , Rik,nk(xk), ik = 0,nk, k = 1,2, . . . ,m, are constructed as in the univariate

case in [4]. The value of f on the point (−1, . . . ,−1) by definition can be represented as

a divided difference by

f(−1, . . . ,−1)=



−1
... ;f
−1


 , (3.5)

where the notation in the right-hand side denotes the divided difference of f with m
lines (see Definition 2.1) with −1 on each line. Then [·;f]k denotes the divided differ-

ence obtained from the above by replacing the line k (which has only one node, −1)

with another one composed of the two nodes ξ(k)ik,nk and ξ(k)ik+1,nk (the rest of lines re-

main unchanged), also [·;f]k,j , k �= j, denotes the divided difference obtained (from the

same divided difference which represents f(−1, . . . ,−1)) by replacing the lines k and j
(which have only the node −1) by lines composed of the pairs of nodes ξ(k)ik,nk , ξ

(k)
ik+1,nk ,

and ξ(j)ij ,nj , ξ
(j)
ij+1,nj , respectively, and so on.

Note that, finally,

[·;f]1,...,m =



ξ(1)i1,n1

,ξ(1)i1+1,n1
... ;f

ξ(m)im,nm,ξ
(m)
im+1,nm


 , (3.6)

that is, it is a divided difference with m lines, having two nodes on each line.

Obviously, degree (Pn1,...,nm(f))≤nk with respect to the kth variable, k= 1,m.

Firstly, we prove the estimate in Theorem 3.1.
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For any univariate function g, we have

∥∥Pn(g)∥∥≤ ‖g‖+∥∥Pn(g)−g∥∥≤ ‖g‖+Cωϕ
2

(
g;

1
n

)
≤ (1+2C)‖g‖, (3.7)

that is, passing to supremum with ‖g‖ ≤ 1, for the linear operator Pn, we obtain

∣∣∥∥Pn∥∥∣∣≤ (1+2C), ∀n∈N, (3.8)

where c > 0 is independent of n.

Now applying [3, Theorem 5], we immediately get

∥∥f −Pn1,...,nm(f)
∥∥≤ C m∑

i=1

ωϕ
2,xi

(
f ;

1
ni

)
, (3.9)

where ωϕ
2,xi (f ;δi), i= 1,m, are the partial moduli of smoothness defined by

ωϕ
2,xi

(
f ;δi

)= sup
{∣∣∣∆2,xi

hiϕ(xi)f
(
x1, . . . ,xm

)∣∣∣;

0≤ hi ≤ δi,xi, . . . ,xm ∈ [−1,1]
}
,

(3.10)

where ϕ(t)=√1−t2,

∆2,xi
hiϕ(xi)f

(
xi, . . . ,xm

)

=
2∑
k=0

C2
k(−1)kf

(
x1, . . . ,xi−1,xi+(1−k)hiϕ

(
xi
)
,xi+1, . . . ,xm

) (3.11)

if x1, . . . ,xi−1,xi±hiϕ(xi),xi+1, . . . ,xm ∈ [−1,1],

∆2,xi
hiϕ(xi)f

(
x1, . . . ,xm

)= 0 elsewhere. (3.12)

Taking into account that obviously

m∑
i=1

ωϕ
2,xi

(
f ;

1
ni

)
≤mωϕ

2

(
f ;

1
n1
, . . . ,

1
nm

)
, (3.13)

we obtain the desired estimate.

In what follows we will prove the shape-preserving properties.

(i) Suppose f is convex of order (0, . . . ,0). According to Remark (2) in Section 2, we

have to prove that

∂mPn1,...,nm(f)
(
x1, . . . ,xm

)
∂x1 ···∂xm ≥ 0 on [−1,1]m. (3.14)

We get

∂mPn1,...,nm(f)
(
x1, . . . ,xm

)
∂x1 ···∂xm

=
n1−1∑
i1=0

···
nm−1∑
im=0

[·;f]1,...,m
m∏
k=1

[
∂Rik,nk

(
xk
)

∂xk
− ∂Rik+1,nk

(
xk
)

∂xk

]

≥ 0

(3.15)
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because [·;f]1,...,m ≥ 0 (f is convex of order (0, . . . ,0)), and from the univariate case,

each Rik,nk(xk)−Rik+1,nk(xk), k= 1,m, is increasing as a function of xk ∈ [−1,1].
(ii) By hypothesis on f , it follows that all the quantities [·,f]k,[·,f]k,j···[·;f]p1,...,pm−1 ,

and [·;f]1,...,m in the expression of Pn1,...,nm(f) are greater than or equal to 0.

