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ON DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS
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Let R be a prime ring of characteristic different from 2, d a nonzero derivation of R, and I a
nonzero right ideal of R such that [[d(x),x],[d(y),y]]= 0, for all x,y ∈ I. We prove that
if [I,I]I ≠ 0, then d(I)I = 0.
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1. Introduction. LetR be a prime ring andd a nonzero derivation ofR. Define [x,y]1
= [x,y] = xy −yx, then an Engel condition is a polynomial [x,y]k = [[x,y]k−1,y]
in noncommuting variables. A commutative ring satisfies any such polynomial, and a

nilpotent ring satisfies one if k is sufficiently large.

In this paper, we fix our attention on the Engel condition [[d(x1),x1],x2].
A well-known result of Posner [12] states that if [[d(x1),x1],x2]= 0, for all x1,x2 ∈

R, then R is commutative. This result has led to many others which combine derivations

with Engel-type conditions. In [14], Vukman showed that R is commutative if char(R)≠
2 and [[d(x1),x1],x1]= 0, for all x1 ∈ R. On the other hand, Lanski proved in [8] that

if [[d(x1),x1],x2]= 0, for all x1 in a noncommutative Lie ideal and x2 ∈ R, then either

R is commutative or char(R)≠ 2 and R satisfies the standard identity of degree 4.

Several authors have studied what happens if the Engel condition is satisfied by the

elements of a nonzero one-sided ideal of R. To be more specific, in [2] Bell and Martin-

dale proved that if R is semiprime and [[d(x1),x1],x2]= 0, for all x1 in a nonzero left

ideal and x2 ∈ R, then R contains a nonzero central ideal. Later, Bell and Deng showed

that the same conclusion holds if R is semiprime with suitably restricted additive tor-

sion and [[d(x1),x1],x1] falls in the center of R, for all x1 in a nonzero left ideal of

R [4].

Clearly, the last two results state that if R is prime then it is commutative.

The question of whether a ring is commutative or nilpotent, if it satisfies an Engel

condition, goes back to the well-known work of Engel on Lie algebras [6, Chapter 2].

Here, we will examine what happens in case [[d(x),x],[d(y),y]]= 0, for any x,y ∈
I, a nonzero right ideal of R.

One cannot expect the conclusion that R is commutative, as the following example

shows.

Example 1.1. Consider R =M2(F), the ring of all 2×2 matrices over the field F . Let

eij be the usual matrix unit in R and I = e11R. Any derivation δ : F → F induces another

one in R =M2(F) as follows: d :M2(F)→M2(F) such that d(
∑
i,j rijeij)=

∑
i,j δ(rij)eij ,
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for any matrix A=∑i,j rijeij , where ri,j ∈ F . In this case,

[[
d
(
e11x

)
,e11x

]
,
[
d
(
e11y

)
,e11y

]]= 0 (1.1)

for any x,y ∈ R, but clearly R is not commutative.

We will proceed by first proving the following theorem.

Theorem 1.2. Let R be a prime ring of characteristic different from 2, d a nonzero

derivation of R, such that [[d(x),x],[d(y),y]]= 0, for all x,y ∈ R. Then, R is commu-

tative.

Finally, in the second part of the paper, we will extend the previous theorem to a

nonzero right ideal of R.

We will prove the following theorem.

Theorem 1.3. Let R be a prime ring of characteristic different from 2, d a nonzero

derivation of R and I a nonzero right ideal of R such that [[d(x),x],[d(y),y]]= 0, for

all x,y ∈ I. If [I,I]I ≠ 0, then d(I)I = 0.

The assumption [I,I]I ≠ 0 is essential to the main result. In fact, consider Example 1.1

and notice that [x1,x2]x3 is an identity for I = e11R, but clearly d(I)I = d(e11R)e11

R ≠ 0.

We first fix the following facts.

Fact 1. In what follows, we denote by Q the Martindale quotients ring of R and by

C = Z(Q) the extended centroid of R (see [1, Chapter 2]). When R is prime, all that we

need here about these objects is that R ⊆Q, Q is prime, and C is a field.

