ON CHUNG-TEICHER TYPE STRONG LAW FOR ARRAYS OF VECTOR-VALUED RANDOM VARIABLES

ANNA KUCZMASZEWSKA

Received 2 January 2003

We study the equivalence between the weak and strong laws of large numbers for arrays of row-wise independent random elements with values in a Banach space \mathfrak{B} . The conditions under which this equivalence holds are of the Chung or Chung-Teicher types. These conditions are expressed in terms of convergence of specific series and o(1) requirements on specific weighted row-wise sums. Moreover, there are not any conditions assumed on the geometry of the underlying Banach space.

2000 Mathematics Subject Classification: 60F15, 60B12.

Let (Ω, \mathcal{F}, P) be a probability space and let \mathfrak{B} be a real separable Banach space with norm $\|\cdot\|$. A strongly measurable transformation from Ω to \mathfrak{B} is said to be a \mathfrak{B} -valued random variable or a random element. If $E\|X\| < \infty$, then the expected value is defined by the Bochner integral.

Let $\{X_n, n \ge 1\}$ be a sequence of \Re -valued random variables. Then $\{X_n, n \ge 1\}$ is said to obey the strong law of large numbers (SLLN) if there exist sequences of real numbers $\{a_n, n \ge 1\}$ and $\{b_n, n \ge 1\}$ such that

$$\sum_{j=1}^{n} a_j (X_j - b_j) \longrightarrow 0 \quad \text{a.s., } n \longrightarrow \infty.$$
 (1)

Sufficient conditions for SLLN use very often the geometry of a Banach space, that is, they assume that \Re is a special-type space, for instance \Re is of Rademacher type p, 1 .

The space \Re is of Rademacher type p if there exists a positive constant C such that

$$E \left\| \sum_{n=1}^{\infty} \varepsilon_n x_n \right\|^p \le C \sum_{n=1}^{\infty} \left\| x_n \right\|^p \tag{2}$$

for each $(x_1, x_2,...) \in C(B)$, where $\{\varepsilon_n, n \ge 1\}$ is a Bernoulli sequence, that is, $\varepsilon_n, n \ge 1$, are i.i.d. random variables and $P[\varepsilon_n = 1] = P[\varepsilon_n = -1] = 1/2$, $C(B) = \{(x_1, x_2,...) \in B^{\infty} : \sum_{n=1}^{\infty} \varepsilon_n x_n \text{ converges in probability}\}$, $B^{\infty} = B \times B \times B \times \cdots$.

The sufficient conditions for SLLN for random elements taking value in a space of Rademacher type p were presented by Woyczyński [15], Hoffmann-Jørgensen and Pisier [6], Kuczmaszewska and Szynal [8], and Adler et al. [1].

The type of Marcinkiewicz-Zygmunt SLLN provides that for $1 \le \alpha < 2$ and a sequence $\{X_n, n \ge 1\}$ of i.i.d. \Re -valued random variables,

$$\frac{1}{n^{1/\alpha}} \sum_{i=1}^{n} (X_i - EX_i) \longrightarrow 0 \quad \text{a.s., } n \longrightarrow \infty,$$
 (3)

if and only if $E||X_1|| < \infty$ and the Banach space \Re is of a Rademacher type p for $\alpha (cf. [15]).$

The classical result of Hoffmann-Jørgensen and Pisier [6] proved that the assumption that a Banach space \Re is the space of Rademacher type p, $1 \le p \le 2$, is equivalent to the fact that the condition

$$\sum_{n=1}^{\infty} \frac{E||X_n||^p}{n^p} < \infty \tag{4}$$

implies SLLN for a sequence of \Re -valued independent random variables $\{X_n, n \ge 1\}$ with $EX_n = 0, n \ge 1$.

In view of many statistical applications, it is important to consider the array-type SLLN.

Let $\{k_n, n \ge 1\}$ be a strictly increasing sequence of positive integers. An array of \mathfrak{B} -valued random variables $\{X_{ni}, 1 \le i \le k_n, n \ge 1\}$ obeys the general array type of SLLN if

$$\sum_{i=1}^{k_n} a_{ni}(X_{ni} - c_{ni}) \longrightarrow 0 \quad \text{a.s., } n \longrightarrow \infty,$$
(5)

where $\{a_{ni}, 1 \le i \le k_n, n \ge 1\}$ and $\{c_{ni}, 1 \le i \le k_n, n \ge 1\}$ are suitable arrays of constants (weights) and \mathcal{B} -valued elements, respectively, and 0 denotes the zero-element in \mathcal{B} .

Hu and Taylor [7] considered SLLN for arrays of row-wise independent random variables $\{X_{ni}, 1 \le i \le n, n \ge 1\}$.

Row-wise independence means that the random elements within each row are independent but no independence is assumed between rows.

In [3] Bozorgnia et al. obtained the Chung-type SLLN for arrays of row-wise independent random elements in a separable Banach space of Rademacher type p, 1 . They proved the following result.

THEOREM 1. Let $\{X_{ni}, 1 \le i \le n, n \ge 1\}$ be an array of row-wise independent random elements in a separable Banach space of Rademacher type $p, 1 . Let <math>\varphi : \mathbb{R} \to \mathbb{R}$ be a positive, even, and continuous function such that

$$\frac{\varphi(|x|)}{|x|^r} \nearrow, \quad \frac{\varphi(|x|)}{|x|^{r+p-1}} \searrow \quad as |x| \nearrow, \tag{6}$$

for some integer $r \ge 2$.

Then the conditions

$$EX_{ni} = 0$$
, $1 \le i \le n$, $n \ge 1$,

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E\varphi(||X_{ni}||)}{\varphi(a_n)} < \infty, \qquad \sum_{n=1}^{\infty} \left[\sum_{i=1}^{n} E\left(\left\|\frac{X_{ni}}{a_n}\right\|^p\right) \right]^{pk} < \infty, \tag{7}$$

for some positive integer k, imply

$$\frac{1}{a_n} \sum_{i=1}^n X_{ni} \to 0 \quad a.s., n \to \infty, \tag{8}$$

where $\{a_n, n \ge 1\}$ is a sequence of positive increasing real numbers such that

$$\lim_{n \to \infty} a_n = \infty. \tag{9}$$

This theorem generalizes Hu and Taylor's result (cf. [7]) on the case of \mathfrak{B} -valued random variables $\{X_{ni},\ 1 \leq i \leq n,\ n \geq 1\}$ taking value in a Banach space of Rademacher type p. Moreover, the assumptions of the function φ have some relationships with the geometric condition Rademacher type p of the Banach space.

Some results which consider the problem of equivalence between weak law of large numbers (WLLN) and SLLN for a sequence $\{X_n, n \ge 1\}$ of independent \mathfrak{B} -valued random variables can be found in Kuelbs and Zinn [10], de Acosta [4], Etemadi [5], Mikosch and Norvaiša [11, 12], Wang et al. [14], and Kuczmaszewska and Szynal [9].

