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We consider the nonlinear neutral functional differential equation [r(t)[x(t) + ∫ ba p(t,
µ)x(τ(t,µ))dµ](n−1)]′ + δ∫dc q(t,ξ)f (x(σ(t,ξ)))dξ = 0 with continuous arguments. We
will develop oscillatory and asymptotic properties of the solutions.
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1. Introduction. Recently, several authors [2, 3, 4, 5, 6, 7, 12, 13, 14] have studied

the oscillation theory of second-order and higher-order neutral functional differential

equations, in which the highest-order derivative of the unknown function is evaluated

both at the present state and at one or more past or future states. For some related

results, refer to [1, 8, 10, 11].

In this paper, we extend these results to nth-order nonlinear neutral equations with

continuous arguments

[
r(t)

[
x(t)+

∫ b
a
p(t,µ)x

(
τ(t,µ)

)
dµ
](n−1)

]′
+δ

∫ d
c
q(t,ξ)f

(
x
(
σ(t,ξ)

))
dξ = 0,

(1.1)

where δ = ∓1, t ≥ 0, and establish some new oscillatory criteria. Suppose that the

following conditions hold:

(a) r(t)∈ C([t0,∞),R), r(t)∈ C1, r(t) > 0, and
∫∞(dt/r(t))=∞;

(b) p(t,µ)∈ C([t0,∞)×[a,b],R), 0≤ p(t,µ);
(c) τ(t,µ)∈ C([t0,∞)×[a,b],R), τ(t,µ)≤ t and limt→∞minµ∈[a,b] τ(t,µ)=∞;

(d) q(t,ξ)∈ C([t0,∞)×[c,d],R) and q(t,ξ) > 0;

(e) f(x)∈ C(R,R) and xf(x) > 0 for x �= 0;

(f) σ(t,ξ)∈ C([t0,∞)×[c,d],R), and

lim
t→∞

min
ξ∈[c,d]

σ(t,ξ)=∞. (1.2)

A solution x(t) ∈ C[t0,∞) of (1.1) is called oscillatory if x(t) has arbitrarily large

zeros in [t0,∞), t0 > 0. Otherwise, x(t) is called nonoscillatory.
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2. Main results. We will prove the following lemma to be used in Theorem 2.2.

Lemma 2.1. Let x(t) be a nonoscillatory solution of (1.1) and let z(t) = x(t) +∫ b
a p(t,µ)x(τ(t,µ))dµ. Then, the following results hold:

(i) there exists a T > 0 such that for δ= 1,

z(t)z(n−1)(t) > 0, t ≥ T , (2.1)

and for δ=−1 either

z(t)z(n−1)(t) < 0, t ≥ T , or lim
t→∞

z(n−2)(t)=∞, (2.2)

(ii) if r ′(t) ≥ 0, then there exists an integer l, l ∈ {0,1, . . . ,n} with (−1)n−l−1δ = 1

such that

z(i)(t) > 0 on [T ,∞) for i= 0,1,2, . . . , l,

(−1)i−lz(i)(t) > 0 on [T ,∞) for i= l, l+1, . . . ,n
(2.3)

for some t ≥ T .

Proof. Let x(t) be an eventually positive solution of (1.1), say x(t) > 0 for t ≥
t0. Then, there exits a t1 ≥ t0 such that x(τ(t,µ)) and x(σ(t,ξ)) are also eventually

positive for t ≥ t1, ξ ∈ [c,d], and µ ∈ [a,b]. Since x(t) is eventually positive and p(t,µ)
is nonnegative, we have

z(t)= x(t)+
∫ b
a
p(t,µ)x

(
τ(t,µ)

)
dµ > 0 for t ≥ t1. (2.4)

(i) From (1.1), we have

δ
[
r(t)z(n−1)(t)

]′ = −
∫ d
c
q(t,ξ)f

(
x
(
σ(t,ξ)

))
dξ. (2.5)

Since q(t,ξ) > 0 and f is positive for t ≥ t1, we have δ[r(t)z(n−1)(t)]′ < 0. For δ = 1,

r(t)z(n−1)(t) is a decreasing function for t ≥ t1. Hence, we can have either

r(t)z(n−1)(t) > 0 for t ≥ t1 (2.6)

or

r(t)z(n−1)(t) < 0 for t ≥ t2 ≥ t1. (2.7)

We claim that (2.6) is satisfied for δ= 1. Suppose this is not the case, then we have (2.7).

