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This note is concerned with Bayesian estimation of the transition probabilities of a binary
Markov chain observed from heterogeneous individuals. The model is founded on Jeffreys’
prior which allows for transition probabilities to be correlated. The Bayesian estimator is
approximated by means of Monte Carlo Markov chain (MCMC) techniques. The performance
of the Bayesian estimates is illustrated by analyzing a small simulated data set.
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1. Introduction. Markov chain models have been useful for the analysis of longi-

tudinal data in many areas of research. In ecology, the model was used to study the

migration behavior of animal population from capture-recapture data [2]; in pathology,

the model was useful to describe the evolution of certain viral or infectious diseases

[3, 6]; in sociology, the model was used for the modeling of the behavior of smoking

population [5].

In most applications, these models do not take into account possible correlations

between different rows of the transition matrix. As the observations are dependent, it

seems more reasonable to consider prior distributions which incorporate a certain type

of dependence between the components of the parameters.

In this note, we explore the Bayesian model, for binary Markov chains, using Jeffreys’

prior which has some advantages: the model has no extra parameters and permits a

structure of correlation between the transition probabilities.

In the sequel, X = (X0, . . . ,Xn) denotes a homogenous and stationary Markov chain

with transition probabilities

pij = P
(
Xt+1 = j |Xt = i

)
, i,j = 0,1. (1.1)

The equilibrium probability of observing a 1, which we denote byp, represents the long-

run proportion of time when the Markov chain is in state 1. From [1], this probability

is given by p = p01/(p01+p10).
Letting x = (x0, . . . ,xn) denote a fully observed realization of X, conditionally to

X0 = 1, the distribution of the observed sequence is then

f
(
x | x0 = 1,θ

)= (1−p01
)n00pn01

01 p
n10
10

(
1−p10

)n11 , (1.2)

where nij is the number of one-step transition from state i to state j until time n and

θ = (p01,p10)∈ ]0,1[2 is the unknown parameter which is the aim of this inference.
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Using the distribution (1.2), the maximum likelihood estimates (MLEs) of p01 and p10

are

p̂01 = n01

n00+n01
, p̂10 = n10

n10+n11
, (1.3)

and the MLE of p is p̂ = p̂01/(p̂01+ p̂10).
The remainder of the note is organized as follows. In the next section, we calculate

Jeffreys’ prior and the correspondent posterior distribution. Next, we describe the way

to approximate the Bayesian estimator via the independent Metropolis-Hasting (IMH)

algorithm. Finally, we develop a numerical study by simulation in order to compare the

Bayesian estimates with the MLEs.

2. Jeffreys’ prior. The goal here is to determine Jeffreys’ prior (see, e.g., [4]) and its

correspondent posterior distribution. Jeffreys’ prior is obtained by taking the determi-

nant of the information matrix which is defined according to Fisher as

�n(θ)= E
[
− ∂

2ln
(
θ | x0 = 1

)
∂pij∂pkh

]
, (2.1)

where ln(θ | x0 = 1) is the logarithm function of (1.2). To obtain (2.1), we take the

second derivates of ln(θ | x0 = 1), and then take the expectation with negative sign to

yield

E
[
− ∂

2ln
(
θ | x0 = 1

)
∂p2

01

]
= E

(
n01 |X0 = 1

)
p2

01

+ E
(
n00 |X0 = 1

)
(
1−p01

)2 ,

E
[
− ∂

2ln
(
θ | x0 = 1

)
∂p2

10

]
= E

(
n10 |X0 = 1

)
p2

10

+ E
(
n11 |X0 = 1

)
(
1−p10

)2 .

(2.2)

Considering the expectation of the sufficient statistics (n00,n01,n10,n11), we have

E
(
nij |X0 = 1

)= n∑
t=1

P
(
Xt−1 = i,Xt = j |X0 = 1

)

=
n∑
t=1

P
(
Xt = j |Xt−1 = i

)
P
(
Xt−1 = i |X0 = 1

)

= pij
n∑
t=1

p(t−1)
1i ,

(2.3)

where p(k)ij denotes the k-step transition probabilities. By the Chapman-Kolmogorov

equation [1], these probabilities may be written in terms of the one-step transition

probabilities pij as
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pk00 =
(
p01+p10

)−1
[
p10+p01

(
1−p01−p10

)k],
pk01 =

(
p01+p10

)−1
[
p01−p01

(
1−p01−p10

)k],
pk10 =

(
p01+p10

)−1
[
p10−p10

(
1−p01−p10

)k],
pk11 =

(
p01+p10

)−1
[
p01+p10

(
1−p01−p10

)k].

