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ON CHUNG-TEICHER TYPE STRONG LAW FOR ARRAYS
OF VECTOR-VALUED RANDOM VARIABLES
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We study the equivalence between the weak and strong laws of large numbers for arrays of
row-wise independent random elements with values in a Banach space %. The conditions
under which this equivalence holds are of the Chung or Chung-Teicher types. These con-
ditions are expressed in terms of convergence of specific series and o(1) requirements on
specific weighted row-wise sums. Moreover, there are not any conditions assumed on the
geometry of the underlying Banach space.
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Let (Q,%,P) be a probability space and let & be a real separable Banach space with
norm | - ||. A strongly measurable transformation from Q to % is said to be a %-valued
random variable or a random element. If E|| X|| < o, then the expected value is defined
by the Bochner integral.

Let {X;,, n = 1} be a sequence of %-valued random variables. Then {X,, n > 1} is
said to obey the strong law of large numbers (SLLN) if there exist sequences of real
numbers {a,, n > 1} and {b,, n > 1} such that

n
> aj(Xj—bj) —0 as.,n— . (1)
j=1

Sufficient conditions for SLLN use very often the geometry of a Banach space, that
is, they assume that % is a special-type space, for instance % is of Rademacher type p,
l<p=<?2

The space % is of Rademacher type p if there exists a positive constant C such that

E

0
> enxn
n=1

14 00
<C > |xall” )
n=1

for each (x1,x2,...) € C(B), where {&,, n > 1} is a Bernoulli sequence, that is, £,,n > 1,
are i.i.d. random variables and P[&,, = 1] =Pl&, =-1]1=1/2,C(B) = {(x1,X>2,...) EB*:
> _1 EnXp converges in probability}, B® = BXBXBX -« .

The sufficient conditions for SLLN for random elements taking value in a space of
Rademacher type p were presented by Woyczynski [15], Hoffmann-Jergensen and Pisier
[6], Kuczmaszewska and Szynal [8], and Adler et al. [1].
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The type of Marcinkiewicz-Zygmunt SLLN provides that for 1 < & < 2 and a sequence
{Xyn, n>1} of i.i.d. B-valued random variables,

=

1

nl/«
i

(Xi—EX;) —0 as.,n— o, (3)
1

if and only if E|| X, || < o and the Banach space % is of a Rademacher type p forx < p <2
(cf. [15]).

The classical result of Hoffmann-Jergensen and Pisier [6] proved that the assumption
that a Banach space % is the space of Rademacher type p, 1 < p < 2, is equivalent to
the fact that the condition

00

p
nr

n=1

implies SLLN for a sequence of %-valued independent random variables {X;,, n > 1}
with EX,, =0, n > 1.

In view of many statistical applications, it is important to consider the array-type
SLLN.

Let {k,, m > 1} be a strictly increasing sequence of positive integers. An array of
%B-valued random variables {X,;, 1 <i < k,, n > 1} obeys the general array type of
SLLN if

kn
Zani(xni_cni) — 0 as.,n— oo, (5)

i=1

where {a,;, 1 <i<ky, n>1}and {cn;, 1 <i<ky, n>1} are suitable arrays of con-
stants (weights) and %-valued elements, respectively, and 0 denotes the zero-element
in 9.

Hu and Taylor [7] considered SLLN for arrays of row-wise independent random vari-
ables {X,;, 1 <i<n,n=>1}.

Row-wise independence means that the random elements within each row are inde-
pendent but no independence is assumed between rows.

In [3] Bozorgnia et al. obtained the Chung-type SLLN for arrays of row-wise indepen-
dent random elements in a separable Banach space of Rademacher type p, 1 <p < 2.
They proved the following result.

