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A continuous random vector (X,Y) uniquely determines a copula C : [0,1]2 → [0,1] such
that when the distribution functions of X and Y are properly composed into C , the joint
distribution function of (X,Y) results. A copula is said to be D4-invariant if its mass distri-
bution is invariant with respect to the symmetries of the unit square. A D4-invariant copula
leads naturally to a family of measures of concordance having a particular form, and all
copulas generating this family are D4-invariant. The construction examined here includes
Spearman’s rho and Gini’s measure of association as special cases.
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1. Introduction. Let I = [0,1] and I2 = [0,1]×[0,1]. µ is a doubly stochastic measure

on I2 if it is a probability measure on the Borel sets of I2 such that µ(A×I)= µ(I×A)=
λ(A), where A is a Borel set of I and λ is the one-dimensional Lebesgue measure. A

copula (more precisely a 2-copula) is a function C : I2 → I that is related to some doubly

stochastic measure, µ, by C(x,y) = µ([0,x]× [0,y]) (see [3]). There is a one-to-one

correspondence between copulas and doubly stochastic measures.

Besides being associated with a doubly stochastic measure, a copula can be uniquely

determined by a continuous random vector. By Sklar’s theorem, for any continuous

random vector, (X,Y), with marginals, FX and FY , respectively, and joint distribution

function, FX,Y , there exists a unique copula, C , such that FX,Y (x,y)= C(FX(x),FY (y))
(see [1, 3]).

The simplest examples are as follows. If Y is an almost surely increasing function of

X, then its associated copula isM(x,y)=min(x,y). If Y is an almost surely decreasing

function of X, then its associated copula is W(x,y) = max(x+y −1,0). Finally, if X
and Y are independent, then their associated copula is Π(x,y)= xy (again see [3]).

When considering two random variables, it can be useful to know how much large val-

ues of one random variable correspond to large values of the other. More formally, for

any two observations, (X1,Y1) and (X2,Y2), from a continuous random vector, (X,Y),
the two observations are said to be concordant if either X1 <X2 and Y1 < Y2, or X2 <X1

and Y2 < Y1. Similarly, the two observations are said to be discordant if either X1 <X2

and Y2 < Y1, or X2 < X1 and Y1 < Y2. The properties of concordance and discordance

can be gauged by a measure of concordance, a concept developed by Scarsini [4] and

presented in [3].

A measure of concordance associates to a continuous random vector, (X,Y), a real

number, κX,Y . As developed by Scarsini, it can be shown that this value depends only
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on the copula C , uniquely associated with (X,Y). Because of this, we sometimes write

κC instead of κX,Y . The following definition of a measure of concordance can be found

in [3].

Definition 1.1. Let C be the copula associated with the continuous random vector,

(X,Y). Let κX,Y be a functional mapping the set of all copulas to R. κX,Y (which can also

be denoted κC if C is the copula for (X,Y)) is a measure of concordance if the following

conditions are satisfied:

(1) κC is defined for every copula, C ,

(2) −1≤ κC ≤ 1,

(3) κX,X = 1,

(4) κ−X,X =−1,

(5) κ−X,Y = κX,−Y =−κX,Y ,

(6) κX,Y = κY,X ,

(7) if X and Y are independent, then κX,Y = 0,

(8) if C1 and C2 are copulas, where C1 ≤ C2 pointwise, then κC1 ≤ κC2 ,

(9) if Cn is a sequence of copulas, where Cn→ C pointwise, then κCn → κC .

Spearman’s rho, ρ, and Gini’s measure of association, γ, are two examples of mea-

sures of concordance. Spearman’s rho can be expressed as ρC = 12
∫
I2 CdΠ−3, where

Π(x,y)=xy , while Gini’s measure of association can be expressed as γC=8
∫
I2 Cd((M+

W)/2)−2, whereM(x,y)=min(x,y) and W(x,y)=max(x+y−1,0) [3, 5]. Note that

each is of the form κC =α
∫
I2 CdA−β, where A is a fixed copula and α,β∈R.

Definition 1.2. A copular measure of concordance is one of the form κC =
α
∫
I2 CdA−β, where A is a fixed copula and α,β∈R.

Definition 1.3. A copula A, is copular generating if there exist α,β∈ R such that

C �α
∫
I2 CdA−β is a measure of concordance.

When you are dealing with copular measures of concordance you are in effect dealing

with an expression where the difference of the probabilities of concordance and dis-

cordance are taken. Namely, for any continuous random vectors, (X1,X2) and (Y1,Y2),
respectively, associated with a copula C and a fixed, copular-generating copula A, we

are dealing with P((X1−Y1)(X2−Y2) > 0)−P((X1−Y1)(X2−Y2) < 0). For more details

on this matter, one may refer to [3].