Since r(t)z(n−1)(t) is decreasing,

r(t)z(n−1)(t)≤ r(t2)z(n−1)(t2)< 0 for t ≥ t2. (2.8)

Divide both sides of the last inequality by r(t) and integrate from t2 to t, respectively,

then we obtain

z(n−2)(t)−z(n−2)(t2)≤ r(t2)z(n−1)(t2)
∫ t
t2

dt
r(t)

< 0 for t ≥ t2. (2.9)
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Now, taking condition (a) into account we can see that z(n−2)(t)−z(n−2)(t2)→−∞ as

t →∞. That implies z(t)→ −∞, but this is a contradiction to z(t) > 0. Therefore, for

δ= 1,

r(t)z(n−1)(t) > 0 for t ≥ t1. (2.10)

Since both z(t) and r(t) are positive, we conclude that

z(t)z(n−1)(t) > 0. (2.11)

For δ=−1, r(t)z(n−1)(t) is increasing. Hence, either

r(t)z(n−1)(t) < 0 for t ≥ t1, (2.12)

or

r(t)z(n−1)(t) > 0 for t ≥ t2 ≥ t1. (2.13)

If (2.12) holds, we replace z(t) for r(t) to get

z(t)z(n−1)(t) < 0. (2.14)

If (2.13) holds, using the increasing nature of r(t)z(n−1)(t), we obtain

r(t)z(n−1)(t)≥ r(t2)z(n−1)(t2)> 0 for t ≥ t2. (2.15)

Divide both sides of (2.15) by r(t) and integrate from t2 to t, then we get

z(n−2)(t)−z(n−2)(t2)≥ r(t2)z(n−1)(t2)
∫ t
t2

dt
r(t)

> 0 for t ≥ t2. (2.16)

Taking condition (a) into account, it is not difficult to see that z(n−2)(t)→∞ as t →∞.

Hence, for δ=−1, either (2.14) holds or limt→∞z(n−2)(t)=∞.

(ii) From (1.1), we can see that

δ
[
r ′(t)z(n−1)(t)+r(t)z(n)(t)]=−

∫ d
c
q(t,ξ)f

(
x
(
σ(t,ξ)

))
dξ, (2.17)

and then

δz(n)(t)=−δr
′(t)z(n−1)(t)
r(t)

−
∫ d
c

q(t,ξ)f
(
x
(
σ(t,ξ)

))
dξ

r(t)
. (2.18)

Using (i) and (2.18), we obtain

δz(n)(t) < 0. (2.19)

Suppose that limt→∞z(n−2)(t) �= ∞ when δ = −1. Thus, because of the positive nature

of z(t) and (2.19), there exists an integer l, l ∈ {0,1, . . . ,n} with (−1)n−l−1δ = 1 by
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Kiguradze’s lemma [9] such that

z(i)(t) > 0 on [T ,∞) for i= 0,1,2, . . . , l,

(−1)i−lz(i)(t) > 0 on [T ,∞) for i= l, l+1, . . . ,n
(2.20)

for some t ≥ T .

If limt→∞z(n−2)(t)=∞ and δ=−1, z(n−1)(t) is eventually positive. Moreover, z(n)(t)
is also eventually positive by (2.19). But, this is the case l=n in (2.20). Thus, the proof

is complete.

Theorem 2.2. Let P(t) = ∫ ba p(t,µ)dµ < 1. Suppose that f is increasing and for all

constant k > 0,

∫∞∫ d
c
q(s,ξ)f

((
1−P(σ(s,ξ)))k)dξds =∞. (2.21)

(i) If δ= 1, then every solution x(t) of (1.1) is oscillatory when n is even, and every

solution x(t) of (1.1) is either oscillatory or satisfies

liminf
t→∞

|x(t)| = 0 (2.22)

when n is odd.

(ii) If δ=−1, then every solution x(t) of (1.1) is either oscillatory or else

lim
t→∞

∣∣x(t)∣∣=∞ or liminf
t→∞

∣∣x(t)∣∣= 0 (2.23)

when n is even, and every solution x(t) of (1.1) is either oscillatory or else

lim
t→∞

∣∣x(t)∣∣=∞ (2.24)

when n is odd.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0 for t ≥ t0. Let z(t)
be a function defined by

z(t)= x(t)+
∫ b
a
p(t,µ)x

(
τ(t,µ)

)
dµ. (2.25)

Recall from Lemma 2.1, if δ= 1, then (2.1) holds and if δ=−1, either z(t)z(n−1)(t) < 0

for t ≥ T or limt→∞z(n−2)(t)=∞.