(2.4)

Then, we deduce that

E
(
n01 |X0 = 1

)= p01
(
p01+p10

)−1

[
np10−p10

1−(1−p01−p10
)n

p01+p10

]
,

E
(
n00 |X0 = 1

)= p00
(
p01+p10

)−1

[
np10−p10

1−(1−p01−p10
)n

p01+p10

]
,

E
(
n10 |X0 = 1

)= p10
(
p01+p10

)−1

[
np01+p10

1−(1−p01−p10
)n

p01+p10

]
,

E
(
n11 |X0 = 1

)= p11
(
p01+p10

)−1

[
np01+p10

1−(1−p01−p10
)n

p01+p10

]
.

(2.5)

Hence, the Fisher information matrix can be written as

�n(θ)=
(
A11 0

0 A22

)
, (2.6)

where

A11 =
p10

[
n
(
p01+p10

)−1+(1−p01−p10
)n]

p01
(
1−p01

)(
p01+p10

)2 ,

A22 =
np01

(
p01+p10

)+p10

[
1−(1−p10−p01

)n]
p10

(
1−p10

)(
p10+p01

)2 .

(2.7)

Since Jeffreys’ prior π(θ) is defined by

π(θ)∝ [
det

(
�n(θ)

)]1/2, (2.8)

where det(·) denotes the determinant, it follows that

π(θ)∝
[
n
(
p01+p10

)−1+(1−p01−p10
)n]1/2

×
[
np01

(
p01+p10

)+p10
(
1−p01−p10

)n]1/2

×p−1/2
01

(
1−p01

)−1/2(
1−p10

)−1/2(p01+p10
)−2,

(2.9)
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and the posterior density is

π(θ | x)∝
[
n
(
p01+p10

)−1+(1−p01−p10
)n]1/2

×
[
np01

(
p01+p10

)+p10
(
1−p01−p10

)n]1/2

×pn01−1/2
01

(
1−p01

)n00−1/2pn10
10

(
1−p10

)n11−1/2(p01+p10
)−2.

(2.10)

The main advantage of the density (2.9) is that it provides a convenient analysis

when the transition probabilities may be correlated. Moreover, this prior has no extra

parameters and it is a conjugate distribution for f(x | x0 = 1,θ) given by (1.2). Also

notice that for the particular case p01+p10 = 1 (independent case), Jeffreys’ prior given

by (2.9) is just the beta distribution �e(1/2,1/2).

3. Bayesian estimation of transition probabilities. Under the squared error loss, we

know that the Bayes estimator coincides with the posterior mean, that is,

E(θ | x)=
∫
θπ(θ | x)dθ. (3.1)

In the case of Jeffreys’ prior, the above integral is difficult to calculate, so we propose

an approximation of it by means of a Monte Carlo Markov chain (MCMC) algorithm;

namely, the IMH algorithm (see [7]).

The fundamental idea behind these algorithms is to construct a homogenous and

ergodic Markov chain (θ(l)) with stationary measure π(θ | x). For m0 large enough,

θ(m0) is roughly distributed from π(θ | x) and the sample θ(m0),θ(m0+1), . . . can be

used to derive the posterior means. For instance, the Ergodic theorem (cf. [7]) justifies

the approximation of the integral (3.1) by the empirical average

1
m

m∑
l=1

θ(m0+l) (3.2)

in the sense that (3.2) is converging to the integral (3.1) for almost every realization

of the chain (θ(l)) under minimal conditions. Next, we give the description of the IMH

algorithm.

Given θ(0) = (p(0)01 ,p
(0)
10 ), the IMH algorithm at step l proceeds as follows.

Step 1. Generate y(l) = (y(l)1 ,y(l)2 )∼U[0,1]×U[0,1].
Step 2. Take

θ(l+1) =


y(l) with probability σ(θ(l),y(l)),

θ(l) with probability 1−σ(θ(l),y(l)),
(3.3)

where

(i) σ(θ(l),y(l))=min(π(y(l) | x)/π(θ(l) | x),1),
(ii) π(· | x) is the posterior density given by (2.10).
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As convergence assessments, we use the cumulated sums method (cf. [7]) in the sense

that a necessary condition for convergence is the stabilization of the empirical average

(3.2). Also, this method of convergence control gives the minimal value m of iterations

that provides the approximation of the integral (3.1) by the empirical average (3.2).

4. Numerical study. In this section, we illustrate the performance of the Bayesian

estimation based on Jeffreys’ prior by analyzing a small simulated data set.

On the one hand, the simulation study compares the proposed Bayesian estimators

with the MLEs. On the other hand, it compares the two estimators for independently-

chosen transition probabilities in both cases of the beta distribution �e(1/2,1/2) and

the uniform distribution.