The standard notation for the group of symmetries on the unit square I2 is D4. We

have D4 = {e,r ,r 2,r 3,h,hr ,hr 2,hr 3}, where e is the identity, h is the reflection about

x = 1/2, and r is a 90◦ counterclockwise rotation.

For d∈D4, a new copula, Cd, can be formed, where Cd(x,y)= µCd([0,x]×[0,y])=
µC(d([0,x]× [0,y])) gives the amount of probabilistic mass contained in the rec-

tangle d([0,x]× [0,y]) as determined by the doubly stochastic measure associated

with C .

Definition 1.4. A copula is D4-invariant if for every d ∈ D4, C(x,y) = Cd(x,y)
for all (x,y)∈ I2.
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Table 2.1. Symmetries of copulas on I2 and their associated random vectors.

D4 Copula Random vector
e C(x,y) (X,Y)
r Cr (x,y)= x−C(1−y,x) (−Y ,X)
r2 Cr2(x,y)= x+y−1+C(1−x,1−y) (−X,−Y)
r3 Cr3(x,y)=y−C(y,1−x) (Y ,−X)
h Ch(x,y)=y−C(1−x,y) (−X,Y)
hr Chr (x,y)= C(y,x) (Y ,X)
hr2 Chr2(x,y)= x−C(x,1−y) (X,−Y)
hr3 Chr3(x,y)= x+y−1+C(1−y,1−x) (−Y ,−X)

While it might not always be obvious that a copula C is D4-invariant, it is certainly

easy to construct one from C since C∗ = (1/8)∑d∈D4
Cd is D4-invariant. For example,

while M is not D4-invariant, M∗ = (M+W)/2 is D4-invariant.

It is when the properties κ−X,Y = κX,−Y = −κX,Y and κX,Y = κY,X are considered in

terms of κCd for d ∈D4 that the principles behind the main theorem take shape, giving

a nice theoretical characterization and providing a way to construct many measures of

concordance. The theorem states that a copula is copular generating if and only if it is

D4-invariant.

In the second section, some background information is given, where measures of

concordance are considered entirely in terms of copulas and their symmetries. Also

included in the section are some helpful lemmas with their proofs. The third and final

section includes the formulation and proof of the main result, in addition to some

remarks we think may be of some interest.

2. Background and lemmas. Here and in all that follows, we assume that we are

dealing with continuous random vectors.

Observe Table 2.1 with regard to the correspondence between the copula Cd for each

d ∈ D4 and a random vector with which it is associated. Note that Cd1d2 = (Cd1)d2 ,

where d1,d2 ∈D4.

When considering the copulas M , W , and Π as well as Table 2.1, Definition 1.1 may

be rewritten.

Definition 2.1. Let C be the copula associated with the continuous random vector,

(X,Y). Let κC be a functional mapping the set of all copulas to R. κC is a measure of

concordance if the following conditions are satisfied:

(1) κC is defined for every copula C ,

(2) −1≤ κC ≤ 1,

(3) κM = 1,

(4) κW =−1,

(5) κCh = κChr2 =−κC ,

(6) κC = κChr ,

(7) κΠ = 0,

(8) if C1 and C2 are copulas, where C1 ≤ C2 pointwise, then κC1 ≤ κC2 ,

(9) if Cn is a sequence of copulas, where Cn→ C pointwise, then κCn → κC .
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Lemma 2.2. For any copulas A and B,
∫
I2AdB =

∫
I2 BdA.

Proof. Let (X1,Y1) and (X2,Y2) be independent, continuous random vectors asso-

ciated with A and B, respectively. Since
∫
I2AdB = P(X1 < X2,Y1 < Y2) [3], the proof is

quite brief,

∫
I2
AdB = P(X1 <X2,Y1 < Y2

)

= P(X1 <X2
)−P(X1 <X2,Y2 < Y1

)
= P(X1 <X2

)−P(Y2 < Y1
)+P(X2 <X1,Y2 < Y1

)

= 1
2
− 1

2
+P(X2 <X1,Y2 < Y1

)

=
∫
I2
BdA.

(2.1)

Lemma 2.3. Let G = {e,r 2,hr ,hr 3} and hG = {h,hr 2,r ,r 3}. Given copulas A and B,

the following are true:

(1)
∫
I2AddB = ∫I2AdBd for every d ∈G,

(2)
∫
I2AddB+∫I2AdBd = 1/2 for every d ∈ hG.

Proof. Let (X1,Y1) and (X2,Y2) be independent, continuous random vectors asso-

ciated with A and B, respectively.