THEOREM 1. Let{X,;, 1 <i<mn,n =1} bean array of row-wise independent random
elements in a separable Banach space of Rademacher type p, 1 <p <2. Let  :R - R
be a positive, even, and continuous function such that

e(xl) ,  @xl)
Ix|m 7 x|l

Nooas x| 7, (6)

for some integer v > 2.
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Then the conditions

EX,i=0, 1l<i<n,n=>1,

rk
00 n 0 n
E@ ([ Xnil) (\ Xpi p) (7)
OO’ — < OO’
g l:zl @ (an) g ; an
for some positive integer k, imply
1 n
an D> Xni—0 as,n— o, (8)

i=1

where {a,, n = 1} is a sequence of positive increasing real numbers such that

,P_n}o Ay = oo. 9)

This theorem generalizes Hu and Taylor’s result (cf. [7]) on the case of &B-valued
random variables {X;;, 1 <i <n, n > 1} taking value in a Banach space of Rademacher
type p. Moreover, the assumptions of the function @ have some relationships with the
geometric condition Rademacher type p of the Banach space.

Some results which consider the problem of equivalence between weak law of large
numbers (WLLN) and SLLN for a sequence {X,,, n > 1} of independent %-valued random
variables can be found in Kuelbs and Zinn [10], de Acosta [4], Etemadi [5], Mikosch and
NorvaiSa [11, 12], Wang et al. [14], and Kuczmaszewska and Szynal [9].

Now, we recall some definitions and a lemma which will be used in the paper.

DEFINITION 2. A double array {a,;, i = 1, n = 1} of real numbers is said to be a
Toeplitz array if limy, . an; = 0 for each i > 1 and X7 |an;| < C for all n > 1, where
C>0.

In further consideration, we need an extension of the concept of stochastic domina-
tion by a random variable to an array of %-valued random variables.

Anarray {Xy;, i = 1, n > 1} of B-valued random variables is stochastically dominated
by the random element X if there exists a constant D > 0 such that

P[||Xni|| > x] < DP|D||X]| > x| (10)

forallx>0,i>1,and n > 1.
We also need some inequalities which will be very important in our consideration.
The following lemma presents one of them.

LEMMA 3 (cf. Yurinskii [16]). Let X1, X>,..., X, be independent B-valued random va-
riables with E||X;|| < 0, i = 1,2,...,n. Let F be a o -field generated by (X1,Xo,...,Xy),
k=1,2,...,n, and let Fo = {Q,D}. Then for 1 <k <m and Sy, = X", X;,

|ECUISll|F%) = E([[Sall | Fr-1) | < |I1Xk][ + E[[ X an

THEOREM 4. Let {Xy,, 1 <i <ky,, n =1} be an array of row-wise independent %-
valued random variables withEX,; =0 forall1 <i < k,,, n > 1, and for some increasing
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sequence {ky,, n > 1} of positive integers. Let @,;: R — R, and @i : R — R, be positive,
even, and continuous functions, which for constants ot,; > 1, 0 < Bni < 2, Ky > 0, and
My > 0,1 <1i<ky, n=>1, satisfy the following conditions:

3l = x| = 2ol g, ullel), 12)
|X1’ ni |X2~ ni
Bm’ Bni

x| < x| = 24 x| 13)

o) =My ()

Suppose that for some array {ani, (1 <i<ky, n>1)} of nonzero reals and k > 1/2,

iE(ZM W) < o, (14)
n=1 ni

i=1 Lpnl
o kn
Z ZP[HXniH = Cpi] < o0, (15)
n=1i=1

for some array {cni, 1 <i<ky, n =1} of positive numbers such that

3

o E@ui(||1X
S STK2, - i () P2 UEnill) (16)
n=1i=1 (pm(anl)
Then
kn
> aniXni—— 0, n— oo, (17)
i-1
if and only if
kn
> aniXni — 0 as,n— . (18)
i=1
PROOF. Let X;; = Xpil [ Xnill < la,{|]and X}, = X;,, —EX,;.
Now we introduce the following notation:
kn kn
Sn= Z aniXni, Sy = Z aniXy;. (19)

i=1 i=1

Note that using this notation, condition (12) on the Borel functions @,;, and assump-
tions (15) and (16), we have

(o) 00 kn
z Sn:/éS zP|: ZananiI[||Xni||> |0L;u1 ] >E:|
n=1 n=1 i=1
o  kn
< 20 2 PUXnallI [l Xnil| > @i [1# 0]
n=1i=1

I
Me
MEF

P[||Xnill > |ayi|]