Let T = Q∗C C{X} be the free product over C of the C-algebra, Q, and the free

C-algebra, C{X}, with X a countable set consisting of noncommuting indeterminates

{x1, . . . ,xn, . . .}. The elements of T are called generalized polynomial with coefficients

in Q. I,IR, and IQ satisfy the same generalized polynomial identities with coefficients

in Q. For more details about these objects we refer the reader to [1, 3].

Fact 2. Any derivation of R can be uniquely extended to a derivation of Q, and so

any derivation of R can be defined on the whole ofQ [1, Proposition 2.5.1]. Moreover,Q
is a prime ring as well as R and the extended centroid C of R coincides with the center

of Q [1, Proposition 2.1.7, Remark 2.3.1].

Fact 3 (see Kharchenko [7]). Let f(x1, . . . ,xn,d(x1), . . . ,d(xn)) be a differential iden-

tity of R. One of the following holds:

(1) either d is an inner derivation inQ, in the sense that there exists q ∈Q such that

d(x) = [q,x], for all x ∈Q and Q satisfies the generalized polynomial identity

f(x1, . . . ,xn,[q,x1], . . . ,[q,xn]); or

(2) R satisfies the generalized polynomial identity f(x1, . . . ,xn,y1, . . . ,yn).

Fact 4 (see Lee [10]). I, IR, and IQ satisfy the same differential identities with co-

efficients in Q.
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In all that follows, unless stated otherwise,R will be a prime ring of characteristic≠ 2,

d≠ 0 a derivation of R and I a nonzero right ideal of R such that [[d(x),x],[d(y),y]]
= 0, for all x,y ∈ I.

2. The case I = R. In this section, we consider the case when [[d(x),x],[d(y),y]]=
0, for all x,y ∈ R and prove Theorem 1.2.

Proof of Theorem 1.2. Denote the differential polynomial

[[
d
(
x1
)
,x1

]
,
[
d
(
x2
)
,x2

]]= g(x1,x2,d
(
x1
)
,d
(
x2
))
. (2.1)

Then, g(x1,x2,d(x1),d(x2)) is a differential identity on R.

Using Fact 3, one of the following holds:

(1) d is an inner derivation in Q, induced by c ∈Q and R satisfies the generalized

polynomial identity

g
(
x1,x2,

[
c,x1

]
,
[
c,x2

])
; (2.2)

(2) R satisfies the generalized polynomial identity g(x1,x2,y1,y2).
In this last case, R satisfies the identity [[y1,x1],[y2,x2]], that is, for any r1,r2,r3,

r4 ∈ R, [[r1,r2],[r3,r4]]= 0.

Since R is a polynomial identity (P.I.) ring, there exists a field F such that R andMt(F),
the ring of t×t matrices over F , satisfy the same polynomial identities.

Suppose t ≥ 2 and choose r1 = e11, r2 = e12, r3 = e21, r4 = e11. Then, we obtain the

following contradiction:

0= [[e11,e12
]
,
[
e21,e11

]]= e11−e22 ≠ 0. (2.3)

Therefore, we must have t = 1 and so R is commutative.

Now, let d be the inner derivation induced by an element c ∈Q. Thus,

[[
c,r1

]
2,
[
c,r2

]
2

]= 0 (2.4)

for any r1,r2 ∈ R, that is, R satisfies a nontrivial generalized polynomial identity. By

[11], it follows that S = RC is a primitive ring with soc(R)=H ≠ 0 and eHe is a simple

central algebra finite-dimensional over C , for any minimal idempotent element e ∈ S.

Moreover, we may assume H noncommutative, otherwise also R must be commutative.

Notice that H satisfies [[c,x1]2,[c,x2]2] (see, e.g., [9, proof of Theorem 1]).

Since H is a simple ring, one of the following holds: either H does not contain any

nontrivial idempotent element or H is generated by its idempotents.