For d = h,

∫
I2
AhdB+

∫
I2
AdBh

= P(−X1 <X2,Y1 < Y2
)+P(X1 <−X2,Y1 < Y2

)= P(Y1 < Y2
)= 1

2
.

(2.2)

For d = r 2 using Lemma 2.2,

∫
I2
Ar

2
dB

= P(−X1 <X2,−Y1 < Y2
)= P(−X2 <X1,−Y2 < Y1

)=
∫
I2
Br

2
dA=

∫
I2
AdBr

2
.

(2.3)

Noting that hr = r 3h and r 2 is in the center of D4, we then have for d= r ,

∫
I2
ArdB = P(−Y1 <X2,X1 < Y2

)=
∫
I2
Ahr

2
dBhr =

∫
I2
Ar

2hdBr
3h

= 1
2
−
∫
I2
Ar

2
dBr

3 = 1
2
−
∫
I2
AdBr

5 = 1
2
−
∫
I2
AdBr .

(2.4)

Since our assertion holds for d= r ,r 2, the case when d= r 3 is clear.

Since r 2 is in the center of D4 and our assertion holds for d = h,r 2, the case when

d = hr 2 is readily seen.

For d = hr ,

∫
I2
AhrdB−

∫
I2
AdBhr = P(Y1 <X2,X1 < Y2

)−P(X1 < Y2,Y1 <X2
)= 0. (2.5)
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Finally, for d = hr 3,

∫
I2
Ahr

3
dB−

∫
I2
AdBhr

3

= P(−Y1 <X2,−X1 < Y2
)−P(X1 <−Y2,Y1 <−X2

)

= P(−Y1 <X2
)−P(X1 <−Y2

)= 1
2
− 1

2
= 0.

(2.6)

Consider a grid being placed on I2 such that it is divided into square cells having the

dimensions 1/n×1/n. We construct a copula by assigning a constant mass density,

δi,k, to the cell in the ith column from the left and kth row from the bottom, where∑n
i=1δi,k =

∑n
k=1δi,k =n. Such a notion is a particular instance of a checkerboard copula

(see [1]).

The following concepts and notation will be used to construct the checkerboard cop-

ulas, Q1
p,n and Q2

p,n, that depend on a fixed point p ∈ (0,1)2 and n∈N.

(i) Given n∈N, for 1≤ i, k≤n, let Ji,k be the square [(i−1)/n,i/n][(k−1)/n,k/n].
(ii) Choose p in the interior of I2. There existsN ∈N such that for p = (p1,p2), 1/N <

min(p1,p2) and Np1,Np2 ∉N. Let � be an infinite, increasing sequence of such N.

(iii) Let Q1
p,n and Q2

p,n be two n×n checkerboard copulas, where n∈�, and having

density δ1
i,k and δ2

i,k, respectively, in cell Ji,k.
(iv) The cell containing p will be denoted Ji∗,k∗ .

(v) Let the Q1
p,n have the following densities assigned to its cells:

δ1
i,k =




0, (i,k)= (1,k∗) or
(
i∗,1

)
,

2, (i,k)= (1,1) or
(
i∗,k∗

)
,

1, otherwise.

(2.7)

(vi) Let Q2
p,n have the following densities assigned to its cells:

δ2
i,k =




2, (i,k)= (1,k∗) or
(
i∗,1

)
,

0, (i,k)= (1,1) or
(
i∗,k∗

)
,

1, otherwise.

(2.8)

We make use of Q1
p,n and Q2

p,n in some of the following proofs.

Lemma 2.4. If for copulas A and B,
∫
I2AdC =

∫
I2 BdC for every copula C , then A= B.

Proof. For convenience, we write
∫
I2(A−B)dC = 0 for every copula C . Since A and

B are copulas, A(p)= B(p) for any p on the boundary of I2. Thus, only p in the interior

of I2 needs to be considered. Using Q1
p,n and Q2

p,n as choices for C yields

0=
∫
I2
(A−B)d(Q1

p,n−Q2
p,n
)

= 2
{∫

J1,1∪Ji∗ ,k∗
(A−B)dΠ−

∫
J1,k∗∪Ji∗ ,1

(A−B)dΠ
}
.

(2.9)
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By the mean value theorem, there exists pa,b ∈ Ja,b such that

∫
Ja,b
(A−B)dΠ= A

(
pa,b

)−B(pa,b)
n2

. (2.10)

Hence, 0= (A−B)(p1,1)+(A−B)(pi∗,k∗)−(A−B)(p1,k∗)−(A−B)(pi∗,1). Lettingn→∞,

since either the x coordinate, y coordinate, or both coordinates of p1,1, pi∗,1, and p1,j∗

will go to 0, it follows from the continuity of A and B that

(A−B)(p1,1
)
,(A−B)(pi∗,1),(A−B)(p1,k∗

)
�→ 0, (2.11)

while

(A−B)(pi∗,k∗) �→ (A−B)(p). (2.12)

Therefore, A= B.