N
I
—
-
Il
—
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= 5 S BlIl > Lot 1-1110) = e

o kn

+ > D EI|Xnill > [ant [1-I[]| Xnil| < cnil

n=1i=1

=
=

Me

=<

P[HXniH > Cpi]
1

o kn 2
) ZE{((”‘;‘”)) 1%l > ! ]-I[IIXm||<cni]}

n=1

~
I

| @i

n=1i=1
o b o E(Pm ||Xm||
< > > PIXnill = eni] + D z - @ni(Cni) —AE UL < oo,
n=1i=1 n=1i=1 nl(anl)
(20)
Thus the two sequences {S,, n > 1} and {S,,, n > 1} are equivalent.
Now we must prove that
E|lSyll — 0, n— co. (21)
First we will show that
151l = El[Sp]| =0, 1 — co. (22)

Using the Markov inequality, the Marcinkiewicz-Zygmunt inequality in its Banach space
version (cf. de Acosta [4] or Berger [2]), and assumptions (12) and (14), for any € > 0,
we get

’ ’ - ’ 4 Zk
PLISII=ElISal|| > €] < e 2E[ (IS5 | - EllS, |

kn k n x| k
<& kALE ( > ||ava;”.{|2) =& 2 ALE ( > )

i=1 n

ni 4 2=Bni k
:E_ZkAkE(Z Xl ™ 11Xl )

; _ 2—Bni
i:1(|ani )Bm (Mn} )

k
Ceta E(ZMW—"”” ] )

i-1 ni (A

(23)

ZkA E Mnl(llnl HX”lH _0(1).
(lzl ll’m( nl)

Thus we conclude that (22) holds and, together with (17) and the equivalence between
{Sn, n =1} and {S,,, n =1}, gives (21).
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Now, we will show that [|S, || — 0 a.s., as n — co. By (21) it is enough to prove that
[1S01| = E||Sy,]] — 0 a.s., n— o, (24)

As before, using the Markov inequality, the Marcinkiewicz-Zygmunt inequality, condi-
tion (13), and assumption (14), we have

S PLIISHI—ElIsll] > €] = &2 S E[[Isy]] - Ells, ||

n=1 n=1
k
—ZkA ZE(Z ||X1’Ll|| )
n=1 i=1 m)
2
_ ety ig(kz" Xall” Xl ) =
ni Z ni
nol i (lag; )B (la,! o’

k
2kAk Z E( Z My Wi |(|X7nl|)| ) < 00,

n=1 i=1 Ynila

Hence, by the Borel-Cantelli lemma, we obtain (24), which, by the equivalence between
{Sy, n>=1} and {S,,, n > 1}, completes the proof. d

Note that if we put in Theorem 4 @,,; = @ and ¢,,; = ¢, where  :R - R,, ¢ :R - R,
are positive, even, and continuous functions such that

@(x) ,  wlix)

Xl 7 TR s ixls (26)

for some x> 1 and 0 < B < 2, we get the following result.

COROLLARY 5. Let {Xyi, 1 <i<ky, n=>1} be an array of row-wise independent %-
valued random variables with EX,; =0 for all 1 <i < k,, n > 1, and for any increasing
sequence {ky,, n > 1} of positive integers. Let @ : R — R, and ¢ : R — R, be positive,
even, and continuous functions satisfying (26) for some x> 1 and 0 < § < 2.

Suppose that for some array {ani, 1 <i<ky, n> 1} of nonzero reals and k > 1/2,

[ k o kn
X .
Z ZW(H ?;H) <o, S S P|IXnill = cni] < oo, 27)
=T wiay) n=1i-1
for some array {c,i, (1 <i<1, n=1)} of positive numbers such that
© kn E X
Z Z Cni) L_"ll” < oo, (28)
== p(ay;)

Then (17) is equivalent to (18).
Putting Y (x) = |x|?, 1 <p < B <2,and cy; = Ia;u1 |, we obtain the following result for
a separable Banach space of Rademacher type p.
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COROLLARY 6. Let {Xy;, 1 <i<ky,, n>1} be an array of row-wise independent -
valued random variables in a separable Banach space of Rademacher typep,1 <p < <
2, Wwith EX,; =0 forall 1 <i<ky, n>1, and for some increasing sequence {k,, n > 1}
of positive integers. Let @ : R — R be a positive, even, and continuous function such that

s as|x| 7, (29)

for some x = 1.
Then, for some array {ani, (1 <1i < ky, n> 1)} of nonzero reals and some integer
k > 1, the conditions

= [ gl |

< 0 (31)

imply (18).