Now, we recall some definitions and a lemma which will be used in the paper.

DEFINITION 2. A double array $\{a_{ni}, i \ge 1, n \ge 1\}$ of real numbers is said to be a Toeplitz array if $\lim_{n\to\infty} a_{ni} = 0$ for each $i \ge 1$ and $\sum_{i=1}^{\infty} |a_{ni}| \le C$ for all $n \ge 1$, where C > 0.

In further consideration, we need an extension of the concept of stochastic domination by a random variable to an array of \Re -valued random variables.

An array $\{X_{ni}, i \ge 1, n \ge 1\}$ of \mathfrak{B} -valued random variables is stochastically dominated by the random element X if there exists a constant D > 0 such that

$$P[||X_{ni}|| > x] \le DP[D||X|| > x]$$
 (10)

for all $x \ge 0$, $i \ge 1$, and $n \ge 1$.

We also need some inequalities which will be very important in our consideration. The following lemma presents one of them.

LEMMA 3 (cf. Yurinskii [16]). Let $X_1, X_2, ..., X_n$ be independent \Re -valued random variables with $E||X_i|| < \infty$, i = 1, 2, ..., n. Let \Im be a σ -field generated by $(X_1, X_2, ..., X_k)$, k = 1, 2, ..., n, and let \Im 0 = $\{\Omega, \emptyset\}$. Then for $1 \le k \le n$ and $S_n = \sum_{i=1}^n X_i$,

$$|E(||S_n|||\mathscr{F}_k) - E(||S_n|||\mathscr{F}_{k-1})| \le ||X_k|| + E||X_k||.$$
 (11)

THEOREM 4. Let $\{X_{ni}, 1 \le i \le k_n, n \ge 1\}$ be an array of row-wise independent \Re -valued random variables with $EX_{ni} = 0$ for all $1 \le i \le k_n, n \ge 1$, and for some increasing

sequence $\{k_n, n \ge 1\}$ of positive integers. Let $\varphi_{ni} : \mathbb{R} \to \mathbb{R}_+$ and $\psi_{ni} : \mathbb{R} \to \mathbb{R}_+$ be positive, even, and continuous functions, which for constants $\alpha_{ni} \ge 1$, $0 < \beta_{ni} \le 2$, $K_{ni} > 0$, and $M_{ni} > 0$, $1 \le i \le k_n$, $n \ge 1$, satisfy the following conditions:

$$|x_1| \le |x_2| \Rightarrow \frac{\varphi_{ni}(|x_1|)}{|x_1|^{\alpha_{ni}}} \le K_{ni} \frac{\varphi_{ni}(|x_2|)}{|x_2|^{\alpha_{ni}}},$$
 (12)

$$|x_1| \le |x_2| \Rightarrow \frac{|x_1|^{\beta_{ni}}}{\psi_{ni}(|x_1|)} \le M_{ni} \frac{|x_2|^{\beta_{ni}}}{\psi_{ni}(|x_2|)}.$$
 (13)

Suppose that for some array $\{a_{ni}, (1 \le i \le k_n, n \ge 1)\}$ of nonzero reals and $k \ge 1/2$,

$$\sum_{n=1}^{\infty} E \left(\sum_{i=1}^{k_n} M_{ni} \frac{\psi_{ni}(||X_{ni}||)}{\psi_{ni}(a_{ni}^{-1})} \right)^k < \infty, \tag{14}$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} P[||X_{ni}|| \ge c_{ni}] < \infty, \tag{15}$$

for some array $\{c_{ni}, 1 \le i \le k_n, n \ge 1\}$ of positive numbers such that

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} K_{ni}^{2} \cdot \varphi_{ni}(c_{ni}) \frac{E \varphi_{ni}(||X_{ni}||)}{\varphi_{ni}^{2}(a_{ni}^{-1})} < \infty.$$
 (16)

Then

$$\sum_{i=1}^{k_n} a_{ni} X_{ni} \xrightarrow{P} 0, \quad n \to \infty, \tag{17}$$

if and only if

$$\sum_{i=1}^{k_n} a_{ni} X_{ni} \to 0 \quad a.s., n \to \infty.$$
 (18)

PROOF. Let $X'_{ni} = X_{ni}I[\|X_{ni}\| \le |a_{ni}^{-1}|]$ and $X_{ni}^* = X'_{ni} - EX'_{ni}$. Now we introduce the following notation:

$$S_n = \sum_{i=1}^{k_n} a_{ni} X_{ni}, \qquad S'_n = \sum_{i=1}^{k_n} a_{ni} X'_{ni}.$$
 (19)

Note that using this notation, condition (12) on the Borel functions φ_{ni} , and assumptions (15) and (16), we have

$$\sum_{n=1}^{\infty} P[S_n \neq S'_n] = \sum_{n=1}^{\infty} P\left[\left\| \sum_{i=1}^{k_n} a_{ni} X_{ni} I[||X_{ni}|| > |a_{ni}^{-1}|] \right\| > \varepsilon \right]$$

$$\leq \sum_{n=1}^{\infty} \sum_{i=1}^{k_n} P[||X_{ni}|| I[||X_{ni}|| > |a_{ni}^{-1}|] \neq 0]$$

$$= \sum_{n=1}^{\infty} \sum_{i=1}^{k_n} P[||X_{ni}|| > |a_{ni}^{-1}|]$$

$$\leq \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} EI[||X_{ni}|| > |a_{ni}^{-1}|] \cdot I[||X_{ni}|| \geq c_{ni}]
+ \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} EI[||X_{ni}|| > |a_{ni}^{-1}|] \cdot I[||X_{ni}|| < c_{ni}]
+ \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} P[||X_{ni}|| \geq c_{ni}]
+ \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} E\left\{ \left(\frac{||X_{ni}||^{\alpha_{ni}}}{(|a_{ni}^{-1}|)^{\alpha_{ni}}} \right)^{2} I[||X_{ni}|| > |a_{ni}^{-1}|] \cdot I[||X_{ni}|| < c_{ni}] \right\}
\leq \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} P[||X_{ni}|| \geq c_{ni}] + \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} K_{ni}^{2} \cdot \varphi_{ni}(c_{ni}) \frac{E\varphi_{ni}(||X_{ni}||)}{\varphi_{ni}^{2}(a_{ni}^{-1})} < \infty.$$
(20)

Thus the two sequences $\{S_n, n \ge 1\}$ and $\{S'_n, n \ge 1\}$ are equivalent. Now we must prove that

$$E||S_n'|| \to 0, \quad n \to \infty.$$
 (21)

First we will show that

$$||S'_n|| - E||S'_n|| \xrightarrow{P} 0, \quad n \to \infty.$$
 (22)