In this last case, suppose that H contains two minimal orthogonal idempotent ele-

ments e, f so that eH, fH are isomorphic H-modules. For all x ∈H,

0= [[c,e]2,[c,fxe]2
]= [ce+ec−2ece,−2fxecfxe]. (2.5)

Left multiplying by e, we have −2ecfxecfxe= 0. This implies in particular (ecfx)3 =
0. From this, by [5], ecfH = 0. By the primeness of H, this implies that, for any or-

thogonal idempotent elements of rank 1, e and f , ecf = 0. Hence, [c,e] = 0, for any
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idempotent e of rank 1, and [c,H] = 0, since H is generated by these idempotent ele-

ments. This argument gives the contradiction that c ∈ C and d= 0.

Therefore, H cannot contain two minimal orthogonal idempotent elements and so

H = D, for a suitable division ring D finite dimensional over its center. This implies

that Q=H and c ∈H. By [13, Theorem 2.3.29, page 131] (see also [9, Lemma 2]), there

exists a field F such thatH ⊆Mn(F) andMn(F) satisfies [[c,x1]2,[c,x2]2], for F a field.

As we have just seen, if n ≥ 2, then c ∈ C and d = 0. If n = 1, then H ⊆ F and we are

also done.

On the other hand, if H does not contain any nontrivial idempotent element, then H
is a finite-dimensional division algebra over C and c ∈H = RC =Q. If C is finite, then

H is a finite division ring, that is, H is a commutative field and so R is commutative

too.

If C is infinite, then H⊗C F �Mr(F), where F is a splitting field of H. In this case, a

Vandermonde determinant argument shows that in Mr(F)[[c,x1]2,[c,x2]2] is still an

identity. As above, one can see that if r ≥ 2, then c commutes with any idempotent

element in Mr(F). In this case, we have the contradiction d = 0. In the other one, H is

commutative, as well as R.

3. The case I is a right ideal of R. In this final section, we will prove the main

theorem of the paper (Theorem 1.3).

For the rest of the paper, we now assume the conclusion of Theorem 1.3 to be false;

our goal is to ultimately arrive at a contradiction. Thus, we will assume henceforth that

d(I)I ≠ 0. We begin with the following lemma.

Lemma 3.1. R is a ring satisfying a nontrivial generalized polynomial identity (GPI).

Proof. Suppose by contradiction that R does not satisfy any nontrivial generalized

polynomial identity. We divide the proof into two cases.

Case 1. Suppose that d is an inner derivation induced by an element c ∈Q.

By the last assumption d(I)I ≠ 0, there exists an element b ∈ I such that cb ≠ 0. Thus,

R satisfies the polynomial identity, [[c,bx]2,[c,by]2]. Moreover, we may assume b ∉ C ,

otherwiseR should satisfy [[c,x]2,[c,y]2]which is a nontrivial generalized polynomial

identity.

Expanding the previous GPI we get

[
[c,bx]2,[c,by]2

]

= (c(bx)2+(bx)2c−2bxcbx
)(
c(by)2+(by)2c−2bycby

)

+(−c(by)2−(by)2c+2bycby
)(
c(bx)2+(bx)2c−2bxcbx

)
.

(3.1)

Suppose that {b,cb} are linearly C-dependent, then there exists 0≠α∈ C such that

cb =αb. In this case, R satisfies

(−αbxbx+bxbxc)(−αbyby+bybyc)+(αbyby+bybyc)(−αbxbx+bxbxc).
(3.2)
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Since b,c ∉ C , this last formula is a nontrivial generalized polynomial identity for R
(see [3]), a contradiction.

On the other hand, if {b,cb} are linearly C-independent it follows, again by Chuang’s

results in [3], that [[c,bx]2,[c,by]2] is a nontrivial generalized polynomial identity for

R. In any case, we have a contradiction.

Case 2. Suppose now that d is an outer derivation.

First, notice that if for all t ∈ I there existsαt ∈ C such that d(t)=αtt, then [d(x),x]
is an identity for I. This implies the contradiction that R is commutative (as a conse-

quence of [4]).

So, let b ∈ I such that {b,d(b)} are linearly C-independent.