PROOF. Putting M,; = K;;; = 1 and using (20), we see that it is enough to show that
Theorem 4 holds for {X,;, 1 <i<ky,, n>1} and k > 2.
Indeed, we have

k
0 kn 7
S p( Il
=\ 5 lan l”
n= i . . s (32)
0 ’ 1 7 2 4 n
< z Z*< k )E(IIXMH”) E(HMII’”) ___E(HXnkn” ) ‘
= 1P “1|P -1 (P )
n=1 StyeeesSkn |an1| |an2| |ankn

that Z’ii’l s; = k. Choose n sufficiently large so that k,, > k. Let m = m(sy,S2,..., Sk, ) be
anumber of s; # 0. We see that m takes all the values from the set {1,2,...,k}. Changing
the order in our sum, we can express the right-hand side of (32) in the following form:

Si Si Si
ShS ( k )E(||x;i1|\”> ”E(nx;izn”) 12___E(||x,;im||”) "
n=1m=1 }sijskn, SigseeesSim |a;ull Y |a;ulg g |a;ulm !

0 X’v 14 X,' 14 X’_ 14
3 E(n wal” Y niznl))___E(n wll
n=1 | 1<ij<ip<---<ip<kn |ani1 |am’2 |anik
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L x| *lin
*(51,..6,51',") H E H n?h“”’

h=ls;, =2 ‘ Anij,

where L = number of s; > 2, N = number of 5; = 1, and {s;,,...,Si,, } = {si‘ih,h= 1,...,L}uU
{Sihj’sihj :11h:11---1N}1 {Sijh'h:1""’L}m{5ihj'sihj :1,h:1,...,N}:®.
But

’ p ’ p
k
H mJ H ni; HXnij - EH ni; P
—I5 gz —Ip for 1 <ij<kp, (34)
‘ anlj ‘ anlj ‘ anij i=1 Olva

so the right-hand side of (33) can be estimated as follows:

5 [(Bemin) (3’ (S

o p k
sCZ(ZEX ||’p) <o

(35)

Therefore, assumption (14) of Theorem 4 holds. Moreover, by (31), we get (15) and (16)
of Theorem 4. We also note that if % is a Banach space of Rademacher type p, 1 < p < 2,
we have the following estimation:

kn

(JIx
P[HSHHZS]557PE||Sn||pSEZEHananin & pz || n|l||’:7 =0(1). (36)
i=1 Ani
This fact, together with (20), completes the proof. O

Now we present the result which gives the sufficient conditions for the equivalence
of (17) and (18) in the Chung-Teicher terms (cf. Teicher [13]).

THEOREM 7. Let {Xy,, 1 <i <ky,, n =1} be an array of row-wise independent %-
valued random variables with EX,;; =0 for all 1 <i < ky,, n = 1, and for some increas-
ing sequence {k,, n > 1} of positive integers. Let i : R — R, be positive, even, and
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continuous functions which, for constants ctni > 1, 0 < Bn; < 2, Kpi > 0, and My; > 0,
n=1,ix=>1, satisfy (12) and

Bni Bni
X X
|x1| < |x2| = al™ g, 1] 37)
(pni“Xl') (pni(~x2|)
Suppose that for some array {ani, (1 <i<kyu, n=1)} of nonzero reals,
o k
E X E (X0
Z ZMm Pni || m|| ZMnj (an(H _TiJH) < oo, (38)
n=1i=2 P(pnl( m) j=1 (Pnj(anj)
kn , ,
S My EPnillXoull) _ g (39)
i (pni(ani)
k
n E®ui (|| Xni
S K PP WXnil) _ (40)
: Pnilay;)
00 kn
> D P[lIXnill = cni] < oo, 41)
n=1i=1
for some array {cni, i =1, n = 1} of positive numbers such that
o kn
E X
Z Z @i ( Cm)w < 00, (42)
n=1i=1 (pm(am)
o kn
E X
Z zK - @ni(cni) w < 00, (43)
n=1i=1 (pm(anl)

Then (17) is equivalent to (18).