Using the Markov inequality, the Marcinkiewicz-Zygmunt inequality in its Banach space version (cf. de Acosta [4] or Berger [2]), and assumptions (12) and (14), for any $\varepsilon > 0$, we get

$$P[|||S'_{n}|| - E||S'_{n}||| > \varepsilon] \le \varepsilon^{-2k} E |||S'_{n}|| - E||S'_{n}|||^{2k}$$

$$\le \varepsilon^{-2k} A_{k} E \left(\sum_{i=1}^{k_{n}} ||a_{ni}X'_{ni}||^{2} \right)^{k} = \varepsilon^{-2k} A_{k} E \left(\sum_{i=1}^{k_{n}} \frac{||X'_{ni}||^{2}}{(a_{ni}^{-1})^{2}} \right)^{k}$$

$$= \varepsilon^{-2k} A_{k} E \left(\sum_{i=1}^{k_{n}} \frac{||X'_{ni}||^{\beta_{ni}}}{(|a_{ni}^{-1}|)^{\beta_{ni}}} \cdot \frac{||X'_{ni}||^{2-\beta_{ni}}}{(|a_{ni}^{-1}|)^{2-\beta_{ni}}} \right)^{k}$$

$$\le \varepsilon^{-2k} A_{k} E \left(\sum_{i=1}^{k_{n}} M_{ni} \frac{\psi_{ni}(||X'_{ni}||)}{\psi_{ni}(a_{ni}^{-1})} \right)^{k}$$

$$\times \varepsilon^{-2k} A_{k} E \left(\sum_{i=1}^{k_{n}} M_{ni} \frac{\psi_{ni}(||X_{ni}||)}{\psi_{ni}(a_{ni}^{-1})} \right)^{k} = o(1).$$

Thus we conclude that (22) holds and, together with (17) and the equivalence between $\{S_n, n \ge 1\}$ and $\{S'_n, n \ge 1\}$, gives (21).

Now, we will show that $||S'_n|| \to 0$ a.s., as $n \to \infty$. By (21) it is enough to prove that

$$||S_n'|| - E||S_n'|| \to 0 \quad \text{a.s., } n \to \infty.$$

As before, using the Markov inequality, the Marcinkiewicz-Zygmunt inequality, condition (13), and assumption (14), we have

$$\sum_{n=1}^{\infty} P[|||S'_{n}|| - E||S'_{n}||| > \varepsilon] \leq \varepsilon^{-2k} \sum_{n=1}^{\infty} E|||S'_{n}|| - E||S'_{n}|||^{2k}$$

$$\leq \varepsilon^{-2k} A_{k} \sum_{n=1}^{\infty} E\left(\sum_{i=1}^{k_{n}} \frac{||X'_{ni}||^{2}}{(a_{ni}^{-1})^{2}}\right)^{k}$$

$$= \varepsilon^{-2k} A_{k} \sum_{n=1}^{\infty} E\left(\sum_{i=1}^{k_{n}} \frac{||X'_{ni}||^{\beta_{ni}}}{(|a_{ni}^{-1}|)^{\beta_{ni}}} \cdot \frac{||X'_{ni}||^{2-\beta_{ni}}}{(|a_{ni}^{-1}|)^{2-\beta_{ni}}}\right)^{k}$$

$$\leq \varepsilon^{-2k} A_{k} \sum_{n=1}^{\infty} E\left(\sum_{i=1}^{k_{n}} M_{ni} \frac{\psi_{ni}(||X_{ni}||)}{\psi_{ni}(a_{ni}^{-1})}\right)^{k} < \infty.$$
(25)

Hence, by the Borel-Cantelli lemma, we obtain (24), which, by the equivalence between $\{S_n, n \ge 1\}$ and $\{S'_n, n \ge 1\}$, completes the proof.

Note that if we put in Theorem 4 $\varphi_{ni} = \varphi$ and $\psi_{ni} = \psi$, where $\varphi : \mathbb{R} \to \mathbb{R}_+$, $\psi : \mathbb{R} \to \mathbb{R}_+$ are positive, even, and continuous functions such that

$$\frac{\varphi(|x|)}{|x|^{\alpha}} \nearrow, \quad \frac{\psi(|x|)}{|x|^{\beta}} \searrow \quad \text{as } |x| \nearrow, \tag{26}$$

for some $\alpha \ge 1$ and $0 < \beta \le 2$, we get the following result.

COROLLARY 5. Let $\{X_{ni}, 1 \le i \le k_n, n \ge 1\}$ be an array of row-wise independent \Re -valued random variables with $EX_{ni} = 0$ for all $1 \le i \le k_n$, $n \ge 1$, and for any increasing sequence $\{k_n, n \ge 1\}$ of positive integers. Let $\varphi : \mathbb{R} \to \mathbb{R}_+$ and $\psi : \mathbb{R} \to \mathbb{R}_+$ be positive, even, and continuous functions satisfying (26) for some $\alpha \ge 1$ and $0 < \beta \le 2$.

Suppose that for some array $\{a_{ni}, 1 \le i \le k_n, n \ge 1\}$ of nonzero reals and $k \ge 1/2$,

$$\sum_{n=1}^{\infty} E\left(\sum_{i=1}^{k_n} \frac{\psi(||X_{ni}||)}{\psi(a_{ni}^{-1})}\right)^k < \infty, \qquad \sum_{n=1}^{\infty} \sum_{i=1}^{k_n} P[||X_{ni}|| \ge c_{ni}] < \infty, \tag{27}$$

for some array $\{c_{ni}, (1 \le i \le 1, n \ge 1)\}$ of positive numbers such that

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} \varphi(c_{ni}) \frac{E\varphi(||X_{ni}||)}{\varphi^2(a_{ni}^{-1})} < \infty.$$
 (28)

Then (17) is equivalent to (18).

Putting $\psi(x) = |x|^p$, $1 , and <math>c_{ni} = |a_{ni}^{-1}|$, we obtain the following result for a separable Banach space of Rademacher type p.

COROLLARY 6. Let $\{X_{ni}, 1 \le i \le k_n, n \ge 1\}$ be an array of row-wise independent \Re -valued random variables in a separable Banach space of Rademacher type $p, 1 , with <math>EX_{ni} = 0$ for all $1 \le i \le k_n, n \ge 1$, and for some increasing sequence $\{k_n, n \ge 1\}$ of positive integers. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a positive, even, and continuous function such that

$$\frac{\varphi(|x|)}{|x|^{\alpha}} \neq as |x| \neq, \tag{29}$$

for some $\alpha \geq 1$.

Then, for some array $\{a_{ni}, (1 \le i \le k_n, n \ge 1)\}$ of nonzero reals and some integer $k \ge 1$, the conditions

$$\sum_{n=1}^{\infty} \left[\sum_{i=1}^{k_n} \frac{E(||X_{ni}||^p)}{|a_{ni}|^{-p}} \right]^k < \infty, \tag{30}$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} \frac{E\varphi(||X_{ni}||)}{\varphi(a_{ni}^{-1})} < \infty \tag{31}$$

imply (18).