We recall that under the beta prior distribution

π
(
p01,p10

)∝ p−1/2
10

(
1−p10

)−1/2p−1/2
01

(
1−p01

)−1/2, (4.1)

the Bayesian estimator is calculated explicitly by

p̃01 = n01+1/2
n00+n01+1

, p̃10 = n10+1/2
n10+n11+1

. (4.2)

The Bayesian solution, using the uniform prior distribution

π
(
p01,p10

)= I[0,1](p10
)×I[0,1](p01

)
, (4.3)

is given by

p̃01 = n01+1
n00+n01+2

, p̃10 = n10+1
n10+n11+2

. (4.4)

4.1. A simulated data set. Table 4.1 displays a data set consisting of 20 indepen-

dent Markov chains each with 21 observations; obviously, the chains may be of differing

lengths. To generate this data set, transition probabilities for each chain are first drawn

from Jeffreys’ prior given by (2.9) by using the IMH algorithm (see Section 3). We as-

sume, without loss of generality, that the first state X0, in each chain, is equal to 1. The

remaining observations in each chain are drawn in succession from Bernoulli distribu-

tion with successive probabilities given by the appropriate transition probabilities.

We recall that Jeffreys’ prior permits a certain type of dependence between the ran-

dom vectors P10 and P01. Indeed, P10 and P01 are correlated with correlation coefficient

ρ = E
(
P10P01

)−E(P10
)
E
(
P01

)
σ10σ01

, (4.5)

where σ10 (resp., σ01) is the standard deviation of P10 (resp., P01).
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To approximate this coefficient, we use the sample θ(1), . . . ,θ(m), drawn from Jeffreys’

prior thanks to the IMH algorithm. Therefore, an approximation of ρ is

ρ̃ = m
∑m
l=1p

(l)
10p

(l)
01 −

∑m
l=1p

(l)
10

∑m
l=1p

(l)
01√

m
∑m
l=1

(
p(l)10

)2−
(∑m

l=1p
(l)
10

)2
√
m
∑m
l=1

(
p(l)01

)2−
(∑m

l=1p
(l)
01

)2
. (4.6)

Numerically, we have ρ̃ = 0.36.

To obtain the Bayesian estimator p̃ij , based on Jeffreys’ prior, of the transition proba-

bilities, given each chain, we apply the IMH algorithm to the posterior distribution given

by (2.10). The MLE p̂ij is calculated from (1.3). The Bayesian estimator p̃ij founded on

the beta distribution (resp., the uniform distribution) is obtained from (4.2) (resp., from

(4.4)). The results of this experiment are provided in Table 4.1.

4.2. Simulation results. Table 4.1 shows the actual transition probabilities pij from

the simulation, the MLE p̂ij , and the Bayesian estimates p̃ij of the transition probabili-

ties for each chain.

Notice that for many chains, the MLE takes extreme values 0 or 1; this is explained

by the restricted size of the simulated sample. In addition, for the chain no. 8, p̂01 does

not exist because the chain never entered state 0, whereas the Bayesian estimates do

not suffer from these problems because a common prior distribution is assumed.

Also shown in Table 4.1 are the mean actual and the estimated transition probabil-

ities, as well as mean square errors (MSE) for the estimates. The MSE are calculated

by averaging the squared difference between the estimated probability and the actual

probability used in simulation. Notice that the Bayes posterior means perform better

than the MLEs. In particular, the MSE of the MLEs is clearly higher than that correspond-

ing to the Bayes estimates.

This study also illustrates the usefulness of modeling the dependence among the

transition probabilities. In particular, the resulting posterior distributions, under the

assumption that P10 and P01 are independent, may not be accurate. Indeed, using the

beta prior distribution (resp., the uniform prior distribution), the resulting changes in

the posterior means range from −0.1594 to 0.1909 (resp., from −0.0844 to 0.2574)

for p̃10 and from −0.1588 to 0.1445 (resp., from −0.1588 to 0.1098) for p̃01. More-

over, the MSEs corresponding to p̃10 and p̃01 become 0.0122 and 0.0096 (resp., 0.0131

and 0.0101). These are slightly higher than the results obtained by modeling the de-

pendence. All these results lead to privilege the Bayesian solution based on Jeffreys’

prior.

For the previous experiment, a Pascal program is written to run the transition proba-

bilities. The Bayesian estimator p̃ij , founded on Jeffreys’ prior, is obtained from a single

chain including 104 iterations.

Figures 4.1 and 4.2 give an example of the convergence evaluation (see Section 3).

Figure 4.1 (resp., Figure 4.2) describes the convergence of the estimator p̃10 (resp., p̃01)

as the numberm of iterations increases. The final values are 0.4073 and 0.1742 for p̃10

and p̃01, respectively.
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Figure 4.1. Convergence of p̃10.
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Figure 4.2. Convergence of p̃01.

5. Conclusion. In this note, we studied the Bayesian estimation for the transition

probabilities of a binary Markov chain under Jeffreys’ prior distribution. As shown,

this prior has many advantages: it permits a certain type of dependence between the
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components of the parameter. The absence of extra parameter in this prior is of great

interest because we do not need to do more extra estimation. A numerical study by

simulation is also carried out to evaluate the performance of the Bayesian estimates

compared to the MLEs. The following stage of this note will be to generalize the sug-

gested method in the case of missing data.
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