PROOF. Let X/, = Xpil [ Xnill < la; |1, X¥ = X, —EX) ., Si = 5% a,, X and S} =

Zl 1 aniX,;. By (20), we state that {S,, n =1} and {Sn, n > 1} are equivalent.
Moreover, we have by (40)

kn
> aniEXn [||Xnil| < |ay! |]
i=1

kn

< 2> lani| NEXnid [|IXnill < [azi |1
i=1

kn

= > ani| - NEXnid [|| Xnill > [ayi [l
i-1
kn _

= ElXnil [ Xnill > [a5i ]

st | asi

ZE||Xm||D(mI[||Xm||> la, ]

®ni
| am’

(44)

9 Epui(lXul)
= 2K =g ) oW
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Now we define
Yui = E(1S511|Fni) = EU[S1] | Fniz1), (45)
where F,; = 0 (X5, X;ks,..., X,5;) and Fpo = {D,Q}. Then we have
kn
IS5l =EllSxll = > Yo (46)
i=1

and we note that {Y,;, 1 <i < k,} is a sequence of martingale differences for a fixed n.
Now we are going to prove that

E[|Sy]| —0, n— . 47)
First we will show that
1S5 El[S; ]| <=0, n— oo (48)
Using Chebyshev’s inequality, Lemma 3, and assumption (39), we get, for any € > 0,

P[I[ISyll-Ellsz] > €]

i=1

< e 2E(|IsyII-EllsilD® = 52E<anYni) =7 anE(qu-)

S ko (49)
- 2 - ’ 2
<€ Y E(llani Xl + Ellani X)) < 8672 . a2 E|| X, |
i=1 i=1
kn 7 ||Bni 7 112=Bni kn ,
Xni Xni E@ui(||X),;
:85*225” f;”BM A ﬁHZ*ﬁm‘ <8¢? ZMMM =o(1).
i=1 |a“n1| |ani i=1 (pm Ani

Thus, we conclude that (48) holds and, together with (17), (20), and (44), gives (47).
Now we want to show that [|S;f|| — 0 a.s., as n — co.
By (47) it is enough to prove that
1S3l = E[ISi]| — 0 as,n— oco. (50)

Taking into account the identity

kn kn i-1
2
(ISKII=ENSIN" = 2 YR +2 3 Yni 3. Y, G
i=1 i=2 Jj=1

and using the notation

Zni = Y2I[||Xnil] < cni] = E(Y2I[||Xnil] < cnil | Fnic1), 1<1i<kn, (52)
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we have, by Chebyshev’s inequality, Lemma 3, and assumption (42),
00 k
S|
n=1

n o kn 2 o kn
> Zni| > e] <e?> E(sz> =e2> Y E(Z2)

i=1 n=1 = n=1i=1
o kn
<C-e2% Y EWnd[lXnill < cnil)
n=1i=1
) oo kn 4
<C-e% > > EllaniXp | T Xnill < cnil (53)
n=1i=1
Lo IIXn 11X, Il4 Hni
<C-¢ Z zE B 128, ||Xni||<cm‘]
n=1i=1 | m | m
0o kn
_ E (||x
<C-¢ 2 z ZMni'(pni(Cm) P || m”
n=1i=1 (pm( nl)
Hence, by the Borel-Cantelli Lemma, we obtain
n kn
DY Xnil| < cni] = D E(Y2 I Xnill < cnil |Fri-1) — 0 as, n— o. (54)
i i=1
Using Lemma 3, we can note by assumption (39) that
ZE A1 Xnil| < cnil | Fni-1)
kn B 2—Bni
X nt X ni
<85 E{flanxul?) < ZE(II ™ Bm) 55)
i=1 \ m‘| |0l
k
n E@,i (|| Xni
< ZMni' @i (]| jlttH) —0(1),
i1 Pni(ay;)
which, together with (54), allows us to state that
SY2I||Xnill < cni] — 0 as, n — oo, (56)
To prove that
>V —0 as,n— o, (57)

we only need to show that

Z I[||Xnil| = cni] — 0 a.s., n — co. (58)
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Indeed, by (41) and Lemma 3, we have

gp[ .