By Rik,nk(−1)= 0, for all ik = 0,nk, k= 1,m, we immediately get

Rik,nk
(
xk
)−Rik+1,nk

(
xk
)≥ 0, ∀ik = 0,nk−1, xk ∈ [−1,1], k= 1,m. (3.16)

Also, from the univariate case, we have

R′ik,nk
(
xk
)−R′ik+1,nk

(
xk
)≥ 0, ∀ik = 0,nk−1, xk ∈ [−1,1], k= 1,m. (3.17)

Let (si, . . . ,sm) ∈ {(s1, . . . ,sm), si ∈ {−1,0}, ∀i = 1,m, ∃k with sk = 0}. The above

hypothesis and simple calculations (similar to those in the bivariate case, see the proof

of [2, Theorem 3.1(ii), pages 30-31]) immediately imply that Pn1,...,nm(f)(x1, . . . ,xm) is

convex of order (s1, . . . ,sm), which proves (ii).

(iii) We have to prove that

∂2mPn1,...,nm(f)
(
x1, . . . ,xm

)
∂x2

1 ···∂x2
m

≥ 0. (3.18)

Applying with respect to each variable the relation in the univariate case (see [4, (5),

page 473]), that is,

Pn(g)(x)= g(−1)+
n−1∑
j=0

sj,n
(
Rj,n(x)−Rj+1,n(x)

)
, (3.19)

where

sj,n = g
(
ξj+1,n

)−g(ξj,n)
ξj+1,n−ξj,n , (3.20)

we get

Pn1,...,nm(f)
(
x1, . . . ,xm

)

= f(−1, . . . ,−1)+
m∑
k=1

(
1+xk

)
Ck+F

(
x1, . . . ,xm

)+E(x1, . . . ,xm
)

+
n1−1∑
i1=1

···
nm−1∑
im=1

(
ξ(1)i1+1,n1

−ξ(1)i1,n1

)
···

(
ξ(m)im+1,nm−ξ

(m)
im,nm

) m∏
k=1

Rik,nk
(
xk
)

·



ξ(1)i1−1,n1

,ξ(1)i1,n1
,ξ(1)i1+1,n1

... ;f

ξ(m)im−1,nm,ξ
(m)
im,nm,ξ

(m)
im+1,nm


 ,

(3.21)
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where F(x1, . . . ,xm) is a sum of several expressions of the form (1+xi1)···(1+xik)C
with distinct indexes i1, . . . ,ik, k <m, C a real constant (which can be different at each

occurrence) and E(x1, . . . ,xm) is a sum of several expressions, each expression being a

simple or multiple sum of terms, where each term is represented by product between:

(a) various Rik,nk(xk), or a product of distinct Rik,nk(xk) (having at mostm−1 terms

in that product),

(b) a divided difference of f on one, two, or three nodes with respect to each variable

xk, such that at least with respect to one variable the divided difference is taken

on three nodes,

(c) a positive quantity of the form (ξ(k)ik+1,nk − ξ
(k)
ik,nk) or (ξ(k)ik+1,nk − ξ

(k)
ik−1,nk) or the

product of such distinct quantities.

Moreover, the above-mentioned expressions in E(x1, . . . ,xm) which depend on the

variables xk, k= 1,m, through Rik,nk(xk), are of two kinds:

(1) expressions which do not depend on all variables xk, k= 1,m;

(2) expressions which depend on all variablesxk, k= 1,m, but at least oneRik,nk(xk)
= 1+xk.

We exemplify the passing from m = 2 to m = 3. Therefore, let f be a function of

three variables, that is, f = f(x1,x2,x3).
Applying the formula in the univariate case (specified at the beginning of (iii)) with

respect to the variables x1 and x2, and by the formulas in [2, pages 31-32], we imme-

diately get

Pn1,n2(f )
(
x1,x2,x3

)

= f (−1,−1,x3
)+(1+x2

)



−1

;f

ξ(2)1,n2
,ξ(2)0,n2


+

(
1+x1

)


ξ(1)1,n1

,ξ(1)0,n1

;f

−1




+
n2−1∑
i2=1

(
ξ(2)i2+1,n2

−ξ(2)i2−1,n2

)



−1

;f

ξ(2)i2−1,n2
,ξ(2)i2,n2

,ξ(2)i2+1,n2


Ri2,n2

(
x2
)