PROOF. Putting $M_{ni} = K_{ni} = 1$ and using (20), we see that it is enough to show that Theorem 4 holds for $\{X_{ni}, 1 \le i \le k_n, n \ge 1\}$ and $k \ge 2$.

Indeed, we have

$$\sum_{n=1}^{\infty} E\left(\sum_{i=1}^{k_{n}} \frac{||X'_{ni}||^{p}}{|a_{ni}^{-1}|^{p}}\right)^{k}$$

$$\leq \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \left(\sum_{s_{1},...,s_{k_{n}}}^{k}\right) E\left(\frac{||X'_{n1}||^{p}}{|a_{n1}^{-1}|^{p}}\right)^{s_{1}} E\left(\frac{||X'_{n2}||^{p}}{|a_{n2}^{-1}|^{p}}\right)^{s_{2}} \cdots E\left(\frac{||X'_{nk_{n}}||^{p}}{|a_{nk_{n}}^{-1}|^{p}}\right)^{s_{k_{n}}}, \tag{32}$$

where the sum $\sum {*}\binom{k}{s_1,...,s_{k_n}}$ is over all choices of $\{s_1,s_2,...,s_{k_n}\}$, $s_i \in \{0,1,2,...,k\}$, such that $\sum_{i=1}^{k_n} s_i = k$. Choose n sufficiently large so that $k_n > k$. Let $m = m(s_1,s_2,...,s_{k_n})$ be a number of $s_i \neq 0$. We see that m takes all the values from the set $\{1,2,...,k\}$. Changing the order in our sum, we can express the right-hand side of (32) in the following form:

$$\sum_{n=1}^{\infty} \sum_{m=1}^{k} \sum_{\substack{1 \leq i_{j} \leq k_{n}, \\ j=1,2,...,m \\ i_{j} \neq i_{k} \ \forall k \neq j}} {}^{*} \binom{k}{s_{i_{1}},...,s_{i_{m}}} E \left(\frac{||X'_{ni_{1}}||^{p}}{|a_{ni_{1}}^{-1}|^{p}} \right)^{s_{i_{1}}} E \left(\frac{||X'_{ni_{2}}||^{p}}{|a_{ni_{2}}^{-1}|^{p}} \right)^{s_{i_{2}}} \cdots E \left(\frac{||X'_{ni_{m}}||^{p}}{|a_{ni_{m}}^{-1}|^{p}} \right)^{s_{i_{m}}}$$

$$\leq \sum_{n=1}^{\infty} \left\{ \sum_{1 \leq i_{1} < i_{2} < \cdots < i_{k} \leq k_{n}} E \left(\frac{||X'_{ni_{1}}||^{p}}{|a_{ni_{1}}^{-1}|^{p}} \right) E \left(\frac{||X'_{ni_{2}}||^{p}}{|a_{ni_{2}}^{-1}|^{p}} \right) \cdots E \left(\frac{||X'_{ni_{k}}||^{p}}{|a_{ni_{k}}^{-1}|^{p}} \right) \right\}$$

$$+ \left(\sum_{m=1}^{k-1} \sum_{\substack{1 \le i_{j} \le k_{n}, \\ j=1,2,\dots,m \\ i_{j} \ne i_{k} \ \forall k \ne j}} * \binom{k}{s_{1},\dots,s_{i_{m}}} \left(\prod_{h=1}^{L} E \left(\frac{\left\| X'_{ni_{j_{h}}} \right\|^{p}}{\left\| a_{ni_{j_{h}}}^{-1} \right\|^{p}} \right)^{s_{i_{j_{h}}}} \right) \right)$$

$$\cdot \left(\prod_{j=1}^{N} E \frac{\left\| X'_{ni_{h_{j}}} \right\|^{p}}{\left\| a_{ni_{h_{j}}}^{-1} \right\|^{p}} \right) \right\},$$
(33)

where L = number of $s_i \ge 2$, N = number of $s_i = 1$, and $\{s_{i_1}, \dots, s_{i_m}\} = \{s_{i_{j_h}}, h = 1, \dots, L\} \cup \{s_{i_{h_j}}, s_{i_{h_j}} = 1, h = 1, \dots, N\}, \{s_{i_{j_h}}, h = 1, \dots, L\} \cap \{s_{i_{h_j}}, s_{i_{h_j}} = 1, h = 1, \dots, N\} = \emptyset.$

$$\left(\frac{\left\|X'_{ni_{j}}\right\|^{p}}{\left|a_{ni_{j}}^{-1}\right|^{p}}\right)^{s_{i_{j}}} \leq \frac{\left\|X'_{ni_{j}}\right\|^{p}}{\left|a_{ni_{j}}^{-1}\right|^{p}}, \qquad E\frac{\left\|X'_{ni_{j}}\right\|^{p}}{\left|a_{ni_{j}}^{-1}\right|^{p}} \leq \sum_{i=1}^{k_{n}} \frac{E\left\|X'_{ni_{j}}\right\|^{p}}{\left|a_{ni_{j}}^{-1}\right|^{p}} \quad \text{for } 1 \leq i_{j} \leq k_{n}, \tag{34}$$

so the right-hand side of (33) can be estimated as follows:

$$C \sum_{n=1}^{\infty} \left\{ \left(\sum_{i=1}^{k_{n}} E \frac{||X'_{ni}||^{p}}{|a_{ni}^{-1}|^{p}} \right)^{k} + \left(\sum_{i=1}^{k_{n}} E \frac{||X'_{ni}||^{p}}{|a_{ni}^{-1}|^{p}} \right)^{L} \cdot \left(\sum_{i=1}^{k_{n}} E \frac{||X'_{ni}||^{p}}{|a_{ni}^{-1}|^{p}} \right)^{M} \right\}$$

$$\leq C \sum_{n=1}^{\infty} \left(\sum_{i=1}^{k_{n}} E \frac{||X'_{ni}||^{p}}{|a_{ni}^{-1}|^{p}} \right)^{k} < \infty.$$
(35)

Therefore, assumption (14) of Theorem 4 holds. Moreover, by (31), we get (15) and (16) of Theorem 4. We also note that if $\mathfrak B$ is a Banach space of Rademacher type p, 1 , we have the following estimation:

$$P[||S_n|| \ge \varepsilon] \le \varepsilon^{-p} E||S_n||^p \le \varepsilon \sum_{i=1}^{k_n} E||a_{ni}X_{ni}||^p \le \varepsilon^{-p} \sum_{i=1}^{k_n} \frac{E(||X_{ni}||^p)}{|a_{ni}|^{-p}} = o(1).$$
 (36)

This fact, together with (20), completes the proof.

Now we present the result which gives the sufficient conditions for the equivalence of (17) and (18) in the Chung-Teicher terms (cf. Teicher [13]).