aid [ Xnill = cni]

et Z E Z A Xnill = eni] | < C Z Z HameH I[|[Xnill = cnil (59)
© kn oo kpn
<C > D EI|Xnill = cnil =€ D > P[||Xnil| = cni] < oo,
n=1i=1 n=1i=1

and, by the Borel-Cantelli Lemma, we get (57). To close this proof, we must show that

kn i-1
D Yni D Ynj—0 as.,n— oo. (60)
i=2 j=1

Using the fact that {Y;; 23;11 Ynj, 2 <1< ky} is a sequence of martingale differences
for each n, we have, by Chebyshev’s inequality, Lemma 3, and assumption (38),

SHIbENE

. 2
i—1
cet S S| (lanx *i||+E||amx:i||>2-(zym)
2 j=1

n=1i=

Vl

i-1
ZYmXYnJ

i=2

o kn i-1
Z ZE(HamXiiill+E||amX;“i||)2- ZE(Ynzj) (61)

<cy Z llaniX.i|? ZEHanJXnJH cy ZM,“M
n=1i=2 j=1 n=1i=2 @nl(ani)

ii Eq@an, |XnJH

j=1 (pTLJ( 1) '

which, together with the Borel-Cantelli Lemma, implies (60).
Thus, we have proved that

Z ani(X m) — 0 as.,n— . (62)
But {2 I aniX;;, n=1} and {Z’fﬁl aniXni, n = 1} are equivalent and (44) holds, so we

get (18). O

Now we consider an array {Xy;, i > 1, n > 1} of independent random elements which
are stochastically dominated by a random element X in the sense of (10).

COROLLARY 8. Let {Xyi, 1 <i < ky, n =1} be an array of row-wise independent
B-valued random variables with EX,; =0 for all 1 <i < k,,, n > 1, and some increasing
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sequence {k,, n > 1} of positive integers stochastically dominated by a random element
X in the sense of (10). Let E|| X||? < o, 1 < p < 2. Assume that {a,i, 1 <i<ky, n>1}
is an array of nonzero reals.

Suppose that for some increasing sequence {k,, n > 1} of positive integers,

o kn i—-1
> D lanil? X lanil? <, (63)
n=1i=2 j=1
kn
> lani|” =o(1), (64)
i-1
o kn
> S PIX] = cnil < o, (65)

n=1i

1

for some array {c,i, (1 <i<1, n=1)} of positive numbers such that

=
N

chilani|? <. (66)

Me

i
L
7

Then (17) is equivalent to (18).

PROOF. Put @,i(x) = |x|P, 1 <p <2, forall 1 <i<ky, n=>1.Then there exist «
and B such that 1 < @ < p < B < 2, for which (12) and (37) hold with &,; = &, Bni = B,
and M,; =K,; =1,i>=1,n = 1. Moreover, (10) and E||X||? < co imply E|| Xy;l|? < oo for
all 1 <i<ky and n = 1. Therefore, we see that assumptions (38)-(43) of Theorem 7
are fulfilled ((38) is fulfilled by (63), (39) and (40) by (64), (41) by (65), and (42)-(43) by
(66)). |

COROLLARY 9. Let {X,;, (1 <i<mn, n=>1)} bean array of row-wise independent
B-valued random variables with EXy; =0 for 1 <i <n, n > 1, stochastically dominated
by a random element X in the sense of (10). Assume that {a,;, i =1, n > 1} is a Toeplitz
array such that a,; # 0,1 > 1, n > 1, and for some y such thatyp >2,1<p <2,

sup [ani| = O(n™). 67)

i=1

IfE|| X||? < oo, then (17) is equivalent to (18).