Suppose that limt→∞z(n−2)(t) �= ∞ for δ = −1. Thus, there exist a t1 ≥ T and an

integer l∈ {0,1, . . . ,n−1} with (−1)n−l−1δ= 1 such that

z(i)(t) > 0, i= 0,1,2, . . . , l,

(−1)i−lz(i)(t) > 0, i= l, l+1, . . . ,n, t ≥ t1,
(2.26)

by Kiguradze’s lemma [9].
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Let n be even and δ = 1, or n be odd and δ = −1. Since (−1)n−l−1δ = (−1)−l−1 = 1,

then l is odd. Now, z(t) is increasing by (2.26). Therefore, we have

z(t)= x(t)+
∫ b
a
p(t,µ)x

(
τ(t,µ)

)
dµ ≤ x(t)+

∫ b
a
p(t,µ)z

(
τ(t,µ)

)
dµ, (2.27)

since x(t)≤ z(t). Since z(t) is increasing and τ(t,µ) < t, this will imply that

z(t)≤ x(t)+P(t)z(t). (2.28)

Thus, we have

(
1−P(t))z(t)≤ x(t). (2.29)

On the other hand, we have z(t) positive and increasing with limt→∞minξ∈[a,b] σ(t,ξ)=
∞. These imply that there exist a k > 0 and a t2 ≥ t1 such that

z
(
σ(t,ξ)

)≥ k for t ≥ t2. (2.30)

Integrating (1.1) from t2 to t, then we have

δr(t)z(n−1)(t)−δr(t2)z(n−1)(t2)+
∫ t
t2

∫ d
c
q(s,ξ)f

(
x
(
σ(s,ξ)

))
dξds = 0. (2.31)

By (2.29), (2.30), and increasing nature of f , we obtain

f
(
x
(
σ(t,ξ)

))≥ f ((1−P(σ(t,ξ)))k) for t ≥ t2. (2.32)

Substituting (2.32) into (2.31), we get

δr(t)z(n−1)(t)−δr(t2)z(n−1)(t2)+
∫ t
t2

∫ d
c
q(s,ξ)f

((
1−P(σ(s,ξ)))k)dξds ≤ 0.

(2.33)

From (2.21) and (2.33), we can conclude that δr(t)z(n−1)(t)→−∞ as t →∞. This con-

tradicts the following:

z(n−1)(t) > 0 for δ= 1,

z(n−1)(t) < 0 for δ=−1.
(2.34)

Thus, this proves thatx(t) is oscillatory when δ= 1 andn is even, orx(t) is either oscil-

latory or limt→∞z(n−2)(t)=∞whenδ=−1 andn is odd. Obviously, if limt→∞z(n−2)(t)=
∞, then limt→∞x(t)=∞.

Let n be odd and δ = 1, or n be even and δ = −1. If the integer l > 0, then we can

find the same conclusion as above. Let l= 0. Since

∫∞ ∫ d
c
q(s,ξ)dξds =∞,

lim
t→∞

δr(t)z(n−1)(t)= L≥ 0,
(2.35)
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and by using these two in (2.31), then it is easy to see that

lim
t→∞

inff
(
x(t)

)= 0 or lim
t→∞

infx(t)= 0. (2.36)

This completes the proof.

Example 2.3. Consider the following functional differential equation:

[
e−t/2

[
x(t)+

∫ 2

1

(
1−e−t−µ)x(t−µ)dµ]′′]′ −

∫ 5

3

(
e2+e−1

)(
e(t+ξ)/3

)
4e7/2(e−1)

x
(
t+ξ

6

)
dξ = 0

(2.37)

so that δ=−1, n= 3, r(t)= e−t/2, p(t,µ)= 1−e−t−µ , τ(t,µ)= t−µ, q(t,ξ)= (e2+e−
1)(e(t+ξ)/3)/4e7/2(e−1), f(x)= x, σ(t,ξ)= (t+ξ)/6 in (1.1).