THEOREM 7. Let $\{X_{ni}, 1 \le i \le k_n, n \ge 1\}$ be an array of row-wise independent \Re -valued random variables with $EX_{ni} = 0$ for all $1 \le i \le k_n$, $n \ge 1$, and for some increasing sequence $\{k_n, n \ge 1\}$ of positive integers. Let $\varphi_{ni} : \mathbb{R} \to \mathbb{R}_+$ be positive, even, and

continuous functions which, for constants $\alpha_{ni} \ge 1$, $0 < \beta_{ni} \le 2$, $K_{ni} > 0$, and $M_{ni} > 0$, $n \ge 1$, $i \ge 1$, satisfy (12) and

$$|x_1| \le |x_2| \Rightarrow \frac{|x_1|^{\beta_{ni}}}{\varphi_{ni}(|x_1|)} \le M_{ni} \frac{|x_2|^{\beta_{ni}}}{\varphi_{ni}(|x_2|)}.$$
 (37)

Suppose that for some array $\{a_{ni}, (1 \le i \le k_n, n \ge 1)\}$ of nonzero reals,

$$\sum_{n=1}^{\infty} \sum_{i=2}^{k_n} M_{ni} \frac{E\varphi_{ni}(||X_{ni}||)}{P\varphi_{ni}(a_{ni}^{-1})} \sum_{j=1}^{i-1} M_{nj} \frac{E\varphi_{nj}(||X_{nj}||)}{\varphi_{nj}(a_{nj}^{-1})} < \infty, \tag{38}$$

$$\sum_{i=1}^{k_n} M_{ni} \frac{E\varphi_{ni}(||X_{ni}||)}{\varphi_{ni}(a_{ni}^{-1})} = o(1),$$
(39)

$$\sum_{i=1}^{k_n} K_{ni} \frac{E\varphi_{ni}(||X_{ni}||)}{\varphi_{ni}(a_{ni}^{-1})} = o(1), \tag{40}$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} P[||X_{ni}|| \ge c_{ni}] < \infty, \tag{41}$$

for some array $\{c_{ni}, i \ge 1, n \ge 1\}$ of positive numbers such that

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} M_{ni}^2 \cdot \varphi_{ni}(c_{ni}) \frac{E \varphi_{ni}(||X_{ni}||)}{\varphi_{ni}^2(a_{ni}^{-1})} < \infty, \tag{42}$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} K_{ni}^2 \cdot \varphi_{ni}(c_{ni}) \frac{E \varphi_{ni}(||X_{ni}||)}{\varphi_{ni}^2(a_{ni}^{-1})} < \infty.$$
 (43)

Then (17) is equivalent to (18).

PROOF. Let $X'_{ni} = X_{ni}I[\|X_{ni}\| \le |a_{ni}^{-1}|], X_{ni}^* = X'_{ni} - EX'_{ni}, S'_n = \sum_{i=1}^{k_n} a_{ni}X'_{ni}$, and $S_n^* = \sum_{i=1}^{k_n} a_{ni}X_{ni}^*$. By (20), we state that $\{S_n, n \ge 1\}$ and $\{S'_n, n \ge 1\}$ are equivalent. Moreover, we have by (40)

$$\left\| \sum_{i=1}^{k_{n}} a_{ni} E X_{ni} I[||X_{ni}|| \le |a_{ni}^{-1}|] \right\| \le \sum_{i=1}^{k_{n}} |a_{ni}| \cdot ||EX_{ni} I[||X_{ni}|| \le |a_{ni}^{-1}|]||$$

$$= \sum_{i=1}^{k_{n}} |a_{ni}| \cdot ||EX_{ni} I[||X_{ni}|| > |a_{ni}^{-1}|]||$$

$$\le \sum_{i=1}^{k_{n}} \frac{E||X_{ni}|| I[||X_{ni}|| > |a_{ni}^{-1}|]}{|a_{ni}^{-1}|}$$

$$\le \sum_{i=1}^{k_{n}} \frac{E||X_{ni}||^{\alpha_{ni}} I[||X_{ni}|| > |a_{ni}^{-1}|]}{|a_{ni}^{-1}|^{\alpha_{ni}}}$$

$$\le \sum_{i=1}^{k_{n}} K_{ni} \cdot \frac{E\varphi_{ni}(||X_{ni}||)}{\varphi_{ni}(a_{ni}^{-1})} = o(1).$$
(44)

Now we define

$$Y_{ni} = E(||S_n^*|| ||\mathcal{F}_{ni}) - E(||S_n^*|| ||\mathcal{F}_{ni-1}), \tag{45}$$

where $\mathcal{F}_{ni} = \sigma(X_{n1}^*, X_{n2}^*, \dots, X_{ni}^*)$ and $\mathcal{F}_{n0} = \{\emptyset, \Omega\}$. Then we have

$$||S_n^*|| - E||S_n^*|| = \sum_{i=1}^{k_n} Y_{ni}$$
(46)

and we note that $\{Y_{ni}, 1 \le i \le k_n\}$ is a sequence of martingale differences for a fixed n. Now we are going to prove that

$$E||S_n^*|| \to 0, \quad n \to \infty. \tag{47}$$

First we will show that

$$||S_n^*|| - E||S_n^*|| \xrightarrow{P} 0, \quad n \to \infty.$$
 (48)

Using Chebyshev's inequality, Lemma 3, and assumption (39), we get, for any $\varepsilon > 0$,

$$P[|||S_n^*|| - E||S_n^*||| > \varepsilon]$$

$$\leq \varepsilon^{-2} E(||S_{n}^{*}|| - E||S_{n}^{*}||)^{2} = \varepsilon^{-2} E\left(\sum_{i=1}^{k_{n}} Y_{ni}\right)^{2} = \varepsilon^{-2} \sum_{i=1}^{k_{n}} E(Y_{ni}^{2})$$

$$\leq \varepsilon^{-2} \sum_{i=1}^{k_{n}} E(||a_{ni}X_{ni}^{*}|| + E||a_{ni}X_{ni}^{*}||)^{2} \leq 8\varepsilon^{-2} \sum_{i=1}^{k_{n}} a_{ni}^{2} E||X_{ni}'||^{2}$$

$$= 8\varepsilon^{-2} \sum_{i=1}^{k_{n}} E\frac{||X_{ni}'||^{\beta_{ni}}}{||a_{ni}^{-1}||^{\beta_{ni}}} \cdot \frac{||X_{ni}'||^{2-\beta_{ni}}}{||a_{ni}^{-1}||^{2-\beta_{ni}}} \leq 8\varepsilon^{-2} \sum_{i=1}^{k_{n}} M_{ni} \frac{E\varphi_{ni}(||X_{ni}'||)}{\varphi_{ni}(a_{ni})} = o(1).$$