+
n1−1∑
i1=1

(
ξ(1)i1+1,n1

−ξ(1)i1−1,n1

)


ξ(1)i1−1,n1

,ξ(1)i1,n1
,ξ(1)i1+1,n1

;f

−1


Ri1,n1

(
x1
)

+(1+x1
)(

1+x2
)
S∗0,0(f )

(
x3
)

+(1+x1
)n2−1∑
i2=1

(
ξ(2)i2+1,n2

−ξ(2)i2−1,n2

)



−1,ξ(1)1,n1

;f

ξ(2)i2−1,n2
,ξ(2)i2,n2

,ξ(2)i2+1,n2


Ri2,n2

(
x2
)

+(1+x2
)n1−1∑
i1=1

(
ξ(1)i1+1,n1

−ξ(1)i1−1,n1

)


ξ(1)i1−1,n1

,ξ(1)i1,n1
,ξ(1)i1+1,n1

;f

−1,ξ(2)1,n2


Ri1,n1

(
x1
)
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+
n1−1∑
i1=1

n2−1∑
i2=1

(
ξ(1)i1+1,n1

−ξ(1)i1,n1

)(
ξ(2)i2+1,n2

−ξ(2)i2,n2

)


ξ(1)i1−1,n1

,ξ(1)i1,n1
,ξ(1)i1+1,n1

;f

ξ(2)i2−1,n2
,ξ(2)i2,n2

,ξ(2)i2+1,n2




·Ri1,n1

(
x1
)
Ri2,n2

(
x2
)
,

(3.22)

where all the divided differences are considered with respect to the variables x1, x2,

and x3 is arbitrarily fixed. Also, recall that the formula for S∗0,0(f )(x3) is given by [2,

page 31] and depends on the values of f(·,·,x3) on some nodes, where f is considered

as a function of the variables x1 and x2.

Now, applying the formula in the univariate case with respect to x3 to Pn1,n2(f )(x1,
x2,x3), that is, to each term of it, and taking into account the recurrence formula sat-

isfied by the divided differences, we immediately obtain Pn1,n2,n3(f )(x1,x2,x3) of the

claimed form.

As a conclusion, all these immediately imply that

∂2mPn1,...,nm(f)
(
x1, . . . ,xm

)
∂x2

1 ···∂x2
m

=
n1−1∑
i1=1

···
nm−1∑
im=1


 m∏
k=1

(
ξ(k)ik+1,nk−ξ

(k)
ik,nk

)

 m∏
k=1

R′′ik,nk
(
xk
)

·



ξ(1)i1−1,n1

,ξ(1)i1,n1
,ξ(1)i1+1,n1

... ;f

ξ(m)im−1,nm,ξ
(m)
im,nm,ξ

(m)
im+1,nm


≥ 0

(3.23)

by the hypothesis on f and by the conditions R′′ik,nk(xk) ≥ 0, for all ik = 0,nk, xk ∈
[−1,1], k= 1,m (see [4]).

(iv) Firstly, we recall that by construction we have (see [4])

Rik,nk
(
xk
)≥ 0, R′ik,nk

(
xk
)≥ 0, R′′ik,nk

(
xk
)≥ 0,

∀ik = 0,nk, xk ∈ [−1,1], k= 1,m.
(3.24)

We have to check the inequalities

∂rPn1,...,nm(f)
(
x1, . . . ,xm

)
∂xr1

i1 ···∂x
rp
ip

≥ 0 on [−1,1]m, (3.25)

for all r ∈ {2, . . . ,m}, p ∈ {1, . . . ,m}, ik �= ij , if i �= j, r = r1+···+rp , where at least one

rl is equal to 2 and rk ∈ {0,1,2}, k= 1,p.

By hypothesis, the divided differences of f which contains, at least on a line, three

distinct points, all are greater than or equal to 0. Then, taking into account the forms
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of F(x1, . . . ,xm) and E(x1, . . . ,xm) described at the previous point (iii), we immediately

obtain the required conclusion.

Remark. (1) For m= 2, we recall [2, Theorem 3.1].

(2) Since in the univariate case (i.e., m= 1) the property in Theorem 3.1(i) reduces to

the usual increasing monotonicity and in this case by [7] we know thatω2
ϕ(f ;·) cannot

be replaced by higher-order moduli of smoothness ωk
ϕ(f ;·) with k≥ 3, it follows that

for arbitrary m≥ 2, the same phenomenon is expected.
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