We can easily see that the conditions of Theorem 2.2 are satisfied. Then, all solutions

of this problem are either oscillatory or tends to infinity as t goes to infinity. It is easy

to verify that x(t)= et is a solution of this problem.

Theorem 2.4. Let P(t) = ∫ ba p(t,µ)dµ < 1, and let f be increasing and r(t) = 1.

Suppose that

∫∞∫ d
c
sn−1q(s,ξ)f

((
1−P(σ(s,ξ)))k)dξds =∞ (2.38)

for every constant k > 0. Then, every bounded solution x(t) of (1.1) is oscillatory when

(−1)nδ= 1.

Proof. Let x(t) be a nonoscillatory solution of (1.1). We may assume that x(t) > 0

for t ≥ t0. Then, obviously there exists a t1 ≥ t0 such thatx(t),x(τ(t,µ)), andx(σ(t,ξ))
are positive for t ≥ t1, µ ∈ [a,b], and ξ ∈ [c,d]. Let z(t) = x(t) + ∫ ba p(t,
µ)x(τ(t,µ))dµ, then from (1.1), δz(n)(t) < 0 for t ≥ t1. Hence, for δ = 1, z(n−1)(t)
is decreasing and for δ=−1, z(n−1)(t) is increasing.

Since z(n)(t) < 0 for δ= 1, by Kiguradze’s lemma [9] there exists an integer l, 0≤ l≤
n−1 with n−l is odd and for t ≥ t1 such that

z(i)(t) > 0, i= 0,1, . . . , l,

(−1)n−i−1z(i)(t) > 0, i= l, l+1, . . . ,n−1.
(2.39)

For δ=−1, z(n)(t) > 0, by Kiguradze’s lemma [9] either

z(i)(t) > 0, i= 0,1, . . . ,n−1, (2.40)

or there exists an integer l, 0≤ l≤n−2 with n−l is even and for t ≥ t1 such that

z(i)(t) > 0, i= 0,1, . . . , l,

(−1)n−iz(i)(t) > 0, i= l, l+1, . . . ,n−1.
(2.41)

Since z(t) is bounded, l cannot be 2 for both cases. Then for (−1)nδ= 1, we have

(−1)i−1z(i)(t) > 0, i= 1,2, . . . ,n−1. (2.42)
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This shows that

lim
t→∞

z(i)(t)= 0 for i= 1,2, . . . ,n−1. (2.43)

Using (2.43) and integrating (1.1) n times from t to ∞ to find

(−1)nδ
[
z(∞)−z(t)]= 1

(n−1)!

∫∞
t

∫ d
c
(s−t)n−1q(s,ξ)f

(
x
(
σ(s,ξ)

))
dξds, (2.44)

where z(∞)= limt→∞z(t). On the other hand, from (2.42), z(t) is increasing for large t
and z(t) is positive, so we have

f
(
x
(
σ(t,ξ)

))≥ f ((1−P(σ(t,ξ)))k) for t ≥ t1, k > 0 (2.45)

as in the proof of Theorem 2.2. Thus, from (2.44) and (2.45), we have

z(∞)−z(t1)≥ 1
(n−1)!

∫∞
t1

∫ d
c
(s−t)n−1q(s,ξ)f

((
1−P(σ(s,ξ)))k)dξds. (2.46)

By (2.38), the right-hand side of the above inequality is ∞, therefore z(∞) = ∞ and

this contradicts the boundedness of z(t). Thus, every bounded solution x(t) of (1.1) is

oscillatory when (−1)nδ= 1.

Example 2.5. Consider the following functional differential equation:

[
x(t)+

∫ 2π

π

(
1−e−t)

4
x
(
t− µ

2

)
dµ
]′′
+
∫ 5π/2

π

(
1
2
−e−t

)
x(t+ξ)dξ = 0, t >− ln

(
1
2

)
(2.47)

so that δ= 1, n= 2, r(t)= 1, p(t,µ)= (1−e−t)/4, τ(t,µ)= t−µ/2, q(t,ξ)= 1/2−e−t ,
f(x)= x, σ(t,ξ)= (t+ξ) in (1.1).

We can easily see that the conditions of Theorem 2.4 are satisfied. Then, all bounded

solutions of this problem are oscillatory. It is easy to verify that x(t)= sint is a solution

of this problem.
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