Thus, we conclude that (48) holds and, together with (17), (20), and (44), gives (47). Now we want to show that $||S_n^*|| \to 0$ a.s., as $n \to \infty$. By (47) it is enough to prove that

$$||S_n^*|| - E||S_n^*|| \to 0 \quad \text{a.s., } n \to \infty.$$

Taking into account the identity

$$(||S_n^*|| - E||S_n^*||)^2 = \sum_{i=1}^{k_n} Y_{ni}^2 + 2\sum_{i=2}^{k_n} Y_{ni} \sum_{j=1}^{i-1} Y_{nj}$$
(51)

and using the notation

$$Z_{ni} = Y_{ni}^{2} I[||X_{ni}|| < c_{ni}] - E(Y_{ni}^{2} I[||X_{ni}|| < c_{ni}] | \mathcal{F}_{ni-1}), \quad 1 \le i \le k_{n},$$
 (52)

we have, by Chebyshev's inequality, Lemma 3, and assumption (42),

$$\sum_{n=1}^{\infty} P\left[\left|\sum_{i=1}^{k_{n}} Z_{ni}\right| > \varepsilon\right] \leq \varepsilon^{-2} \sum_{n=1}^{\infty} E\left(\sum_{i=1}^{k_{n}} Z_{ni}\right)^{2} = \varepsilon^{-2} \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} E(Z_{ni}^{2})$$

$$\leq C \cdot \varepsilon^{-2} \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} E(Y_{ni}^{4} I[||X_{ni}|| < c_{ni}])$$

$$\leq C \cdot \varepsilon^{-2} \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} E||a_{ni}X_{ni}'||^{4} I[||X_{ni}|| < c_{ni}]$$

$$\leq C \cdot \varepsilon^{-2} \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} E\left(\frac{||X_{ni}'||^{2\beta_{ni}}}{|a_{ni}^{-1}|^{2\beta_{ni}}} \cdot \frac{||X_{ni}'||^{4-2\beta_{ni}}}{|a_{ni}^{-1}|^{4-2\beta_{ni}}} I[||X_{ni}|| < c_{ni}]\right)$$

$$\leq C \cdot \varepsilon^{-2} \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} M_{ni} \cdot \varphi_{ni}(c_{ni}) \cdot \frac{E\varphi_{ni}(||X_{ni}||)}{\varphi_{ni}^{2}(a_{ni}^{-1})} < \infty.$$

Hence, by the Borel-Cantelli Lemma, we obtain

$$\sum_{i=1}^{k_n} Y_{ni}^2 I[||X_{ni}|| < c_{ni}] - \sum_{i=1}^{k_n} E(Y_{ni}^2 I[||X_{ni}|| < c_{ni}] | \mathcal{F}_{ni-1}) \longrightarrow 0 \quad \text{a.s., } n \longrightarrow \infty.$$
 (54)

Using Lemma 3, we can note by assumption (39) that

$$\sum_{i=1}^{k_{n}} E(Y_{ni}^{2} I[||X_{ni}|| < c_{ni}] | \mathcal{F}_{ni-1})$$

$$\leq 8 \sum_{i=1}^{k_{n}} E(||a_{ni}X_{ni}'||^{2}) \leq \sum_{i=1}^{k_{n}} E\left(\frac{||X_{ni}'||^{\beta_{ni}}}{|a_{ni}^{-1}|^{\beta_{ni}}} \cdot \frac{||X_{ni}'||^{2-\beta_{ni}}}{|a_{ni}^{-1}|^{2-\beta_{ni}}}\right)$$

$$\leq \sum_{i=1}^{k_{n}} M_{ni} \cdot \frac{E\varphi_{ni}(||X_{ni}||)}{\varphi_{ni}(a_{ni}^{-1})} = o(1),$$
(55)

which, together with (54), allows us to state that

$$\sum_{i=1}^{k_n} Y_{ni}^2 I[||X_{ni}|| < c_{ni}] \longrightarrow 0 \quad \text{a.s., } n \longrightarrow \infty.$$
 (56)

To prove that

$$\sum_{i=1}^{k_n} Y_{ni}^2 \to 0 \quad \text{a.s., } n \to \infty, \tag{57}$$

we only need to show that

$$\sum_{i=1}^{k_n} Y_{ni}^2 I[||X_{ni}|| \ge c_{ni}] \longrightarrow 0 \quad \text{a.s., } n \longrightarrow \infty.$$
 (58)

Indeed, by (41) and Lemma 3, we have

$$\sum_{n=1}^{\infty} P\left[\left|\sum_{i=1}^{k_{n}} Y_{ni}^{2} I[||X_{ni}|| \geq c_{ni}]\right| \geq \varepsilon\right]$$

$$\leq \varepsilon^{-1} \sum_{n=1}^{\infty} E\left|\sum_{i=1}^{k_{n}} Y_{ni}^{2} I[||X_{ni}|| \geq c_{ni}]\right| \leq C \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} E||a_{ni}X'_{ni}||^{2} I[||X_{ni}|| \geq c_{ni}]$$

$$\leq C \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} EI[||X_{ni}|| \geq c_{ni}] \leq \varepsilon^{-1} \sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} P[||X_{ni}|| \geq c_{ni}] < \infty,$$
(59)

and, by the Borel-Cantelli Lemma, we get (57). To close this proof, we must show that

$$\sum_{i=2}^{k_n} Y_{ni} \sum_{j=1}^{i-1} Y_{nj} \longrightarrow 0 \quad \text{a.s., } n \longrightarrow \infty.$$
 (60)

Using the fact that $\{Y_{ni} \sum_{j=1}^{i-1} Y_{nj}, 2 \le i \le k_n\}$ is a sequence of martingale differences for each n, we have, by Chebyshev's inequality, Lemma 3, and assumption (38),

$$\sum_{n=1}^{\infty} P\left[\left|\sum_{i=2}^{k_{n}} Y_{ni} \sum_{j=1}^{i-1} Y_{nj}\right| > \varepsilon\right] \\
\leq \varepsilon^{-2} \sum_{n=1}^{\infty} \sum_{i=2}^{k_{n}} E\left[\left(\left|\left|a_{ni} X_{ni}^{*}\right|\right| + E\left|\left|a_{ni} X_{ni}^{*}\right|\right|\right)^{2} \cdot \left(\sum_{j=1}^{i-1} Y_{nj}\right)^{2}\right] \\
\leq \varepsilon^{-2} \sum_{n=1}^{\infty} \sum_{i=2}^{k_{n}} E\left(\left|\left|a_{ni} X_{ni}^{*}\right|\right| + E\left|\left|a_{ni} X_{ni}^{*}\right|\right|\right)^{2} \cdot \sum_{j=1}^{i-1} E\left(Y_{nj}^{2}\right) \\
\leq C \sum_{n=1}^{\infty} \sum_{i=2}^{k_{n}} E\left|\left|a_{ni} X_{ni}^{'}\right|\right|^{2} \sum_{j=1}^{i-1} E\left|\left|a_{nj} X_{nj}^{'}\right|\right|^{2} C \sum_{n=1}^{\infty} \sum_{i=2}^{k_{n}} M_{ni} \frac{E\varphi_{ni}(\left|\left|X_{ni}\right|\right|)}{\varphi_{ni}(a_{ni}^{-1})} \\
\times \sum_{i=1}^{i-1} M_{nj} \frac{E\varphi_{nj}(\left|\left|X_{nj}\right|\right|)}{\varphi_{nj}(a_{nj}^{-1})} < \infty,$$
(61)

which, together with the Borel-Cantelli Lemma, implies (60).