Lemma 2.5. For a fixed copula A and α,β∈R, let κC =α
∫
I2 CdA−β, where α≠ 0. If

κC =−κCh and κC = κChr , then A is D4-invariant.

Proof. Note that since A, Ah, and Ahr are all copulas, A(p) = Ah(p) = Ahr (p) for

every p on the boundary of I2. Because of this, only p in the interior of I2 needs to be

considered. Using Q1
p,n and Q2

p,n as choices for C yields κQlp,n = −κ(Qlp,n)h = κ(Qlp,n)hr ,

for l= 1,2. So,

α
∫
I2
Ql
p,ndA−β=−α

∫
I2

(
Ql
p,n
)hdA+β,

α
∫
I2
Ql
p,ndA−β=α

∫
I2

(
Ql
p,n
)hrdA−β.

(2.13)

By subtraction and application of Lemmas 2.2 and 2.3, we have

∫
I2
Ad
(
Q1
p,n−Q2

p,n
)=

∫
I2
Ahd

(
Q1
p,n−Q2

p,n
)
,

∫
I2
Ad
(
Q1
p,n−Q2

p,n
)=

∫
I2
Ahrd

(
Q1
p,n−Q2

p,n
) (2.14)

so that
∫
I2

(
A−Ah)d(Q1

p,n−Q2
p,n
)= 0,

∫
I2

(
A−Ahr )d(Q1

p,n−Q2
p,n
)= 0.

(2.15)

Finally, by using the same argument as in Lemma 2.4, the results A=Ah and A=Ahr
are attained. Since h and hr generate D4, we know A is D4-invariant.

3. A characterization of copular generating copulas and remarks

Theorem 3.1. A copula is copular generating if and only if it is D4-invariant.
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Proof. Suppose that A is copular generating. Note that α ≠ 0 since a measure of

concordance is not constant. Therefore, by Lemma 2.5, A is D4-invariant.

Now, we assume that A is D4-invariant. Setting

κC =α
(∫

I2
CdA− 1

4

)
, (3.1)

where α= (∫I2MdA−1/4)−1, we will show that κ is a measure of concordance.

It needs to be shown that
∫
I2MdA−1/4 ≠ 0 in order for κC to be defined for every

copula C . Noting by the D4-invariance of A that A(1−x,1−x) = 1−2x+A(x,x) and∫ 1/2
0 A(x,x)dx > 0, we have

∫
I2
MdA=

∫
I2
AdM =

∫ 1/2

0
A(x,x)dx+

∫ 1

1/2
A(x,x)dx

=
∫ 1/2

0
A(x,x)dx+

∫ 1/2

0
A(1−x,1−x)dx

= 1
4
+2

∫ 1/2

0
A(x,x)dx >

1
4
.

(3.2)

By the chosen form of κ, it is clear that κM = 1.

By the D4-invariance of A and Lemma 2.3,

κC =α
(∫

I2
CdA− 1

4

)
=α

(∫
I2
ChrdA− 1

4

)
= κChr . (3.3)

It is similarly attained that κCh = κChr2 = −κC . In particular, noting that Mh = W and

Πh =Π, we see that κW =−1 and κΠ = 0.

Recall from (3.2) that α> 0. Since
∫
I2 C1dA≤

∫
I2 C2dA whenever C1 ≤ C2 pointwise, it

is also true that κC1 ≤ κC2 . Furthermore, since W ≤ C ≤M (see [2, 3]) for every copula

C , κW ≤ κC ≤ κM , or more precisely, −1≤ κC ≤ 1.

Finally, since every sequence of copulas converging to a copula pointwise does so

uniformly (see [3]), it follows that if Cn→ C pointwise, then
∫
I2 CndA→

∫
I2 CdA. Hence,

κCn → κC .

Remark 3.2. By Theorem 3.1, any D4-invariant copula and only a D4-invariant cop-

ula generates a copular measure of concordance. For example, one may generate a

copular measure of concordance using the copula associated with the circular uniform

distribution which is presented in [3]:

A(x,y)=




M(x,y), |x−y|> 1
2
,

W(x,y), |x+y−1|> 1
2
,

x+y
2

− 1
4
, otherwise.