PROOF. To prove this result, it is enough to show that under assumption (67), con-
ditions (14), (15), and (16) of Theorem 4 are fulfilled.

Indeed, we see that for @, (x) = Qui(x) = |x|Pand M,; =Ky;=1,i=1,n>1,k=1,
and k, = n, n > 1, we have

) n ) P n ©

1
ZE(Z |ani|”||xm||”) <C> (sup|am|> SEIX|IP<C T < (68)
n=1 n=1 \ izl i=1 n=1

i=1

So, condition (14) is fulfilled.
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For chi =D/ayi, i=1,n =1, we get (15) and (16):

[ n

D
> p{IXaill = |
n=1i=1 Ani
00 n oo n 00 1
il | P P -
<33 [Dix1= 2] < € 3. 3 ani| "EIXI scglnwfl <, (69)

lamIZ”E\Ianl\p<CZ Z|am|”EllX|\”<CZ <o

n=1i=1

|2

li=1

[Me

a
n ni

Similarly, we can prove the next corollary.

COROLLARY 10. Let {Xyi, (1 <i<mn, n=1)} be an array of row-wise independent
B-valued random variables with EX,,; =0 for 1 <1i < ky, n = 1, and some increasing
sequence {k,, n > 1} of positive integers stochastically dominated by a random element
X in the sense of (10). Assume that {a,;, i = 1, n > 1} is a Toeplitz array such that
ani #0,i>=1,n =1, and for some y such thatyq>2,0<q <2,

kn
Dlani|*=0(n). (70)
IfE|| X||9 < o, then (17) is equivalent to (18).

Using the fact that % is a Banach space of Rademacher type p, we see that (67) implies
(17) under E||X||? < «. Indeed, we see that

2

So, we can formulate the next result.

Z AniXni
i=1

C

= g:| e’ ZE”ameHp = CZ |am|pEHX||p = ﬁ =o0(1).
i=1 i=1

(71)

COROLLARY 11. Let {Xyi, 1 <i<n, n>1} be an array of row-wise independent
random elements taking values in a Banach space of Rademacher type p, 1 < p < 2,
with EX,; =0 fori = 1, n = 1, stochastically dominated by a random element X in the
sense of (10) and E|| X||P < co. Assume that {a,;, i > 1, n > 1} is a Toeplitz array. If for
some y satisfying yp >2 and an; # 0,i> 1, n > 1, (67) holds, then (18) is fulfilled.

EXAMPLE 12. Let {X;,,, n = 1} be a sequence of independent random variables which
are stochastically dominated by a random variable X such that EX = 0 and E|X|Y < o
for some y, 1 < @ <y < B <2.Set Xp; = X} /n1+91Y and a,; = 1/n'/Y, for 1 <i <n,
n=>1.

We will verify that conditions (14), (15), and (16) of Theorem 4 hold with k,,=n,n>1,
Cni =N and @pi(x) = Pri(x) = |x|¥/,1<i<n,n=1k=1.

We note that the functions @,; and @,;, 1 <i <n,n = 1, satisfy conditions (12) and
(13) with &y = /1, Bni = B/i, and M,,; = Ky,; = 1.
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To verify (14), note that

ZIE(szL.Um |(Xm)| )Scz ZE|Xm| Cz zE|X1 Z g o0,

i=1 Ynila nl+e. ’l’l
(72)

n=1i=1 n=1i=1 nzl
and to verify (15), note that

>

n=1i

M=

P[|Xm| >1’li/y]
1

< 5 [ PG w5 Saix s neen] e S L <o

n=1i=1 i=1 n=1
(73)
Moreover, we see that
00 n
E(pnt(|Xm |)
Z Z ®ni(Cni) -
- = ni nit 2 (an%)
i (74)
© n yli —© n y
nE | Xyi| E|Xi| 1
Szz n2 SZ. ne+e szn1+£<oo.
n=1i=1 n=1i=1 n=1

To complete the proof, we note that the real number space is of Rademacher type p
with p = 2, so by the estimations (36), (72), and (73), we have (17). Thus, by Theorem 4,
we have

0 n
> aniXpi= > n FOUXI 0, as,n— . (75)
i-1 iz1
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