Thus, we have proved that

$$\sum_{i=1}^{k_n} a_{ni} (X'_{ni} - EX'_{ni}) \longrightarrow 0 \quad \text{a.s., } n \longrightarrow \infty.$$
 (62)

But $\{\sum_{i=1}^{k_n} a_{ni} X'_{ni}, n \ge 1\}$ and $\{\sum_{i=1}^{k_n} a_{ni} X_{ni}, n \ge 1\}$ are equivalent and (44) holds, so we get (18).

Now we consider an array $\{X_{ni}, i \ge 1, n \ge 1\}$ of independent random elements which are stochastically dominated by a random element X in the sense of (10).

COROLLARY 8. Let $\{X_{ni}, 1 \le i \le k_n, n \ge 1\}$ be an array of row-wise independent \mathfrak{B} -valued random variables with $EX_{ni} = 0$ for all $1 \le i \le k_n, n \ge 1$, and some increasing

sequence $\{k_n, n \ge 1\}$ of positive integers stochastically dominated by a random element X in the sense of (10). Let $E||X||^p < \infty$, $1 . Assume that <math>\{a_{ni}, 1 \le i \le k_n, n \ge 1\}$ is an array of nonzero reals.

Suppose that for some increasing sequence $\{k_n, n \ge 1\}$ of positive integers,

$$\sum_{n=1}^{\infty} \sum_{i=2}^{k_n} |a_{ni}|^p \sum_{i=1}^{i-1} |a_{nj}|^p < \infty, \tag{63}$$

$$\sum_{i=1}^{k_n} |a_{ni}|^p = o(1), \tag{64}$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} P[||X|| \ge c_{ni}] < \infty, \tag{65}$$

for some array $\{c_{ni}, (1 \le i \le 1, n \ge 1)\}$ of positive numbers such that

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} c_{ni}^p \cdot |a_{ni}|^{2p} < \infty.$$
 (66)

Then (17) is equivalent to (18).

PROOF. Put $\varphi_{ni}(x) = |x|^p$, $1 , for all <math>1 \le i \le k_n$, $n \ge 1$. Then there exist α and β such that $1 \le \alpha , for which (12) and (37) hold with <math>\alpha_{ni} = \alpha$, $\beta_{ni} = \beta$, and $M_{ni} = K_{ni} = 1$, $i \ge 1$, $n \ge 1$. Moreover, (10) and $E \|X\|^p < \infty$ imply $E \|X_{ni}\|^p < \infty$ for all $1 \le i \le k_n$ and $n \ge 1$. Therefore, we see that assumptions (38)–(43) of Theorem 7 are fulfilled ((38) is fulfilled by (63), (39) and (40) by (64), (41) by (65), and (42)-(43) by (66)).

COROLLARY 9. Let $\{X_{ni}, (1 \le i \le n, n \ge 1)\}$ be an array of row-wise independent \Re -valued random variables with $EX_{ni} = 0$ for $1 \le i \le n, n \ge 1$, stochastically dominated by a random element X in the sense of (10). Assume that $\{a_{ni}, i \ge 1, n \ge 1\}$ is a Toeplitz array such that $a_{ni} \ne 0, i \ge 1, n \ge 1$, and for some γ such that $\gamma > 2, 1 ,$

$$\sup_{i\geq 1}|a_{ni}|=O(n^{-\gamma}). \tag{67}$$

If $E||X||^p < \infty$, then (17) is equivalent to (18).

PROOF. To prove this result, it is enough to show that under assumption (67), conditions (14), (15), and (16) of Theorem 4 are fulfilled.

Indeed, we see that for $\psi_{ni}(x) = \varphi_{ni}(x) = |x|^p$ and $M_{ni} = K_{ni} = 1$, $i \ge 1$, $n \ge 1$, k = 1, and $k_n = n$, $n \ge 1$, we have

$$\sum_{n=1}^{\infty} E\left(\sum_{i=1}^{n} |a_{ni}|^{p} ||X_{ni}||^{p}\right) \le C \sum_{n=1}^{\infty} \left(\sup_{i \ge 1} |a_{ni}|\right)^{p} \sum_{i=1}^{n} E||X||^{p} \le C \sum_{n=1}^{\infty} \frac{1}{n^{\gamma p - 1}} < \infty.$$
 (68)

So, condition (14) is fulfilled.

For $c_{ni} = D/a_{ni}$, $i \ge 1$, $n \ge 1$, we get (15) and (16):

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} P \left[||X_{ni}|| \ge \frac{D}{a_{ni}} \right]$$

$$\le \sum_{n=1}^{\infty} \sum_{i=1}^{n} P \left[D ||X|| \ge \frac{D}{a_{ni}} \right] \le C \sum_{n=1}^{\infty} \sum_{i=1}^{n} |a_{ni}|^{p} E ||X||^{p} \le C \sum_{n=1}^{\infty} \frac{1}{n^{\gamma p - 1}} < \infty, \quad (69)$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} \left| \frac{D}{a_{ni}} \right|^{p} \left| a_{ni} \right|^{2p} E ||X_{ni}||^{p} \le C \sum_{n=1}^{\infty} \sum_{i=1}^{n} \left| a_{ni} \right|^{p} E ||X||^{p} \le C \sum_{n=1}^{\infty} \frac{1}{n^{\gamma p - 1}} < \infty.$$

Similarly, we can prove the next corollary.

COROLLARY 10. Let $\{X_{ni}, (1 \le i \le n, n \ge 1)\}$ be an array of row-wise independent \mathfrak{B} -valued random variables with $EX_{ni} = 0$ for $1 \le i \le k_n$, $n \ge 1$, and some increasing sequence $\{k_n, n \ge 1\}$ of positive integers stochastically dominated by a random element X in the sense of (10). Assume that $\{a_{ni}, i \ge 1, n \ge 1\}$ is a Toeplitz array such that $a_{ni} \ne 0$, $i \ge 1$, $n \ge 1$, and for some γ such that $\gamma = 0$, $\gamma = 0$, $\gamma = 0$, $\gamma = 0$.

$$\sum_{i=1}^{k_n} |a_{ni}|^q = O(n^{-\gamma}). \tag{70}$$

If $E||X||^q < \infty$, then (17) is equivalent to (18).

Using the fact that \mathfrak{B} is a Banach space of Rademacher type p, we see that (67) implies (17) under $E\|X\|^p < \infty$. Indeed, we see that

$$P\left[\left\|\sum_{i=1}^{n} a_{ni} X_{ni}\right\| \ge \varepsilon\right] \le \varepsilon^{-p} \sum_{i=1}^{n} E\left\|a_{ni} X_{ni}\right\|^{p} \le C \sum_{i=1}^{n} \left\|a_{ni}\right\|^{p} E\|X\|^{p} \le \frac{C}{n^{\gamma p - 1}} = o(1).$$
(71)

So, we can formulate the next result.