(3.4)

Remark 3.3. There is a uniqueness among copular measures of concordance. In

other words, for any two copular measures of concordance,

κ̂C = α̂
∫
I2
CdÂ− β̂, κC =α

∫
I2
CdA−β, (3.5)
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where Â and A are copular generating and α̂,α,β̂,β∈R, if κ̂C = κC for every copula C ,

then α̂=α, β̂= β, and Â=A. Here is a verification.

Since κ̂Ch =−κ̂C and κCh =−κC , we know that

α̂
[∫

I2
CdÂ+

∫
I2
ChdÂ

]
= 2β̂, α

[∫
I2
CdA+

∫
I2
ChdA

]
= 2β. (3.6)

Then, from the D4-invariance of Â and A we have by Lemma 2.3,

α̂· 1
2
= 2β̂, α· 1

2
= 2β, (3.7)

which gives us β̂= α̂/4 and β=α/4. Choosing p ∈ (0,1)2, and copulas Q1
p,n and Q2

p,n,

one has

α̂
(∫

I2
Ql
p,ndÂ−

1
4

)
=α

(∫
I2
Ql
p,ndA−

1
4

)
(3.8)

for l= 1,2. Subtraction then yields

α̂
∫
I2

(
Q1
p,n−Q2

p,n
)
dÂ=α

∫
I2

(
Q1
p,n−Q2

p,n
)
dA. (3.9)

Thus, by Lemma 2.2,
∫
I2(α̂Â−αA)d(Q1

p,n −Q2
p,n) = 0. Using the same argument as

in Lemma 2.4 results in α̂Â(p) = αA(p) for any p ∈ (0,1)2. For p = (p1,p2), letting

p1 → 1 or p2 → 1, the uniform margins and continuity of Â and A force α̂ = α and

consequently, β̂ = β. Thus,
∫
I2 ÂdC =

∫
I2AdC for every copula C , which shows that

Â=A by Lemma 2.4.

Remark 3.4. Not all measures of concordance are copular. For example, Kendall’s

tau, τC = 4
∫
I2 CdC−1 [3, 5], though a measure of concordance, is not a copular measure

of concordance.

To see this, first note that the convex sum of any copulas C1 and C2, is also a cop-

ula. Assume there exists κC , a copular measure of concordance, such that κC = τC
for every copula C . Notice that if p,q ≥ 0 and p+q = 1, then κpC1+qC2 = pκC1 +qκC2

and τpC1+qC2 = p2τC1 +q2τC2 +2pq(4
∫
I2 C1dC2−1). By hypothesis, one has κpΠ+qM =

τpΠ+qM , but τpΠ+qM = q2+2pq(4
∫
I2ΠdM −1) = q2+ (2/3)pq = q(q+ (2/3)p) < q =

κpΠ+qM .

Remark 3.5. A probabilistic interpretation can be made for any copular measure

of concordance. Fix a copula A which is copular generating. A is associated with some

continuous random vector, say (W,Z). Choose any copula C . It is associated with some

continuous random vector, say (X,Y). Let (X1,Y1) and (X2,Y2) be independent obser-

vations of (X,Y),

κC =α
(∫

I2
CdA− 1

4

)
=α

(∫
I2
CdA−

∫
I2
ΠdA

)
(3.10)
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and by independence of (X1,Y1) and (X2,Y2),

κC =α
(
P
(
X1 <W,Y1 <Z

)−P(X1 <W,Y2 <Z
))
, (3.11)

where α= (∫I2MdA−1/4)−1.

Acknowledgments. Comments by Roger Nelsen were useful in formulating the

results presented here. We of course thank the referees for their helpful comments

as well.

References

[1] H. Carley and M. D. Taylor, A new proof of Sklar’s theorem, Proceedings of the Conference
on Distributions with Given Marginals and Statistical Modelling (Barcelona, 2000),
Kluwer Academic Publishers, Dordrecht, 2002, pp. 29–34.

[2] P. Mikusiński, H. Sherwood, and M. D. Taylor, The Fréchet bounds revisited, Real Anal. Ex-
change 17 (1991/92), no. 2, 759–764.

[3] R. B. Nelsen, An Introduction to Copulas, Lecture Notes in Statistics, vol. 139, Springer-Verlag,
New York, 1999.

[4] M. Scarsini, On measures of concordance, Stochastica 8 (1984), no. 3, 201–218.
[5] B. Schweizer and E. F. Wolff, On nonparametric measures of dependence for random vari-

ables, Ann. Statist. 9 (1981), no. 4, 879–885.

H. H. Edwards: Department of Mathematics, University of Central Florida, Orlando, FL 32816-
1364, USA

E-mail address: newcopulae@yahoo.com
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