By our assumption, we have that [[d(bx),bx],[d(by),by]]= 0, and so

0= [[d(b)x+bd(x),bx],[d(b)y+bd(y),by]]. (3.3)

By Fact 3 it follows that

0= [[d(b)r1+br2,br1
]
,
[
d(b)r3+br4,br3

]]
(3.4)

for all r1,r2,r3,r4 ∈ R. In particular, R satisfies the blended component

[[
d(b)x,bx

]
,
[
d(b)y,by

]]
, (3.5)

which is a nontrivial generalized polynomial identity for R, because {b,d(b)} are lin-

early C-independent, a contradiction.

Proposition 3.2. Without loss of generality, R is simple and equal to its own socle,

IR = I.
Proof. By Lemma 3.1, R is GPI and so Q has nonzero socle H with nonzero right

ideal J = IH [11]. Note thatH is simple, J = JH, and J satisfies the same basic conditions

as I, in view of Fact 4. Now, just replace R by H, I by J, and we are done.

Now, we are ready to prove the main result.

Proof of Theorem 1.3. Since I does not satisfy [x1,x2]x3, there exist a1,a2,
a3 ∈ I, such that [a1,a2]a3 ≠ 0. Here, we suppose that d(I)I ≠ 0, that is, there ex-

ist a4,a5 ∈ I such that d(a4)a5 ≠ 0 and we proceed to derive a contradiction. In view

of Fact 3, we divide the proof into two cases.

Case 1. If d is an inner derivation induced by the element q ∈ Q, then I satisfies

the identity [[q,x]2,[q,y]2], moreover, qI ≠ 0, since d(I)I ≠ 0. Let e2 = e∈ I. Thus, for

all y ∈ R, [[q,e]2,[q,ey(1− e)]2] = 0, and left multiplying by (1− e), we get −2(1−
e)qey(1−e)qey(1−e)= 0. Since char(R)≠ 2, it follows that ((1−e)qey)3 = 0. By [5],

(1−e)qeR = 0 and by the primeness of R, (1−e)qe= 0.

Let r ∈ I and suppose ar ≠ 0. Write rR = eR, e2 = e ∈ I, noting that r = er . Then,

(1−e)qe= 0 implies qr = eqr+(1−e)qr = eqr+(1−e)qer = eqr . Thus, we get qI ⊆ I.
Let I = I/I∩lR(I); I is a prime C-algebra with a derivation d such that d(x)= d(x), for
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all x ∈ I. Therefore, we have 0= [[d(x),x],[d(y),y]], for all x,y ∈ I. By Theorem 1.2,

either d= 0 modulo lR(I), or I is commutative modulo lR(I). In the first case, we have

d(I)I = 0 and in the second one [I,I]I = 0. In any case, we have a contradiction.

Case 2. Now, we assume that the derivation d is not inner.

By the regularity of R, there exists an element e2 = e∈ IR such that eR = a1R+a2R+
a3R+a4R+a5R and eai = ai, for i= 1,2,3,4,5.

By our assumption, we have that, for all b ∈ I [[d(bx),bx],[d(by),by]]= 0. As we

have seen in Lemma 3.1, in this case R satisfies the blended component

[[
d(b)x,bx

]
,
[
d(b)y,by

]]
. (3.6)

Therefore, for all r1,r2 ∈ R [[d(e)r1,er1],[d(e)r2,er2]] = 0 and left multiplying by

(1−e),

(1−e)d(e)er1er1er2(1−e)d(e)er2(1−e)= 0. (3.7)

For r1 = e, we get (1−e)d(e)er2(1−e)d(e)er2(1−e)= 0, which implies ((1−e)d(e)eR)3
= 0. Again, by [5], 0= (1−e)d(e)e= (1−e)d(e). This implies d(e)∈ eR and d(eR)⊆ eR.

Let � = eR, � = �/�∩lR(�) with lR(�) the left annihilator of � in R. Therefore, �
satisfies the differential identity [[d(x),x],[d(y),y]].

By Theorem 1.2, we have that either d = 0 or � is commutative. Therefore, we have

that either d(eR)eR = 0 or [eR,eR]eR = 0.

On the other hand, we have that [ea1,ea2]ea3 = [a1,a2]a3 ≠ 0 and also d(ea4)ea5 =
d(a4)a5 ≠ 0. This contradiction completes the proof of the theorem.
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