COROLLARY 11. Let $\{X_{ni}, 1 \le i \le n, n \ge 1\}$ be an array of row-wise independent random elements taking values in a Banach space of Rademacher type $p, 1 , with <math>EX_{ni} = 0$ for $i \ge 1$, $n \ge 1$, stochastically dominated by a random element X in the sense of (10) and $E\|X\|^p < \infty$. Assume that $\{a_{ni}, i \ge 1, n \ge 1\}$ is a Toeplitz array. If for some y satisfying yp > 2 and $a_{ni} \ne 0$, $i \ge 1$, $n \ge 1$, (67) holds, then (18) is fulfilled.

EXAMPLE 12. Let $\{X_n, n \geq 1\}$ be a sequence of independent random variables which are stochastically dominated by a random variable X such that EX = 0 and $E|X|^{\gamma} < \infty$ for some γ , $1 \leq \alpha < \gamma < \beta \leq 2$. Set $X_{ni} = X_i^i/n^{(1+\varepsilon)i/\gamma}$ and $a_{ni} = 1/n^{i/\gamma}$, for $1 \leq i \leq n$, $n \geq 1$.

We will verify that conditions (14), (15), and (16) of Theorem 4 hold with $k_n = n$, $n \ge 1$, $c_{ni} = n^{i/y}$, and $\varphi_{ni}(x) = \psi_{ni}(x) = |x|^{y/i}$, $1 \le i \le n$, $n \ge 1$, k = 1.

We note that the functions φ_{ni} and ψ_{ni} , $1 \le i \le n, n \ge 1$, satisfy conditions (12) and (13) with $\alpha_{ni} = \alpha/i$, $\beta_{ni} = \beta/i$, and $M_{ni} = K_{ni} = 1$.

To verify (14), note that

$$\sum_{n=1}^{\infty} E\left(\sum_{i=1}^{n} M_{ni} \frac{\psi_{ni}(|X_{ni}|)}{\psi_{ni}(a_{ni}^{-1})}\right) \leq C \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E|X_{ni}|^{\gamma}}{n} \leq C \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E|X_{i}|^{\gamma}}{n^{1+\varepsilon} \cdot n} \leq C \sum_{n=1}^{\infty} \frac{1}{n^{1+\varepsilon}} < \infty,$$
(72)

and to verify (15), note that

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} P[|X_{ni}| > n^{i/y}]$$

$$\leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} P\left[\frac{|X_{i}|^{i}}{n^{(1+\varepsilon)i/y}} > n^{i/y}\right] \leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} P\left[|X_{i}|^{i} > n^{(2+\varepsilon)i/y}\right] \leq C \sum_{n=1}^{\infty} \frac{1}{n^{1+\varepsilon}} < \infty.$$
(73)

Moreover, we see that

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} K_{ni}^{2} \cdot \varphi_{ni}(c_{ni}) \frac{E\varphi_{ni}(|X_{ni}|)}{\varphi_{ni}^{2}(a_{ni}^{-1})}$$

$$\leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{nE|X_{ni}|^{\gamma/i}}{n^{2}} \leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E|X_{i}|^{\gamma}}{n^{2+\varepsilon}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{1+\varepsilon}} < \infty.$$
(74)

To complete the proof, we note that the real number space is of Rademacher type p with p = 2, so by the estimations (36), (72), and (73), we have (17). Thus, by Theorem 4, we have

$$\sum_{i=1}^{\infty} a_{ni} X_{ni} = \sum_{i=1}^{n} n^{-(2+\varepsilon)i/\gamma} X_i^i \longrightarrow 0, \quad \text{a.s., } n \longrightarrow \infty.$$
 (75)

ACKNOWLEDGMENT. The author is very grateful to the referee for the suggestions that allowed her to improve this paper.

REFERENCES

- [1] A. Adler, A. Rosalsky, and R. L. Taylor, *Some strong laws of large numbers for sums of random elements*, Bull. Inst. Math. Acad. Sinica **20** (1992), no. 4, 335–357.
- [2] E. Berger, Majorization, exponential inequalities and almost sure behavior of vector-valued random variables, Ann. Probab. 19 (1991), no. 3, 1206–1226.
- [3] A. Bozorgnia, R. F. Patterson, and R. L. Taylor, *Chung type strong laws for arrays of random elements and bootstrapping*, Stochastic Anal. Appl. **15** (1997), no. 5, 651–669.
- [4] A. de Acosta, *Inequalities for B-valued random vectors with applications to the strong law of large numbers*, Ann. Probab. **9** (1981), no. 1, 157–161.
- [5] N. Etemadi, Tail probabilities for sums of independent Banach space valued random variables, Sankhyā Ser. A 47 (1985), no. 2, 209-214.
- [6] J. Hoffmann-Jørgensen and G. Pisier, *The law of large numbers and the central limit theo- rem in Banach spaces*, Ann. Probab. 4 (1976), no. 4, 587–599.
- [7] T.-C. Hu and R. L. Taylor, *On the strong law for arrays and for the bootstrap mean and variance*, Int. J. Math. Math. Sci. **20** (1997), no. 2, 375–382.
- [8] A. Kuczmaszewska and D. Szynal, *On the strong law of large numbers in Banach space of type p*, Ann. Univ. Mariae Curie-Skłodowska Sect. A **45** (1991), 71–81.

- [9] ______, On conditions for the strong law of large numbers in general Banach spaces, Int. J. Math. Math. Sci. 24 (2000), no. 1, 29-42.
- [10] J. Kuelbs and J. Zinn, *Some stability results for vector valued random variables*, Ann. Probab. 7 (1979), no. 1, 75–84.
- [11] T. Mikosch and R. Norvaiša, On almost sure behavior of sums of independent Banach space valued random variables, Math. Nachr. 125 (1986), 217-231.
- [12] ______, Strong laws of large numbers for fields of Banach space valued random variables, Probab. Theory Related Fields 74 (1987), no. 2, 241–253.
- [13] H. Teicher, *Some new conditions for the strong law*, Proc. Nat. Acad. Sci. U.S.A. **59** (1968), 705–707.
- [14] X. C. Wang, M. B. Rao, and X. Y. Yang, *Convergence rates on strong laws of large numbers for arrays of rowwise independent elements*, Stochastic Anal. Appl. **11** (1993), no. 1, 115–132.
- [15] W. A. Woyczyński, *Random series and laws of large numbers in some Banach spaces*, Teor. Verojatnost. i Primenen. **18** (1973), 361–367.
- [16] V. V. Yurinskii, Exponential bounds for large deviations, Theor. Probability Appl. 19 (1974), 154-155.

Anna Kuczmaszewska: Department of Applied Mathematics, Lublin University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland

E-mail address: a.kuczmaszewska@pollub.pl